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Preface

Civilization over centuries has seen considerable advances in health-
care. Cancer is a challenging issue, and a number of discoveries have 
led to better care of some patients. Despite all the progress and the 
promise regarding early detection and precision medicine, we are 
still faced with the nettlesome problem— cancer is a moving target. 
Even within an individual tumour, deep sequencing analyses now 
indicate multiple, phenotypically distinct subpopulations whose 
representation seems to vary dramatically from one stage to the next 
as the tumour progresses.

The discovery of driver mutations and ‘actionable’ genes added to 
the genetic underpinning and fuelled the era of - omic approaches 
starting from whole tissue to the single- cell level. The reductionist 
perspective, together with these new developments, initially estab-
lished cancer as a complex and heterogeneous disease driven by gen-
etic mutations. According to this view, cancer per se, its progression, 
and the acquisition of drug resistance, whether innate or acquired, 
are highly deterministic. However, recent research has promoted the 
idea that phenotypic plasticity and non- genetic mechanisms are im-
portant in these events.

Increasingly, it is acknowledged that cancer is a complex adap-
tive and dynamic system and that, in addition to genetic mutations, 
intratumoral heterogeneity can also arise through non- genetic 
mechanisms. Furthermore, it is also becoming evident that the ma-
lignant phenotype results from complex interactions between gen-
etic and non- genetic mechanisms. These interactions contribute 
to functional changes across multiple spatiotemporal scales, from 
the molecular to cellular and tissue level, creating a heterogeneous 
cancer cell population.

Technological advances to study single cells and single molecules, 
the availability of powerful computing platforms, and the application 
of evolutionary game theory to discern group behaviour have gal-
vanized multiscale modelling enabling a quantitative view of the key 
processes in tumorigenesis. These efforts have served as a powerful 
means to investigate biological phenomena more comprehensively in 
experimentally relevant ways. Therefore, a deeper understanding of 
the disease can not only provide novel insight needed to personalize 
treatments, but this knowledge may also be used to address thera-
peutic resistance by administering ‘adaptive’ (intermittent) therapy 
rather than the standard (continuous) therapy that typically, albeit 
inadvertently, encourages the emergence of drug- resistant tumours. 
However, performing pre- clinical studies and clinical trials for mul-
tiple specific targets in varied dosing sequence and timing schedules 
is often too resource-  and time- consuming, and hence challenging. 
Therefore, calibrated and validated mathematical models offer an at-
tractive approach to evaluate untested protocols in silico to narrow 

the set of promising treatment schemas to be evaluated, to identify 
new treatment targets, and to reduce the risk of adverse clinical out-
comes due to complex feedback mechanisms.

The main intent of this book, in addition to providing state- 
of- the- art reviews and thought- provoking ideas in a concise and 
succinct manner, is to encourage cross- pollination of ideas from 
multiple disciplines between clinicians and scientists interested in 
integrating both theoretical and experimental approaches to study 
cancer. The chapters provide new ideas and concepts outlining how 
a quantitative picture of cancer can provide a deeper understanding 
of the disease and how a systems- level perspective may hold the key 
to fully comprehend how cancer arises and progresses.

The book embodies 41 chapters that are organized in 9 sections. 
The first two introductory chapters provide an overview of the sys-
tems approach using multiple paradigms. The following section on 
single- cell - omics provides in- depth perspective on the analyses 
of big data derived from single cells at the systems level. The car-
dinal features of such single- cell multi- omic analysis include tech-
nologies for single- cell isolation, barcoding, and sequencing to 
measure multiple types of molecules from individual cells as well 
as the integrative analysis of molecules to characterize cell types 
and their functions regarding pathophysiological processes based 
on molecular signatures. Furthermore, new hypotheses about func-
tionality and consequences of expression heterogeneity from time- 
resolved measurements of gene expression and how the principles 
from information theory can guide models of transcriptional regu-
lation and gene network connectivity are presented.

Next, computational approaches to drug discovery are pre-
sented. Computational approaches form an important part of the 
tools employed in drug discovery and development. Their appli-
cations span almost all stages in the discovery and development 
pipeline, from target identification to lead discovery and from 
lead optimization to preclinical and even clinical trials. Thus, 
the chapters devoted to this section cover concepts of struc-
ture-  and ligand- based drug designing, protein modelling and 
visualization, molecular docking, virtual screening, molecular 
dynamics simulation, pharmacophore modelling, and quantita-
tive structure– activity relationship approaches that are typically 
used in conjunction with conventional biophysical techniques. 
Some also address the broad area of data analysis, including data 
mining algorithms, statistical approaches, and practical applica-
tions. Topics in this section include problems involving massive 
and complex datasets, solutions utilizing innovative data mining 
algorithms and/ or novel statistical approaches, and the objective 
evaluation of analyses and solutions.

    

 

 

  

 

 

 

 

 

 

 



Prefaceviii

The volume and complexity of scientific and clinical data in on-
cology have shown a remarkable growth in the past decade that in-
clude electronic health records, radiographic and histologic data, 
and patient genomic/ genetic information. New data- processing 
technologies have the potential to derive clinically meaningful in-
sights from large- volume data revolutionizing medicine. Among 
those techniques is supervised machine learning, the study of com-
puter algorithms that use self- improving models that learn from 
labelled data to solve problems. The chapters included here de-
scribe a framework to aid clinicians in understanding and critically 
evaluating studies applying supervised machine learning methods 
and techniques to the diagnosis, prognostication, and treatment of 
cancer.

Artificial intelligence (AI) refers to the ability of a machine to per-
form tasks commonly associated with intelligent human behaviour. 
AI includes disciplines from both computer science and mathem-
atics and is a group of iterative, ‘self- learning’ techniques, which 
discover relationships within data that can evolve and often be per-
formed faster over time. Deep learning, a subfield of AI that is highly 
flexible and supports automatic feature extraction, is increasingly 
being applied in various areas of both basic and clinical cancer re-
search. This book includes chapters that describe numerous recent 
examples of the application of AI in oncology, including cases in 
which deep learning has efficiently solved problems that were pre-
viously thought to be unsolvable, and address obstacles that must 
be overcome before such application can become more widespread.

Today, medicine in general, and oncology in particular, has be-
come a digital data- intensive endeavour, relying on secure and scal-
able computing, storage, and network infrastructure, which has 
traditionally been purchased, supported, and maintained locally. 
However, cloud computing has emerged as an alternative to lo-
cally maintained traditional computing approaches. It offers users 
pay- as- you- go access to services such as hardware infrastructure, 
platforms, and software for solving common biomedical computa-
tional problems. Cloud- computing services offer secure on- demand 
storage and analysis and are differentiated from traditional high- 
performance computing by their rapid availability and scalability of 
services. As such, cloud services are engineered to address big data 
problems and enhance the likelihood of data and analytics sharing, 
reproducibility, and reuse. The chapters included here provide a per-
spective on cloud computing and its evolving utility and demand in 
oncology.

Chapters on biomechanics are included in the next section. This 
is an up- and- coming field, especially in cancer. Biomechanics, a 
branch of biophysics, is the study of the structure, function, and mo-
tion of the mechanical aspects of biological systems. Furthermore, 
studies devoted to biomechanics concern multiple levels from whole 
organisms to organs, cells, and cell organelles, using the methods 
of mechanics. More recently, biomechanics also includes compu-
tational mechanics and goes beyond pure mechanics and involves 
other physical aspects such as heat and mass transfer, electric and 
magnetic stimuli, and many others. Together the chapters in this 
section provide an overview and outline how biomechanics can pro-
vide new insights into cancer biology.

The next section is devoted to translational mathematical on-
cology, i.e. the use of mathematics, modelling, and simulation to 
study cancer, and has a broad scope— ranging from theoretical 
studies to clinical trials designed with mathematical models. It has 

provided a framework in which these theoretical constructs are 
applied and biologic data are analysed to make predictions about 
cancer progression. Mathematical models can be directly applied to 
real scenarios and readily tested using large amounts of biologic and 
clinical data to analyse and understand big data. Together with evo-
lutionary game theory (EGT), translational mathematical oncology 
has aided personalization of medicine through modelling and simu-
lation. The chapters embodying this sub- section discuss how this is 
achieved using patient- specific clinical data to develop individual-
ized screening strategies to detect cancer earlier; make predictions 
of response to therapy; design adaptive, patient- specific treatment 
plans to overcome therapy resistance; and establish domain- specific 
standards to share model predictions and to make models and simu-
lations reproducible.

Cancer cells and stromal cells interact within a tumour to give 
both cooperative and competitive behaviours that have been at-
tributed to various molecular signalling pathways. The applica-
tion of EGT which studies the strategic interactions of biological 
agents based on frequency- dependent fitness functions can help 
to understand cancer– stroma interactions as well as to interpret 
counter- intuitive cooperative behaviours among cells in the tumour 
microenvironment. Further, EGT has been clinically employed in 
the form of adaptive therapy to take advantage of competition be-
tween various cancer clones. The power of EGT lies in its ability to 
understand current population- level behaviour through experi-
mental fitting and simultaneously predicting future dynamics. Thus, 
the chapters included in this section provide in- depth reviews on 
various aspects of EGT and its application to cancer, especially in 
tackling drug resistance.

The last section is devoted to chaos theory and fractals in cancer. 
Here, tumour growth is considered as a dynamical system and 
hence is chaotic. The chapters provide an overview of the potential 
contribution of chaos theory and fractal mathematics to the study 
of cancer. Fractals are mathematical constructs that show self- 
similarity over a range of scales and non- integer (fractal) dimen-
sions. Owing to these properties, fractal geometry can be used to 
efficiently estimate the geometrical complexity and the irregularity 
of shapes and patterns observed in lung tumour growth (over space 
or time), whereas the use of traditional Euclidean geometry in such 
calculations is more challenging. The application of fractal ana-
lysis in biomedical imaging and time series has shown considerable 
promise for measuring processes as varied as heart and respiratory 
rates, neuronal cell characterization, and vascular development. 
The chapters discuss how fractal analyses are used to quantify 
changes in nuclear and chromatin FD in primary and metastatic 
tumour cells, and clinical imaging studies that correlated changes in 
the FD of tumours on CT and/ or PET images with tumour growth 
and treatment responses are reviewed. Moreover, the potential use 
of these techniques in the diagnosis and therapeutic management 
of lung cancer is discussed.

In summary, Cancer Systems Biology and Translational 
Mathematical Oncology is a comprehensive, up- to- date treatise con-
tributed by multiple experts from across the globe, emphasizing 
quantitative biology integrating theory and experiments, to provide 
a systems perspective. We hope this compendium will encourage 
cross- pollination of ideas from experts in multiple disciplines, in-
cluding basic and translational science researchers, systems biolo-
gists, physicists, and clinicians interested in decoding a systems- level 

 

 

 

 

 

 

 

 

 



Preface ix

emergent view of cancer so that more effective treatment strategies 
may be designed. We trust the book will be a valuable companion to 
academic researchers working in the field of cancer biology, medical 
oncology, mathematical oncology, cancer systems biology, cancer 
evolutionary biology, and related topics. This book will also interest 
clinicians/ scientists at pharmaceutical/ biotechnology companies 

interested in a deeper understanding of phenotypic plasticity in 
cancer, its progression, and in the emergence of drug resistance. 
Finally, this book will serve as a reference for graduate students, 
postdoctoral scientists, and academic/ practicing clinicians/ scien-
tists with an interest in cancer biology from an interdisciplinary 
perspective.
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1

The necessary existence of cancer and its 
progression from first principles of cell 
state dynamics
Sui Huang

1.1. Introduction: cancer 
progression as explainable shift 
in systems configuration

The traditional view of cancer has long been restricted by the tacit 
notion of immutability of objects that has pervaded natural phil-
osophy since Aristotle. When in 1572 Tycho Brahe discovered a new 
star (now known as a supernova) in the constellation of Cassiopeia, 
it came as a shock [1] . The firmament was presumed to be an im-
mutable divine creation. When in the 1830s Charles Lyell proposed 
that geological formations (mountains and valleys) had been shaped 
by slow changes of Earth due to known physical forces that follow 
uniform principles, and not caused by biblical catastrophic events, 
he met with great resistance [2]. A third challenge to the default as-
sumption of immutability was of course the ideas emerging in the 
19th century that biological species evolve, culminating in Charles 
Darwin’s theory of the origin of species by natural selection [3]. 
Opposition to the ‘mutability’ of species defended the taxonomy of 
plants and animal as an eternal order created by God [4].

Today, the discovery of reprogramming of cell types in the adult 
mammalian body can be considered a modern version of the shock 
to the unquestioned assumption of an unchangeable order. The 
awareness rising in the past three decades of multi- potent stem cells 
in adult tissues introduced the notion that metazoan cell types do not 
represent permanent ‘postmitotic’ cells that obey a rigid anatomical 
system but exhibit ‘plasticity’ [5,6]. The concept of cell- type plasti-
city reached its peak with the demonstration that a set of transcrip-
tion factors (TFs), when ectopically introduced into differentiated 
adult cells, resets the gene regulatory network (GRN) to produce a 
pluripotent state, the ‘induced pluripotent stem cells’ [7] . These dis-
coveries eventually popularized the notion of cellular plasticity.

By now, explaining a change of phenotype by a genetic muta-
tion is readily accepted. In organismal evolution, the generation 
of a new trait by genetic mutation followed by natural selection is 

integral to biological thinking. But interestingly, the very concept 
that phenotypic innovation starts with a random mutation that pro-
duces the new trait does not actually admit a process of ‘phenotypic 
mutability’ of organismal structures. Instead, it relegates any alter-
ation of phenotype to the random, singular event of a mutation, a 
molecular deus ex machina. Such thinking obviates the need of ex-
plaining the physics of the actual process of change by some uni-
versal mechanism, much as geologists refuted Lyell’s proposition to 
explain alterations of geological structures by uniform, physically 
plausible processes.

In cancer biology, the explanation of changes in traits of the cell 
during tumorigenesis or tumour progression has long borrowed 
from evolutionary biology: in the prevailing somatic evolution 
theory of cancer [8] , the innovation of a malignant cell phenotype 
P, such as invasion, autonomous cell division, stemness, resistance 
to treatment or immune escape, or the acquisition of any other 
‘hallmark of cancer’ [9], is thought to be the result of genetic muta-
tions followed by selection in the tissue environment of the mutated 
cells for traits that confer a fitness advantage. A change of pheno-
type P is explained by an alteration of the cell’s genotype G. This 
scheme tacitly assumes a bijective P → G mapping from genotype G 
(nowadays equivalent to genome) to phenotype P [10]. This simple 
scheme has been cemented by the facility of cancer genome sequen-
cing and the promise and plausibility of pharmacological targeting 
of cancer- causing mutations. But one cannot ignore a similarity to 
the historical unwillingness to embrace a rule- governed change of a 
complex systems as an explainable process as such.

At its core, such thinking accepts a change of P only by reducing it 
to a discrete and irreducible causal event, the mutation that changes 
G. Thus, a mutation is akin to the catastrophic events in geology— 
from nowhere and in no need for an explanation. Invoking a 
random event helps to avoid the explanation of a change of a system’s 
configuration, manifest as ‘phenotype’, by a rule- governed process, 
let alone a mathematical description.

   

 

 

 

      

 

 

 

 

 

 



Cancer Systems Biology4

The rigid habit to reduce phenotypic changes to genetic mutations 
ignores a central fact of metazoan development: that the vast diver-
sity of distinct and stable cell phenotypes in the body is produced by 
the process of cell division and differentiation without altering the 
genomes of the cells. If cells as diverse as the liver cell, the neuron, 
or the granulocyte all share the same genome with the same set of 
genes, why would a cancer cell, which compared to its less malig-
nant variant just divides faster, or is more resilient to toxic reagents, 
requires an alteration of the genome to generate these incremental 
features—differences dwarfed by that between cell types?

Because transitions from one particular cell phenotype P1 to an-
other phenotype P2, be it the acquisition of a new cell- type trait 
during development, or new cancerous capabilities during tumour 
progression, are all recurrent, rule- governed processes requiring 
coordinated change in a vast number of subcomponents, we treat 
them here as a change of a system configuration X: the orchestrated 
shift in the material composition of a cell that embodies one co-
herent functional state or phenotype to another one. A question 
that we also address is then what is the role of genetic mutations 
if cancer progression is driven by changes in system configuration 
within the immense repertoire of phenotypes afforded by one same 
genome.

We do so by considering a more encompassing view in which 
phenotypic innovation in neoplasia is the result of entering the ‘ad-
jacent possible’, a powerful concept introduced by Stuart Kauffman 
[11]. By this we mean that all the complex and coherent functional-
ities of malignant cells, its ‘hallmarks’, are not in principle novel traits; 
in the healthy organism they are not just actualized (realized), but 
they are also in principle possible, that is, available to be actualized 
(realized). The cancer hallmarks are all functions built- in by evolu-
tion in the theoretical behavioural repertoire, similar to functions 
used in the physiological realm, but reconfigured and realized in a 
new context in cancer. This combinatorial principle of innovation 
diminishes but does not eliminate the explanatory burden for gen-
etic mutations as source of phenotype innovation and entices us to 
embrace a profound concept that is a key message of this chapter: the 
potentiality of the cancerous states is somehow preordained by the 
repertoire of possible (actual and potential) phenotypic behaviours 
that emanate from genomic information.

The tumour cell is the realization of a potential that in the healthy 
state is unrealized: it is not in the actual but the possible just beyond 
it, ‘adjacent’ to it. The adjacent possible is created as an inevitable, 
latent by- product during the evolution of the healthy state. In this 
sense, genetic mutations are not the cause of cancer but catalyze its 
development, and as explained from first principles of dynamical 
systems theory: mutations facilitate the occupation of a ‘potential’ 
state that is just adjacent to the ‘actual’. Once a cell has entered the 
adjacent possible, freed from constraints of the actual that has been 
optimized for organismal function by evolution, it can undergo di-
versification. And having its own adjacent possible, it will move far-
ther from the realm of the physiological actualized. A chain reaction 
ensures that malignant innovation begets malignant innovation.

This chapter presents the argument in a qualitative, simplified 
but logically coherent manner; we do not resort to equations to de-
scribe the underlying ideas (which are reviewed elsewhere and will 
be referenced) nor fill the space with examples of specific molecular 
pathways that so many review articles have already provided and 
only distract from the explanation of first principles. Our goal is 

to earn the interest of experimental and clinical cancer researchers 
who already possess immense knowledge of the specific facts but 
are in search of an integrating conceptual framework. To them, this 
chapter shall hopefully provide with generic tools for thought.

1.2. Challenging the paradigms:  
non- genetic dynamics and  
treatment- induced progression

Tumorigenesis and tumour progression are governed by a relentless 
arrow of progression from the normal to increasing malignancy of 
the cancerous tissue, of which one trait is the resistance to any vir-
tual type of treatment, be it traditional chemo, targeted, radiation, or 
immune therapy— the ultimate cause of death from cancer [12– 17]. 
Why does any current treatment, if they fail to eradicate the tumour 
upfront, consistently result in the recurrence of a more immature 
(‘stem- like’) and malignant, notably metastatic, and treatment- 
resistant tumour? This universal behaviour warrants the consid-
eration of fundamental properties of cancer progression. Here, we 
discuss challenges to long- existing paradigms regarding cancer 
treatment and the biology of progression towards therapy resist-
ance which have begun to exhibit cracks under the load of new data 
afforded by - omic technologies. We then introduce two principles 
that must be acknowledged in view of these findings: non- genetic 
phenotype dynamics (Section 1.2.1) and treatment- induced pro-
gression (Section 1.2.2).

The unquestioned notion that more efficient killing of cancer 
cells implies more effective treatment is plausible (as long as collat-
eral damage can be avoided). This taken- for- granted concept has 
culminated in the development of target- selective drugs aimed at 
killing cancer cells. But the tumour that recurs is almost always re-
fractory to the same treatment [18,19], and yet existing approaches 
are to double down on killing by identifying remaining vulnerabil-
ities to kill even the relapsed tumours, typically with combination 
therapies, so far with scant lasting benefit [20]. Could the very 
act of attempting to kill cancer cells be the problem of recurrence 
itself?

Equally plausible and unquestioned has been the explanation 
of a link between the killing and development of resistance that 
invokes the neo- Darwinian evolution (see Figure 1.1A). In this 
second prevailing paradigm, any phenotypic innovation, such as 
the trait of treatment resistance, is the result of genetic mutations 
that afford mutant cells some (often imagined) selection advan-
tage in the tumour cell population of the tumour tissue, relying on 
the aforementioned bijective G → P mapping. However, the rapid 
and consistent emergence of the complex stem- like phenotype of 
cancer cells that confer resistance to cytotoxic insults (stem cells 
are naturally more resilient to xenobiotic injury [13,21,22]), and 
the failure of cancer genome sequencing [23– 30] to reveal a clonal 
architecture of the tumour cell population that is consistent with 
Darwinian selection, have begun to challenge this second para-
digm [10,31– 36].

1.2.1. Non- genetic phenotype dynamics

A first step of departure from neo- Darwin thinking still explains the 
acquisition of resistance by Darwinian selection but with the nov-
elty that it selects cells that exist in a stable non- genetic (‘epigenetic’) 

 

 

 

 

 

   

  

 

 

   

 

 

 



5CHAPTER 1 The necessary existence of cancer and its progression

stem- like state within an isogenic (clonal) cell population [37,38]. 
Such cells exist because of non- genetic heterogeneity of cell pheno-
type in any clonal cell population that is now recognized, not least 
owing to now ubiquitous single- cell resolution analysis of gene 
expression profiles [30,39– 44]. We will return to this non- genetic 
‘background heterogeneity’ that is linked to phenotype plasticity. 
Because of such non- genetic heterogeneity of cell populations, some 
cells may by chance (likely at a higher rate than through random 
mutations [45]) occupy a stem- like state that is stable enough to be 
inherited across a sufficiently large number of generations [46] and 
that possess fitness advantage in the presence of anticancer agents. 
These cells would be expanded during treatment— this would con-
stituting ‘mutationless Darwinian evolution’ [47]. But the idea still 
rests on selection. And by relying on random events to provide the 

new phenotypic properties, we still do not address the mechanism 
for the actual process of the phenotype shift.

1.2.2. The Nietzsche effect on  
cancer treatment

A closer examination of a series of in vitro treatment experiments, 
notably the aforementioned single- cell resolution analysis, as well as 
a direct observation of individual cells becoming resistant by video 
microscopy and quantitative models of the rate of acquisition of re-
sistance [46,48], obliges us to see beyond the concept of selection, 
be it of genetic variant cells or of cells in an alternative non- genetic 
stable state, and to also consider an alternative: the induction by 
treatment itself in a given cell to the new resistant phenotype [49– 
54] (Figure 1.1B).

Figure 1.1. Selection versus induction of a new cell phenotype, such as stemness or treatment resistance. Following chemotherapy, cells either 
carrying (pre- existing) mutations or in an alternative ‘epigenetic state’ (orange cells with large nucleus) that confers that resistance will expand 
by natural selection. (A) Alternatively, chemotherapy induces the resistant phenotype, the Nietzsche effect. (B) Often the latter occurs via a state 
bifurcation in which cells either die or are stressed and undergo individually, without selection, a change in gene expression program that underlies 
a phenotypic conversion PA → PB. The shift in expression is governed by the gene regulatory network (box; see Figure 1.2 for more details)) that 
channels the change in the activity configuration of all the gene loci.

   

 

  

  

 



Cancer Systems Biology6

If the resistant cells represent a stem- like functional state not 
‘caused’ by genetic mutations, we must entertain the idea that such 
alternative cell states are regulated cellular programs: a pathological 
form of ‘stemness’ (which may also underlie the old notion of ‘cancer 
stem cell’). Regulation is more likely to achieve a coherent functional 
(biologically meaningful) state than the stepwise selection of random 
mutations to evolve the same trait. Regulation is a deterministic pro-
cess and hence also likely to be faster than the stochastic occupation 
of a non- genetic alternative cell state followed by preferential expan-
sion. A regulated state is the result of a regulating influence: a pheno-
typic switch of the cell, induced by an external signal that does not 
change the genome but the ‘gene expression program’ of the genome.

Thus, we have ‘Lamarckian- like’ dynamics, where a novel (in-
heritable) phenotype is directly induced by external influence on 
individual cells in a cell population. This process requires (1) a regu-
latory mechanism that converts a cell’s phenotype by shifting X and 
(2) an external agent E that sends the signals that trigger this pro-
cess. Then, we can formally talk about a state transition of a (plastic) 
phenotypic state P under invariance of the genome G caused by the 
external signal E.

Practically, it has become clear that cytocidal treatment, a per-
turbation to the system that seeks its destruction, is a double- edged 
sword: yes, killing tumour cells reduces the tumour burden. But if it 
fails to eliminate every single cell, it will still have stressed those non- 
killed cells with a sublethal blow. In doing so, treatment may elicit 
an active defence response that consists of switching to a stem- like, 
and thus, resistant state. In the last figure of this chapter, we present 
a formal explanation for the necessary double- edged nature of cell 
response to near- lethal stress. Most part of this chapter is dedicated 
to a stepwise build- up of the conceptual understanding of theories 
needed to comprehend this counter- intuitive phenomenon.

Cancer recurrence is thus inseparably linked to treatment, which 
eo ipso causes stemness in the non- killed cells. In this sense, treat-
ment can ‘backfire’, manifesting, to use Nietzsche’s aphorism, the 
principle that ‘What does not kill me makes me stronger’ [55,56].

But why will a near- lethal, non- specific stress so consistently cause 
a specific change of P (under invariant G) that produces stem- like 
traits? To address this broader question, we introduce some abstract 
concepts from which the natural origin of the cancerous state can be 
logically derived. We start with two premises and dynamical systems 
theory, followed by their application to cancer biology.

1.3. Premise I: Intrinsic cell state 
dynamics is governed by the gene 
regulatory network

We first consider how a shift of phenotype P of a cell is governed by 
the internal machinery of the cell that constrains the plasticity of P in 
specific ways [57,58]. This control is receptive to external influences 
that facilitate, trigger, or prevent the changes of P which is discussed 
in a second step (Section 1.4).

The picture of the internal regulation of the cell borrows the con-
cept of an internal milieu as a homeostatic (self- stabilizing) entity, 
separated from its environment, yet it is open for a selective ex-
change of material, energy, and ‘information’. The self- stabilization 
of the internal state affords a stable cell phenotype that we recognize 
as a ‘cell type’ or as a functional state (e.g. a secretory, proliferative, 

and migratory state). To further reduce a phenotype to its building 
blocks, we introduce the system configuration X as its material 
basis: X is the configuration of the activation status xi in the cell of all 
the N gene loci i of genome G. The values of all xi (i =  1, 2,  . . ., N) col-
lectively define the gene expression profile that ultimately dictates 
the abundances of proteins that in turn exert their downstream ef-
fector functions, including the biosynthesis of all the structural and 
biochemical constituents of the cell that underlies the phenotype 
P. Thus, X is a high- dimensional vector state vector that contains 
the values of the (gene expression) activity level of all gene loci in 
genome G with N gene loci: 

X =  x x x xi N1 2, , , , , 

The details are illustrated in Figure 1.2 that uses pictures to guide us 
step by step through a series of concepts. The collective activity of all 
the N gene loci i (Figure 1.2A) that represents X (Figure 1.2A) maps 
into an apparent phenotype P (e.g. cell type). X can be measured at 
the granularity level of the components xi using genome- wide tech-
nologies, most directly as the transcriptome or, with some caveats 
[59], as genome- wide pattern of ‘epigenetic marks’, such as chromatin 
openness (a prerequisite for transcription), DNA methylation, or 
post- translational histone modifications at the loci i, all of which are 
(loosely) associated with the activity of the respective genomic loci.

Now, the essential property of configuration X is that the changes 
of its components, the individual gene expression activities xi, are 
not independent from each other. They influence each other in a 
preordained manner, namely following rules ‘hardwired’ in the 
genomic sequence. The latter determines all transcriptional regu-
lation: which specific locus i influences the activity of which other 
specific gene loci, xj and xk, as described below. The central principle 
is that the interdependence of the loci constrains the ways in which 
the configuration X can change to predestined trajectories.

A change of cell phenotype (Figure 1.2C) can be imagined as a 
movement (green arrows in Figure 1.2C– E) of X =  [x1, x2, . . . , xi, . . . , 
xN] in the N- dimensional state space of X (blue areas in Figure 1.2D) 
along trajectories. Each configuration X maps to a position (green 
balls in Figure 1.2) of the state space, each dimension of which repre-
sents the activity value xi in X at a given time, such that the values x1, 
x2,  . . ., xi, . . . , xN are the coordinates in this N- dimensional state space.

As to the molecular implementation, locus- specific cross- 
regulation is mediated by ‘locus- aware’ TFs that are encoded 
by one locus but regulate other loci. Non- coding (nc) RNA [60] 
that prevents the synthesis of the protein expression of the target 
locus has emerged as another important mode of regulation be-
tween genomic loci. Such locus- aware regulation is supported 
by locus- agnostic ‘epigenetic modification’, chromatin confirm-
ation, other structural constraints (looping), etc. [59]. In the case 
of TFs, locus awareness is epitomized by the specificity of their 
DNA- binding domains for binding to their cognate DNA se-
quence motifs in the regulatory regions of their target genes and 
their ability to recruit the locus- unaware chromatin- modifying 
enzymes that help to suppress or activate the transcription of 
these target loci [59]. In the case of regulatory non- coding RNA, 
such as miRNAs and many other ncRNAs, target specificity is 
directly readable from their DNA sequence. Thus, all the inter-
actions between the gene loci are specified by the DNA sequence 
of the genome G.

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 



7CHAPTER 1 The necessary existence of cancer and its progression

Collectively, these genome- encoded regulatory interactions be-
tween the entirety of all the N gene loci in a genome G form the 
GRN of genome G [61] and represent a dynamical system whose 
wiring diagram is hard- coded by the genome (Figure 1.2A and B). 
By defining all interactions between xi, the GRN imposes the con-
strains on the movement of X in state space, as illustrated below. The 

wiring- diagram specification is the result of evolution and governs 
how the interdependence of the components xi of the state vector 
X produces the repertoire of all biologically meaningful patterns of 
gene locus activation X and how X can change (Figure 1.2C): not 
freely but channelled by the interactions along preordained trajec-
tories (green arrows in Figure 1.2D– F). But the very same GRN also 

Figure 1.2. The key concepts, from dynamical systems theory in pictures, are explained step by step throughout this chapter. Red dots: gene loci i; 
pink towers: gene activation level xi of respective locus (vertical axis); green balls: systems configuration X (or cell state); light blue area or line: state 
space for X (projections); green (curved) arrows: state change (trajectory, chreods); Gi: genome (and associated GRN); E: external influence (panel 
(G)) promoting attractor transition either by shifting X (horizontal blue arrow) or by reducing the quasi- potential barrier (vertical arrow down); 
asterisks: attractor states; V(X): quasi- potential for each X; white shadowed arrows: conceptual relationships (equal sign indicates equivalence). 
Note the major dualism between non- genetic phenotype change via change of X (green thick arrow in panel (B) and via genetic mutation (pink thick 
arrow in panel (H)) that permanently changes the quasi- potential landscape (pink silhouette).
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harbours the potential for states X that lie in the adjacent possible and 
are not realized by the normal tissue but play a role in cancer.

1.4. Premise II: Perturbation and 
stochasticity shift gene activation 
configurations X and hence cell states

In addition to the intrinsic regulation controlled by the GRN 
(Figure 1.2B), the activity xi of a subset of gene loci is also subjected 
to direct extrinsic regulation by extracellular signals E, embodied 
by hormones, cytokines, and other mediators, as well as environ-
mental signals (nutrients and their metabolites, drugs, and toxins). 
Their impact on gene expression xi alters X and is referred to as per-
turbation of the GRN as a dynamical system. The external signals 
E bind and activate cell surface or cytoplasmic receptor molecules, 
triggering signal transduction cascades that impinge on response 
elements in the regulatory regions of genes. These cellular signalling 
pathways are also hardwired in the genome and determine what set 
of gene loci are directly receptive to such external signals. Thus, E 
can change X via coordinated changes in a set of xi in a manner de-
fined in G (see Figure 1.2G, bottom, blue horizontal arrow).

Perturbations of X can also be non- deterministic and come from 
within the cell, in the form of molecular noise [62,63]: the thermal 
fluctuations in abundances of biomolecules that do not ‘average out’ 
in the small reaction volumes of cellular compartments. Such sto-
chastic fluctuations are intrinsic to the variable xi, i.e. they represent 
a change that is ‘unmotivated’ by a deterministic cause E and affect 
the state X in a way that is best imagined as a ‘wiggling motion’ of 
X in the N- dimensional state space. Beyond molecular noise other 
sources of non- determinism have been proposed, including the 
random shapes of intrinsically disordered regions of proteins that 
introduce stochasticity in the choice of reaction partners [64,65] or 
structural arrangements of three- dimensional chromatin loops [66].

A given invariant genome G (of an organism) maps into a multi-
tude of phenotypes P encoded by X that changes in time in processes 
controlled by the invariant GRN. Thus, the GRN, hardwired by G, 
establishes an entire repertoire of P. It is herein that the old notion 
of a 1:1 mapping between G and P collapses. The rule- constrained 
changes of P under invariant G are now referred to as (non- genetic) 
plasticity, a term increasingly used in cancer research that has barely 
been formally defined [9,10,33,67,68]. If X changes in response to 
influence of E, a large number of cells in a population may change 
in unison. By contrast, intrinsic fluctuations in X due to molecular 
noise would affect individual cells differently. Both regulated cell 
state changes and molecular noise are the source of the non- genetic 
heterogeneity (diversity of cells in isogenic cell populations) that has 
equally gained interest in cancer biology [33,37,63,64,69].

It is therefore of central importance to remember that the pos-
sibility of intrinsic ‘wiggle room’ of X not only makes the G → P 
mapping non- bijective but also non- deterministic: concretely, this 
means that two isogenic cells of the same cell type may, under iden-
tical conditions undergo, differentiate into distinct cell types as if 
they throw the dice for cell- fate decision. Thus, the choice of a par-
ticular phenotypic outcome (e.g. to divide or not and to differentiate 
into cell type A or B) cannot always be reduced to an upstream causal 
determinant, such as a regulatory signal E, but instead can appear 
to be stochastic, yet constrained to the repertoire (e.g. limited to a 

(random) binary choice between two specific fates for a given X). 
The ‘microscopic’ stochasticity due to randomness of molecular fluc-
tuations thus can be amplified by the GRN into apparent random-
ness of macroscopic cell phenotype. Such behaviours of individual 
cells defy genetic determinism— the mode of thought captured by 
the ‘arrow– arrow’ schemes of mechanistic pathways that underlie 
‘precision oncology’. In fact, such macroscopic indeterminacy mani-
fests the instabilities [70] of tumour states and can only be compre-
hended using concepts of non- linear dynamics, as explained in the 
next section.

1.5. Elementary dynamical systems 
concepts— the quasi- potential landscape

To make the above premises more concrete for application to cells, 
the general idea of the (quasi- ) potential landscape is considered 
useful (for more detailed introduction, see refs. [58,71]). This math-
ematical landscape captures the behaviour of X and is the formal 
basis for the ‘epigenetic landscape’ proposed by Waddington starting 
in the 1940s which led to the famous 1957 depiction (Figure 1.2F) 
[72] but has often been dismissed as metaphorical. The GRN as a 
dynamical system produces a ‘quasi- potential landscape’ on which 
every point (geographical position) is a gene activation configur-
ation X(t), the state of the GRN or, for that matter, a cell, as a dynam-
ical system at time t.

1.5.1. The GRN folds up the landscape

The characteristic topography of the quasi- potential landscape is 
determined by the specific wiring diagram of the GRN in the fol-
lowing way: first, for visualization by the human mind, we project 
every possible high- dimensional configuration X =  [x1, x2,  . . . , xN] 
(a point in the N- dimensional state space) into a two- dimensional 
(2D) plane (Figure 1.2E), preserving as much information as pos-
sible in that two neighbouring points in the 2D plane would repre-
sent configurations X that are closely similar with respect to their 
state [x1, x2,  . . . , xN] in the N- dimensional state space.

With this projection of all states X onto the 2D plane (Figure 1.2D 
and E), we free up the vertical axis for displaying a property V(X) 
that smoothly varies between the configurations X in the plane. If 
gene loci would not interact, then all configurations of gene activ-
ities would be equally ‘probable’, that is, requiring equal ‘effort’ or 
‘action’ to realize. The term ‘action’ is of central theoretical signifi-
cance here [73]. Since the GRN introduces dependencies between 
the activity values xi of the gene loci i, it makes each configuration 
X different in terms of how much regulatory effort is required for 
them to be realized— or how much one has to ‘act’ against the rules 
imposed by the GRN. For instance, if gene A is a repressor of gene B 
(as determined by the genome G), then an increase in xA decreases 
xB. A configuration in which both xA and xB are simultaneously high 
would thus be much harder to implement, requiring extra action 
against regulatory constraints imposed by the GRN. Equivalently, 
the GRN exerts a force that drives the cell in state X from a pos-
ition with coordinates [. . ., xA(high), xB(high), . . .] to the more stable 
state with coordinates [. . ., xA(high), xB(low), . . .]. The latter complies 
with the rules in the GRN’s wiring diagram. Some configurations, 
such as [. . ., xA(high), xB(high), . . .], are difficult or near impossible 
to realize, others would be very much favoured. Thus, roughly, due 

   

 

 

 

 

   

  

   

 

 

 



9CHAPTER 1 The necessary existence of cancer and its progression

to the inevitable presence of molecular noise, X randomly wiggles 
in the 2D plane, exploring neighbouring configurations X ‘to probe 
which is more or less probable to be realized’. Driven by the sto-
chastic fluctuations, the cells move along the path of least action. 
This becomes imaginable and intuitive with the landscape topog-
raphy that displays the relationship between neighbouring points 
with respect to V(X).

We therefore plot the relative regulatory effort (with some refer-
ence point) that needs to be spent for realizing a given configuration 
X as dictated by the GRN as elevation V on the vertical axis above 
each respective configuration X in the 2D plane (Figure 1.2F). In 
doing so, all the values V(X) at positions X jointly establish a land-
scape of varying altitude over the 2D plane since different configur-
ations require different efforts to be realized. Thus, the interactions 
in the GRN between components xi of the state vector X collectively 
fold up the 2D plane into a landscape V(X) with a characteristic top-
ography: this is the quasi- potential landscape that is fully specified 
by the GRN. Configurations X with higher ‘elevation’ V(X) are con-
figurations that require relatively more action maintained by coun-
tering the regulatory rule imposed by the GRN or, crudely speaking, 
are less ‘probable’ and more ‘unstable’.

Since similar configurations are placed next to each other in the 
2D plane, and in the case of the class of networks to which the GRN 
belongs [74,75], they tend to also have similar values for V, the land-
scape is rather smooth and not overtly rugged. (There are deeper 
reasons being studied which relate the type of architecture of the 
GRN and the smoothness/ ruggedness of the landscape, but this is 
beyond the scope of this chapter.) It suffices to state the hypothesis, 
based on observations, that GRNs seem to belong to a class of net-
works that create relatively smooth, yet multi- valley landscapes that 
are suited to govern metazoan development [74,76– 78]). The slope 
between neighbouring points then indicates that a cell whose gene 
loci activation configuration X is ‘less probable’ would spontan-
eously ‘move’ (with respect to its position in the 2D plane) towards a 
more readily realizable state, following the direction of the steepest 
downhill slope indicated by the quasi- potential V(X). The cells thus 
roll down towards the lowest points in the valleys as Waddington 
had anticipated in 1957 with his epigenetic landscape.

1.5.2. Theoretical caveats to the notion 
of ‘energy landscape’ and gradients

Now it must be said that however tempting it is, given the relative 
‘smoothness’, to view this landscape of cell states as an ‘energy land-
scape’ with potential wells in which cells are balls that roll down a 
gradient because of gravity, here is where the equivalence to energy 
landscapes must stop [71,73,79]. The elevation is not an energy po-
tential in the classical sense of a conservative system. For instance, 
the ‘net efforts’ required to go from XA to XB is path dependent [80]. 
We do not have ‘true’ gradients that generate the driving force, only 
approximately so, and in a formally distinct way, hence the prefix 
‘quasi’. Nevertheless, the notion of ‘energy minimalization’ and of 
slopes that act like gradients is to some extent warranted. The un-
derlying formal theory is based on the ‘least action principle’ of 
‘large deviations’ (due to molecular noise) that is concerned with the 
minimal action needed [73], driven by minimal noisy fluctuations, 
to ‘climb’ up the hill to exit a ‘potential well’. In classical mechanics 
with energy conservation, the elevation represents a global free en-
ergy that is conserved: only energy differences (altitude difference) 

matter for the efforts required to climb to some higher spot on the 
hill, not the path. In such systems, the elevation represents the sta-
bility of a state of the system or the steady- state probability to find 
the system (cell) at that given state. The extent of admissibility of 
the gradient idea for landscapes produced by non- conservative sys-
tems depends on the specifics of the architecture of the underlying 
network. For GRNs, which are evolved networks, this requirement 
seems to often be satisfied and sufficient for the qualitative analysis 
of the dynamics of the GRN [74,75].

At the level of the concrete, the GRN is an open (non- linear) 
dynamical system that operates far from thermodynamical equi-
librium and in which the maintenance of order and interesting sta-
tionary patterns hinges on the constant influx and consumption of 
free energy (in the form of adenosine and guanosine triphosphates 
(ATP and GTP) that power the cell, including the regulatory activ-
ities of the GRN). Such non- conservative systems also lack the in-
ertia of classical system that would allow a ball rolling downhill to 
then also roll uphill on the other side of the valley, recovering the 
potential energy, hence the use of the term ‘overdamped dynamical 
system’ to describe the dynamics of biological regulatory networks. 
Yet, given these caveats, overall and with due caution, the landscape 
picture is useful as a mental aid for fathoming complex and robust 
systems dynamics as proposed by Waddington whose intuition of 
the ‘epigenetic landscape’ turned out to be largely correct.

As an interesting side note, if we focus on domains of the state 
space devoid of circular dynamics (in which X goes around a cycle, 
repeating itself, or has spiral- shaped trajectories), then the dynamics 
of some nonequilibrium systems, such as the GRN, can indeed be 
viewed as ‘gradient- like’ dynamics. For this reason, some theoreti-
cians treat the landscape as a purely geometrical object to describe 
cell- fate behaviours, independent of the notion of an underlying 
GRN that creates the landscape [81]. In this gene- agnostic frame-
work that assumes gradient- like dynamics, mathematicians use the 
tools of differential geometry to study the global changes of the land-
scape topography that must obey geometric constraints as a way to 
predict what behaviours, such as fate decisions, are possible. By con-
trast, here we maintain the conceptual link to the interacting genes 
in the GRN and examine local changes of the landscape that governs 
cell phenotype switching as described in the following sections.

1.5.3. Central concepts of dynamical 
systems: steady states and attractors

With the landscape image as a tool in mind, we can now return to 
explaining the GRN as a dynamical system that governs cell state 
dynamics. Since the landscape topography captures (with the above 
caveats) a ‘driving force’ on the cell state imposed by the GRN that 
seeks to ‘satisfy’ regulatory interactions, we can identify X positions 
in the 2D plane which are not on a slope but are ‘flat’: these points are 
configurations of X that do not experience a force from the GRN to 
change. They are the steady states in which all regulatory rules, such 
as ‘gene A represses gene B’, are ‘satisfied’. A steady- state configur-
ation is denoted by an asterisk, X*, which is defined by distinct values 
for the activation of the gene loci, xi

* (Figure 1.2F). The surrounding 
of X* determines (at least, for simplicity) two distinct types of steady 
states: a steady state in a dynamical system can be stable or unstable. 
The stable steady- state X* is an attractor state if it is at the lowest 
point or a (round) valley or ‘potential well’, surrounded by ‘uphill’ 
slopes in every direction. These slops would retore the system to X* 
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when the system is perturbed (in the above sense) to deviate to X′ 
from X*. Alternatively, a steady state is unstable when it is exactly 
balanced on a hilltop, but any slight departure to X′ into any direc-
tion would cause it to fall along the fall line of a surrounding slop, 
increasing the distance away from the unstable steady- state X*. In 
the high- dimensional landscape, barely fathomable by human mind, 
steady states can be stable with respect to some dimensions of the 
state space while unstable with respect to other. Such geometry es-
tablishes, for instance, long valleys draining a ‘river’ at its bottom 
into deeper regions, with uphill slopes on both sides, or mountain 
ridges, with downhill slops on both sides.

1.5.4. Multi- stability: the presence of many 
attractors in the landscape of one GRN

A fundamental property of complex systems, such as the GRN, 
is that its landscape exhibits multi- stability, i.e. has multiple at-
tractors (Figure 1.2F). Multi- stability is a characteristic of the GRN. 
Mathematically, multi- stability requires the presence of auto- 
regulatory loops (e.g. gene A activates gene A; or, indirectly, gene A 
inhibits gene B which inhibits gene A) with non- linear regulatory 
characteristics (e.g. sigmoidal input– output relationships at a locus 
i). Such regulatory circuitries abound in the genome- wide network 
of interactions of GRNs and countless small regulatory circuitries 
have been modelled to study multi- stability [82,83]. In fact, the 
GRN with thousands of regulatory genes and several times more 
regulatory interactions may have, according to simple simula-
tions in toy model GRNs, thousands or more stable attractor states 
[74,76,78,84]. They correspond to the above- discussed repertoire 
of distinct, stable phenotypic behaviours that a genome can realize. 
By geometric necessity, stable attractors with their basin of attrac-
tion are all separated from each other by unstable states, as much 
as valleys are separated by ridges or hills. The curve containing ad-
jacent unstable steady states that separates two basins of attraction, 
akin to a mountain ridge, is called a separatrix. The unstable steady 
states on it are poised to fall into either attractor X*1 or  X*2 on ei-
ther side of it. Thus, the separatrix enforces a binary decision on 
a cell placed on this unstable position to ‘decide’ to adopt either 
phenotype P1 or P2 commanded by the X* of either one of these two 
attractor states.

1.5.5. Transient and permanent changes 
of the landscape topography

We can now consider changes of the landscape topography. Being 
a folded surface with gradient- like features, the topography can 
only change in some topologically permitted ways, some types of 
distortions. But since the topography directly maps into cell state 
dynamics, these surface distortions are at the core for explaining 
any rule- governed behaviours of cells. While the landscape topog-
raphy is determined by the GRN, it still can change but at a timescale 
that is longer than that in which changes of X(t) operate. The two 
major ways of changing the landscape are as follows (Figure 1.2G vs 
Figure 1.2H):

 (a) by transient modulation of the strength/ type of regulatory inter-
actions (Figure 1.2G) by external influences E, e.g. metabolites 
or hormones [85,86]; this alters the value of a parameter in the 
equations (differential equations) describing the regulatory 
function of locus i that maps the inputs of j, k, l, etc. to their 

target locus i to its output, the rate of change of xi— the change 
of gene expression;

 (b) by genetic mutations (Figure 1.2H); they permanently rewire the 
GRN since they directly or indirectly impact regulatory inter-
actions, e.g. by deleting a DNA- binding site of a TF.

These localized changes in the GRN wiring diagram are relatively 
subtle relative to the complex intertwining interactions in a large 
network of thousands of regulator genes. Indeed, computational 
models and theory have shown that the mapping of the GRN to the 
landscape topography is relatively robust, in that a single change in 
an interaction of the GRN, even deletion of a gene, may only distort 
the landscape ‘slightly’, resulting in quantitative (gradual) changes of 
the height of hills between valleys or, equivalently, the size and depth 
of basins of attractions (see Figure 1.2G, bottom, and Figure 1.2H, 
bottom). Only rarely does an alteration of an interaction parameter 
in the GRN, or rewiring, cause qualitative changes, such as creating 
a new hill that separates valleys, which would create new attractors 
or, conversely, abolish entire attractors. These qualitative changes in 
which attractors are created or disappear are referred to as (local) 
bifurcations (see later, Figure 1.3C). In other words, most changes in 
the GRN wiring diagram will have no such qualitative, ‘catastrophic’ 
consequences. This property of the system to preserve the qualitative 
attractor structure is called structural stability [87] (e.g. Figure 1.2G) 
and must not be confounded with the stability of the attractors in 
that X* resists perturbations (enforced alteration of the values of 
xi) by staying in the basin of attraction. Structural stability plays a 
role in buffering against the effective genetic mutations; conversely, 
boundaries of structural stability can be crossed, for instance, by 
those rare homeotic mutations that drastically alter the body plan.

1.6. Application to cancer: cancer 
as entry into unused attractors

We now apply the above general principles to cancer biology. We 
consider a gene activation configuration X and its position on the 
quasi- potential landscape to represent a phenotype P and its ‘rela-
tive stability’ (tendency to change or lack thereof). Using these prin-
ciples, we present the following three key biological corollaries.

1.6.1. Cell types are attractor states

A state X* being an attractor states implies that a perturbation- 
induced state X′ that is ΔX away from X*, and still in its basin, will 
spontaneously ‘flow back’ to the attractor state, X*, once the per-
turbation has subsided. The attractor configuration X* other than 
being a self- stabilizing steady state also produces a characteristic 
gene activation profile that also includes the expression of non- 
regulatory effector genes and contributes to the characteristic of cell 
phenotype P. Since attractor states X*i are demarcated from each 
other by separatrices between their basins, the cell phenotypes Pi are 
discretely distinct from each other. Therefore, Pi corresponds to cell 
types that represent qualitatively distinct categories.

Waddington, of course, equated the valleys in his epigenetic 
landscape to cell types. More formally, the existence of multiple at-
tractors in the very same molecular network and the concept that 
they correspond to the distinct cell types that one dynamical system 
can generate were first proposed by Max Delbruck in 1949 and then 

   

 

   

 

 

 

 

   

  

   

 

 

 

 



11CHAPTER 1 The necessary existence of cancer and its progression

solidified by the discovery in 1963 that genes regulate each other (the 
very first notion of a GRN) by Monod and Jacob, who also observed 
the correspondence between attractors and stable differentiation 
states (see refs. in [58,88]). Stuart Kauffman then proposed in 1969 
that high- dimensional attractors of the complex GRN of thousands 
of genes map to every cell type in the metazoan body [74,89]. If cell 
types are attractors, then it follows that differentiation from cell type 

A to cell type B is the transition from the attractor at gene activation 
configuration X*(A) to that of X*(B), as discussed in Section 1.6.3.

1.6.2. Cancer cells occupy ‘unused’ attractor 
states in the ‘adjacent possible’

If the physiological cell types are attractors of the GRN dynamics, 
then cancer cells are also attractors— an idea first proposed by Stuart 

Figure 1.3. Cancer as a consequence of entry into the ‘adjacent possible’. The state space, or the quasi- potential landscape, of the GRN that 
governs development and ensures that tissue homeostasis (green trajectories, leading to normal cell types, in grey) also contains regions that 
are normally not occupied by cells, the adjacent possible (pink regions). This non- physiological portion of state space contains unused attractors 
as by- products of GRN evolution (A). Genetic alterations distort the landscape, in such a way as to facilitate ‘spilling’ of cells into the adjacent 
possible (B) when they depart from the chreods (red arrows). These cells are trapped in the unused attractors that represent the gene expression 
configuration of cancerous cells. These pathological attractors lack access to the chreods and are not as deep, allowing easy transitions between 
attractors (producing phenotypic cell heterogeneity). These higher elevation states represent abnormal immature cells. Stress from cytocidal 
treatment can trigger bifurcation (critical transition) that destabilizes cells and induces attractor transitions in even more stem- like (resistant) cells 
(C). Panel (D) shows experimental data (underneath a schematic model) in which leukeamic cells (HL60) were treated with vincristine (‘CHEMO’) 
for 24 or 48 h; surviving cells were profiled for their transcriptomes individually using singe- cell RNAseq. The states X of each cell of each of the 
three conditions were pooled and projected into the same 2D plane (using the tSNE method). Each dot corresponds to a cell, and the colour label 
represents the experimental condition (untreated, treated for 24 and 48 h), not the cell state that is indicated by its position.

   

 

  

  

 



Cancer Systems Biology12

Kauffman in the 1970s [90– 93]. In other words, cancer cells repre-
sent abnormal cell types ‘not meant to be’. Based on random Boolean 
network models of GRNs and without notion of the quasi- potential 
landscape, Kauffman suggested that cancer cells occupy attractors 
of large GRNs that normally remain unused by the set of ‘normal’ 
cell types (Figure 1.3). Developing this idea further, we can now 
ask: why are there unused attractors, and how do they become occu-
pied during tumorigenesis?

By folding up a quasi- potential landscape, the GRN generates a 
set of attractors (valleys) that become occupied by cells during de-
velopment, implementing the stable cell types P encoded by the 
genome G. But as the GRN evolves to fold a topography capable of at 
least producing these physiological attractors, due to mathematical 
constraints in how a complex, evolved GRN wiring- diagram maps 
into a quasi- potential landscape, it also contains many more valleys 
than needed to serve as cell- type attractors. These unused ‘surplus’ 
attractors are profound features of the phenotypic repertoire of the 
GRN and represent the potential behaviours in the adjacent pos-
sible (pink regions in Figure 1.3) that are not realized in the actual 
organism— unless in pathological situations (Figure 1.3B).

1.6.3. Cell phenotype conversions 
(differentiation) are transitions 
between attractor states

If attractors are cell types, then development involves a series of step-
wise cell phenotype switching that create branching cell lineages to 
increase the diversity of cell types, starting from immature multi- 
potent embryonic cells to multi- potent stem cells to mature, differ-
entiated cells of the adult tissue. This process involves transitions 
from cell type to cell type, which is known as differentiation [58,88] 
and illustrated in Figure 1.2H.

What is the mechanism for physiological attractor transitions? 
Since attractor states are stable states at the bottom of a basin, a per-
turbation by E sufficient to alter X (Section 1.4; Figure 1.2H) and 
cause transition into another attractor will have to ‘push’ cells uphill 
out of the basin of attraction across the high potential barriers (hills 
between valleys), and thus, altering X against a steep gradient ΔV(X) 
(Figure 1.2G, horizontal blue E arrow). Realizing an uphill move-
ment on the landscape requires major regulatory action against 
homeostatic regulation: it would necessitate a highly coordinated 
(unlikely) change of activity in a large number of gene loci to alter 
the set of xi precisely so as to shift X uphill along the least action path 
to the hilltop and across the separatrix.

Instead, a mathematical principle of dynamical systems offers a 
shortcut. We have proposed that, instead, signals that cause physio-
logical transitions to new attractors (differentiation) may have 
evolved to alter the quantitative regulatory characteristics of inter-
actions [70,85,93]. As described in Section 1.5.5, (a) they alter 
parameters in the differential equation that describes a particular 
regulatory interaction. In doing this, signals temporarily and locally 
distort the landscape topography so as to lower the energy barrier 
surrounding the attractor, i.e. flatten the basin of attraction. This 
change of topography allows cells to exit the attractor basin with 
much lower action against homeostatic regulatory constraints of the 
slightly modified GRN wiring diagram, perhaps even purely driven 
by molecular noise (see Figure 1.2G, vertical blue E arrow). It may 
suffice that the gradient up the hills of the basin of attraction is only 
reduced with respect to one of the N state space dimensions— a 

distortion that would correspond to forming a ‘saddle’ in the 
separatrix, akin to a mountain pass that facilitates passage between 
two valleys.

In other words, attractor transitions are preceded by destabiliza-
tion (‘flattening’) of the current attractor [70]. The lowering of a 
potential energy barrier that separates two energy wells bears super-
ficial (but warranted) correspondence to chemical catalysis that 
lowers the activation energy necessary for a reaction to occur— with 
the now familiar caveat that the quasi- potential landscape of the 
GRN is not a classical energy potential landscape of a conservative 
system.

1.6.4. Destabilization underlying 
attractor switching

The destabilization that precedes attractor transitions warrants more 
elaboration (Figure 1.2E). If destabilization proceeds to a qualitative 
change of the landscape, e.g. disappearance of attractors or appear-
ance of new ones, the bounds of structural stability of a system are 
breached, which is called a bifurcation event. In one canonical type 
of bifurcation (fold bifurcation), the topography gradually flattens 
the basin until it abolishes an attractor such that the position of X* is 
suddenly on a slope and the cell has no choice than to descend into a 
particular neighbouring attractor that was previously not accessible 
due to the separating hill. A second major type of bifurcation (pitch-
fork bifurcation and its stable, higher- order subforms) converts 
a valley into a hilltop or a stable steady state into an unstable one, 
thus introducing a separatrix. This imparts, in a previously stable 
state, maximal instability to the cell and forces it to make a choice 
to descend to either one of the two attractors on either side— akin 
to creating a watershed (see Figure 1.3C). This topography change 
results in a cell being poised to undergo a binary fate decision to 
implement one of the two phenotypes encoded by the two newly 
accessible attractors.

Phenomenologically, in the study of complex system, when the 
underlying network structure is unknown, a bifurcation appears as a 
critical transition (Figure 1.3C): a sudden system flip from one stable 
equilibrium into another, characterized by a preceding destabiliza-
tion of the system. The latter can be measured as ‘critical slowing 
down’ that precedes the bifurcation: the return of perturbed system 
states X′ to the attractor state X* takes longer and longer time in 
a flattening basin of attraction [94,95]. In cell populations, which 
represent the ensemble of thousands of replicated of the GRN as a 
system, cell phenotype diversity increases. But counter- intuitively, 
the activities of a subset of gene loci (xi, xj, ...) across these cells tend 
to become more similar to each other as the ‘effective dimensionality’ 
of the state space decreases, as cells, while increasingly diverse, align 
in state space along a trajectory that leads to the saddle for exiting 
the attractor state. Thus, a subset of genes xi, xj, ... exhibits increased 
correlation, |corr(xi, xj)|, across the ensemble of cells in an attractor. 
This property can now be measured in single- cell transcriptomics 
[70,96] to identify impending critical transitions.

Taking together, if cancers are unused attractors, then tumorigen-
esis is the accidental, undue departure of cells from attractors in the 
physiological domain of the landscape and the entry into the ad-
jacent possible. Cancer cells are trapped in excess, physiologically 
inaccessible attractors that are not used for making and maintaining 
the healthy organism but are by- products of the evolution of pheno-
type control by the GRN. Before asking how cells enter these unused 

 

   

 

 

 

 

   

 

 

 

 



13CHAPTER 1 The necessary existence of cancer and its progression

attractors, and why they encode the immature, stem- like traits of 
malignancy, we first need to discuss another property of the quasi- 
potential landscape that is a natural consequence of its evolution.

1.7. The fundamental inevitability 
of cancer— explained using the  
quasi- potential landscape

We now place the landscape- based thinking in the context of organ-
ismal evolution to articulate the (in principle) fundamental inevit-
ability of cancer as undesired realization of the adjacent possible.

1.7.1. Evolution in the landscape: chreods 
ensure smooth descent

Natural selection in the evolution of organismal traits through gen-
omic mutations acts on the GRN wiring diagram and thereby shapes 
the topography of the landscape since V(X) is a function of the archi-
tecture of the GRN. New regulatory genes that arise during genome 
expansion are connected to the existing GRN, which is continuously 
rewired by mutations that affect regulatory regions in non- coding 
and binding sites of proteins in coding sequences [76,97]. Cis– trans 
regions shuffling in the course of larger scale genomic rearrangement 
also alter the wiring diagram [98]. Through such GRN rewiring, 
evolution has shaped the landscape topography to ensure that the 
existence of a set of stable configurations X encodes functional cell 
phenotypes. The scheme of ontogenic development is thus to a great 
extent hardwired [76,97], epitomized by the landscape such that, 
crudely speaking, global gradient- like forces drive a series of cellular 
differentiation events, channelling cells from embryonic stem cell 
gene activation configurations to that of increasingly mature cells. 
(For the sake of focusing on first principles of cell phenotype plasti-
city, we leave out the cell– cell interaction that adds a layer of control 
to developmental dynamics.)

Importantly, when new attractors, hence new cell types, are cre-
ated during evolution (in those rare events of mutational wiring of 
the GRN with qualitative consequence), these new attractor states 
must have a lower ‘quasi- potential energy’ than existing ones so that 
they can be reached with little effort from within the latter. Evolution 
selects for reachable attractors that can be accessed with little efforts 
from the existing, used ones. Hence, during the evolution of new 
cell types, the landscape must have ‘grown downwards’ by adding at-
tractors at lower and lower elevation so that they could be occupied 
with ease and also would further evolve to serve organismal fitness 
[99,100]. This process carves the downhill trajectories of develop-
ment into the landscape that affords the ‘arrow of development’ to-
wards implementing all the physiological cell types in the metazoan 
body while avoiding being trapped inside valleys at higher altitude 
that encode, by necessity, less mature phenotypes (Figure 1.2F). 
This principle of robust developmental trajectories corresponds to 
Waddington’s insightful idea of ‘chreods’ (Greek for ‘necessary path’) 
[101] (green lines/ arrows in Figures 1.2F and 1.3) [100].

Only those gene activation configurations X that produce at-
tractor states that are normally occupied by cells are seen by evolu-
tion. These attractors are subjected to fine- tuning by ensuing natural 
selection that optimizes the phenotype of these cells encoded by 
these attractor states for building cell societies and improving the 
fitness of the entire organism.

Evolution may also have optimized the chreods for resilience 
against perturbations and stochastic fluctuations that could acci-
dentally steer cells into the side valleys in the adjacent possible that 
have no physiological function and may even confer neoplastic ac-
tivities: the cancer attractors. Thus, tumour suppressor genes, such 
as p53 or Rb, may have evolved to guarantee smooth descent along 
robust or ‘buffered’ chreods into physiological attractors of mature 
cell types by increasing the height of hills that separate them from 
going astray into the unused domains of the landscape where cells 
could get ‘stuck’ and remain undifferentiated. In fact, these genes 
also suppress stemness and promote differentiation.

1.7.2. Entering unused attractors in the 
adjacent possible

If destabilization of a physiological attractor, e.g. by mutations, af-
fects an undifferentiated stem cell (which is naturally at a higher ele-
vation and poised to descend to a mature attractor), then the healthy 
stem cell may unduly enter the adjacent possible domain [100]. It 
will be trapped in one of the many unoccupied attractors nearby 
and thus remain in an undifferentiated state (Figure 1.3A and B). 
It is unable to descent (and thus differentiate) because the gene ac-
tivation configuration encoded by such attractors are not tuned for 
normal development; they have never been shaped by evolution to 
‘drain’ into the valleys where chreods of normal development run. 
In this sense, pathologists consider cancer cells to be ‘maturation 
arrested’. We can now apply the above concepts for attractor transi-
tions (points (a) and (b) in Section 1.5.5) to cancer: distortion of the 
landscape topography that lowers a barrier and allows cells to enter 
can result from non- genetic and genetic events:

 (a) Chronic non- genetic perturbations (Figure 1.2E): Changes in 
tissue environment conditions in response to stress and injury, 
which cause chronic inflammation [102], transiently alter the 
regulatory interactions of the GRN through cytokine and other 
mediators as discussed in point (a) in Section 1.5.5. Among the 
many possible ensuing distortions of the landscape, the most 
consequential for cell state dynamics is the lowering of barrier 
heights that prevent ‘spilling’ of cells into the adjacent possible. 
While these changes of the landscape may be transient, the en-
during nature of chronic injury and inflammation increases 
over time the probability that perturbations or any random 
fluctuations in X cause entry, via a lowered barrier, into the ab-
normal attractor states. This mechanism would explain why 
non- specific chronic irritation (e.g. bronchitis associated with 
smoking) would consistently produce similar types of tumours 
in a given tissue.

 (b) Permanent rewiring of the GRN by a genetic mutation 
(Figure 1.2H): Mutations in coding regions of regulatory genes 
and regulatory regions of the genome in essence permanently 
rewire the GRN, as first discussed in point (b) in Section 1.5.5. 
Mathematically, the consequences of an altered wiring diagram 
for the landscape topography are rather subtle due to struc-
tural stability. But occasionally a distortion of the landscape 
may open up access to unused attractors in the adjacent pos-
sible. However, unlike the transient non- genetic changes of the 
landscape, those caused by genetic mutations are magnified be-
cause they are permanent and inheritable to all descendants of a 
cell, thus eventually spreading through an entire cell population 
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and thereby increasing the probability of accidental entry into 
cancer attractors and selection.

In both cases, the new access to nearby attractors is in line with 
the ubiquitous increase of cell phenotype plasticity (‘identity confu-
sion’) in cancer, manifest as ‘dedifferentiation’, heterogeneity of cell 
phenotypes (pleomorphism) and transdifferentiation into neigh-
bouring lineages (lineage infidelity) with large basin of attraction— 
best known in the appearance of neuroendocrine cell types in many 
carcinoma [103,104] or the myeloid differentiation in lymphoid- 
type leukaemia [105].

Distortions of the landscape caused by mutations with tumori-
genic consequence are those that decrease quasi- potential hills (‘en-
ergy barrier’) that separate the physiological from unused attractors 
in the adjacent possible domain of the repertoire of the GRN. Thus, 
we can now see that mutations do not ‘cause’ cancer but rather ‘cata-
lyze’ cancer. This concept is consistent with the increasing empir-
ical recognition that mutations are necessary but not sufficient for 
tumorigenesis [106].

1.8. Wrapping up: biological and 
clinical implications

The conceptual framework presented in this chapter posits that 
non- specific, undirected, and random factors, non- genetic or gen-
etic, can (jointly) facilitate the exit of cells from physiological at-
tractors and enter into unused attractors of the adjacent possible 
phenotype repertoire where they become trapped in the rugged, 
unevolved terrain of the landscape that lacks chreods carved by evo-
lution. These excess attractors of the GRN can produce quite stable 
but non- physiological gene activation configurations X that encode 
programs of the immature, stem- like malignant cell that cannot re-
vert back to the normal phenotype.

A fundamental question then remains to be answered: why do ex-
cess attractor states in the adjacent possible accessed by cells in re-
sponse to non- specific triggers so consistently encode specifically a 
coherent stemness program? This question is linked to the evolution 
of robustness of normal tissues and remains to be investigated. It 
suffices to propose here the idea that the inherent proclivity to acti-
vate stemness, a cell program central to tissue regeneration, is deeply 
‘baked- in’ the system that has evolved to ensure such robustness of 
normal tissues by homeostatic negative feedback regulation, which 
is represented by the slope of the basin of attraction. Stemness and 
regeneration are just the biological embodiment of the slopes in the 
basin of attraction of the higher- level ‘tissue attractors’ that restore 
the physiological tissue phenotype upon injury.

Here, we only consider the robustness of the realized phenotype 
as a generic concept and the possibility of veering into the unrealized 
adjacent possible of the quasi- potential landscape. This framework 
allows us to reduce the very phenomenon of cancer to first prin-
ciples, namely that of dynamical systems, and can now be tested for 
its ability to explain elementary properties of cancer not readily ac-
counted for by the current characterization of oncogenic molecular 
pathways. As examples, we address below two elementary, rarely 
asked biological questions on the cause and treatment of cancer by 
revisiting the two major challenges of existing paradigms discussed 
in Section 1.2.

1.8.1. Why do mutagens require  
(non- mutagenic) tumour promoter  
agents to produce tumours?

An old two- stage concept of tumorigenesis that goes back to sem-
inal animal experiments of the 1940s (reviewed in [106]) posits that 
after application of a mutagenic carcinogen (the initiator) the mu-
tated cells may stay dormant for extended time and sometimes even 
regress. They only develop a tumour after repeated application of a 
chemical that is not (necessarily) mutagenic but an ‘irritant’ (the pro-
moter), such as a phorbol ester. Many non- mutagenic promoters of a 
broad chemical diversity have since been identified. Environmental 
factors and signals from the tissue environment, such as inflamma-
tion, also serve as promoters. In the case of phorbol ester that turns 
out to activate the protein kinase C signal transduction pathway, the 
result is the activation of a large set of many gene loci [107]. Thus, 
it can substantially shift the GRN state X— the cell’s position on the 
landscape.

Stimulation by tumour promoters can be considered the rate- 
limiting factor of tumour development. With the discovery of the 
ubiquitous presence of oncogenic mutations in normal tissues in 
the era of systematic analysis by next- generation sequencing, the 
initiator– promoter concept has seen a revival [106,108]. Sequencing 
of ‘initiated but not promoted’ tumour- free tissue has indeed re-
vealed a large number of oncogenic mutations in non- cancerous 
tissues. This finding defies the principle of Darwinian somatic evo-
lution as the central driver behind tumorigenesis that would have 
selected among the mutated cells a clone that would have grown into 
a tumour (accumulating more fitness- increasing mutations)— inde-
pendent of a tumour promoter.

The initiator– promoter principle is consistent with the concepts 
discussed in this chapter, notably the idea that mutations do not 
‘cause’ but ‘catalyze’ cancer: the mutations inflicted by the initiator 
may only minimally shift X* and thus, qualitatively, not change 
the cell phenotype because of structural stability. But they would 
lower the quasi- potential barrier that separates normal attractors 
from the potentially malignant attractors. Without promoters, cells 
might still reside in a shallower physiological attractor, manifest 
in increase of non- genetic cell phenotype plasticity as abundantly 
revealed by single- cell transcriptomics (see also Figure 1.3D), al-
though with increased probability to ‘spill over’ into a cancer 
attractor. Conversely, initiated microtumours sometimes spontan-
eously differentiate and regress [109], suggesting that their cells can 
still access the chreods leading to physiological attractors— but per-
haps less efficiently.

1.8.2. Why does treatment backfire?

We can now also comprehend why, as presented in the opening of 
this chapter, any cytocidal treatment itself promotes the non- killed 
fraction of tumour cells to progress to a more malignant pheno-
type. These massive (‘near- lethal’) perturbations further destabilize 
the cancerous state in the surviving cells, X*c, and may drive cells 
through a bifurcation that forces upon the cell a binary branchpoint 
decision between two possible cell fates: cell death or, if not, entry 
into an unused attractor that could encode immature, stemness 
traits (Figure 1.3C and D) [55]. While the first outcome is therapeut-
ically intended, some cells in the heterogenous tumour cell popu-
lation almost inevitably survive the maximally tolerated dose and 

 

 

   

  

 

 

   

 

 

 

   

 

 



15CHAPTER 1 The necessary existence of cancer and its progression

enter the alternative fate that becomes accessible after the destabil-
izing bifurcation.

These two opposite outcomes are preceded by instability of 
the cell state, to be imagined as placing the cells onto a moun-
tain ridge (separatrix) where it is easily tipped to fall down the 
slope on either side. This symmetry- breaking bifurcation explains 
why cytocidal therapy is a potential double- edged sword: treat-
ment stress poises cells at the bifurcation point to either die or 
become stem- like. The decision in individual cells is governed by 
cell state X′ within the attractor basin at the time of response to 
the perturbation, chance fluctuations, and deterministic bias of 
other signals that can tilt the bifurcation. This principle explains 
the near- inevitable induction of the stem- like resistant phenotype 
in non- killed cells (in addition to Darwinian selection of such re-
sistant cells that operate at a slower timescale). Single- cell gen-
etic barcode- based tracing of individual cells currently seeks to 
measure the relative contribution of these two mechanisms [110– 
112]. The bifurcation dynamics is thus at the core of Nietzsche’s 
dualism of either dying or, if not, coming out stronger after an 
adversary intervention.

Taken together, we may even postulate that current treatment 
that almost invariably leaves surviving cells and also substantially 
irritates the tumour tissue may also actually act as a promoter on 
the mutated residual tumour and thus actively contribute to relapse. 
Thus, the Nietzsche effect would suggest that treatment acts as a tu-
mour promoter in the two- stage model.

1.9. Concluding remarks

We have sought to present an integrated, qualitative but logically co-
herent narrative, without resorting to mathematical equations, that 
provides a new type of conceptual explanation for the very exist-
ence of cancer and its progression. The novelty was to depart from 
the prevailing epistemological habit that tacitly assumes immut-
ability of objects and thus reduces cancer to random genetic mu-
tations and ensuing proximal causes, such as oncogenic pathways, 
as a convenient way to explain phenotype innovation. This scheme 
of thought leaves many questions open regarding the generic prop-
erties of cancer, such as the insufficiency of mutations as cause of 
cancer and the near obligate backfiring of cytocidal treatment. 
Instead, we present established and more recent formal concepts to 
explain the immanent inevitability of tumorigenesis based on first 
principles of systems dynamics in the context of evolution, develop-
ment, and homeostasis of metazoan tissues. In order to present these 
principles with clarity within the limited space, and to emphasize 
coherent reasoning, we had to simplify and forgo comprehensive 
enumeration of specific molecular pathways.

We also refrained from discussing all the higher layers of organ-
ization in which the tissue as such, not the cell, is the system that 
changes during tumorigenesis. The tumour tissue, which includes 
the tumour microenvironment and the immune system, too repre-
sents a dynamical system, composed of the network not of genes 
but of cells, defined not only by their gene activation configuration 
X but also by their physical location in the tissue, that interact with 
each other via communication signals. Instead of cell attractor states 
produced by gene– gene regulatory interactions, we have tissue at-
tractors produced by the cell– cell communication network that 

represents tissue level programs, such as angiogenesis, inflamma-
tion, regeneration, and immune activation or suppression.

We believe that the principles of such higher- level tissue dynamics 
with homeostatic tissue attractors may be similar to the dynamics of 
cell states driven by the GRN: the occupation of non- physiological 
tissue attractor states in the ‘adjacent possible’ of the quasi- potential 
landscape of tissue configurations, trapping tissues in abnormal 
configurations of cell activities with the vicious cycles of structural 
disorganization, and futile attempts of aberrant regenerative pro-
cesses as source for undue environmental signals that shift cell states 
towards stemness. With the arrival of single- cell resolution of multi- 
omic profiling of tissues (an example is shown in Figure 1.3D), 
including in situ cell states, there will be a need for a theoretical 
framework in the years to come to make sense of the vast amount of 
data that is continuing to accumulate. Hopefully, the reader can use 
the concepts presented in this chapter to do so.
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2

Non- genetic intratumoral heterogeneity 
and phenotypic plasticity as consequences 
of microenvironment- driven epigenomic 
dysregulation
Vera Pancaldi and Jean- Pascal Capp

2.1.  Introduction

Cancer cells are now considered destabilized cells in which, besides 
genomic instability, a global increase in entropy is observed at dif-
ferent levels (e.g. in protein interaction networks [1,2] or in gene 
regulatory networks [3] ). This increased cellular entropy is somehow 
related to the global increase in cellular stochasticity, especially at 
the epigenomic level (see, for instance, ‘The stochastic epigenetic 
model of human cancer’ in Feinberg [4]), and to increased cellular 
plasticity. In the past decade, the epigenome has been in the spot-
light as a major determinant of malignant phenotypes that would 
be characterized by enhanced plasticity, conferring cancer cells 
stronger adaptability in changing environments and under therapy, 
ultimately leading to therapeutic resistance. Also, the less organized 
and less stable chromatin structure observed in cancer cells appears 
to increase stochasticity of gene expression at higher levels than in 
normal stem cells [5].

While the origins of the global cellular destabilization remain 
largely unknown, it seems to correspond to a de- differentiation or 
a non- differentiation process where cells return or remain in a state 
of entropy close to the ones of stem or progenitor cells (depending 
on their level of differentiation: cancer stem cell or non- stem cell) 
[6] . Interestingly, early studies identified that cancer cells revert 
to a ‘pseudo- primitive’ epigenetic status where features of embry-
onic stem cells and different developing lineages are observed [7]. 
Cells designated as ‘cancer stem cells’ have the lowest degree of dif-
ferentiation, and from these cancer stem cells, cancer cells harbour 
a continuum of states with ‘noisy’ and skewed differentiation [8]. 
Moreover, stochastic transitions between alternate cellular pheno-
typic states driven by non- genetic mechanisms have been known 
for a decade [9] as a common and relevant process in tumours that 
shape intratumoral heterogeneity in conjunction with genetics and 

the tumour microenvironment. These phenotypic transitions could 
contribute to cancer cells’ enhanced proliferation [10].

Dynamic heterogeneity and enhanced plasticity in cancer are 
commonly associated with the notion of cancer attractor state. In 
this framework, cancer cells would be able to explore the global 
regulatory network in an unusual way thanks to a reconfiguration 
of the epigenetic landscape [11,12]. This epigenetic landscape re-
configuration in cancer would allow cells to acquire gene expression 
patterns that are not accessible in normal tissues. Indeed, cancer 
cells lose the defined epigenomic hierarchy and lineage identity ob-
served in normal tissues as exemplified in single chronic lympho-
cytic leukaemia cells, in which mutually exclusive activating and 
repressing histone modifications co- localize and normally exclusive 
phenotypic markers co- occur [13].

An interesting question is whether genetic alterations of chro-
matin modifiers are required for reshaping epigenomic plasticity or 
if fluctuations in their expression levels can already modulate pheno-
types, especially in the light of recent findings that highlight a weak 
correlation between genetic and phenotypic heterogeneity levels in 
colorectal tumours [14,15]. While traditionally therapy resistance 
has been associated with enhanced plasticity of cellular phenotypes, 
recent experiments on patient- derived xenograft models in which 
cancer clones can be followed propose an alternative ‘phenotypic in-
ertia’ principle as an almost diametrically opposed explanation for 
the selection of clones resistant to stress and therapies [16]. Starting 
from the observation that epigenomic disruption through muta-
tions in histone genes and chromatin modifiers is ubiquitous across 
many cancers, the authors identify an effect of these mutations in 
disrupting the correct activation of stress responses, which normally 
limits proliferation, allowing these mutant clones to outcompete 
others. Instead of exploiting an improved capacity to adapt to their 
environment, these cells would be faulty in responding to external 
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cues, such as stress conditions, due to their inability to correctly re-
arrange the epigenome to achieve cell cycle arrest. This mechanism 
could explain the prevalence of chromatin modifier alterations in 
dominating cancer clones, but it might also be the key to under-
standing the ‘phenotypic inertia’ that might lead pre- cancerous cells 
to ignore their environmental context, by failing to rearrange their 
epigenome accordingly.

Classical oncogenic mutations, which have been traditionally 
implicated as causative mechanisms in oncogenesis, are unlikely 
sources for such epigenomic destabilization and enhanced plasticity. 
It is now accepted that healthy tissues can contain large percentages 
of cells carrying mutations in ‘cancer- associated genes’ in the ab-
sence of uncontrolled proliferation, to an extent that increases with 
the individual’s age [17,18]. If genetic mutations are unlikely to be 
the sole determinants of phenotypic characteristics and plasticity, 
alternative hypotheses are needed to account for the global loss of 
chromatin and epigenome organization seen in cancer. We can en-
visage multiple factors that could maintain these cells under control, 
especially at the epigenetic level, and prevent cancer development, 
including interactions with cells in the surrounding tissues, such as 
immune cells, fibroblasts, and cytokines in the tumour microenvir-
onment, which have recently been implicated in the cellular de- 
differentiation leading to pollution- induced lung cancer [19]. We 
propose that the interplay between microenvironmental cues and 
nuclear structuring during differentiation could constitute a relevant 
starting point for an alternative view on cancer cell destabilization.

2.2. Nuclear organization and cancer

During development, a nuclear structure specific to each cell type 
is established in differentiated cells [20]. Each chromosome is or-
ganized in the nucleus with a particular configuration defining 
‘territories’ and determining the position of genes in the three- 
dimensional (3D) nuclear space. This core organization is therefore 
extremely structured, but it is also highly dynamic. Expressed genes 
tend to be co- localized, even if they are on different chromosomes or 
far apart on the same chromosome, in ‘transcription factories’ that 
concentrate the factors involved in gene expression [21]. But these 
structures are very flexible and can constantly be restructured and 
remade elsewhere with other genes, depending on the molecules that 
associate and dissociate [22]. Since these association– dissociation 
events are highly random, they would contribute to making changes 
in gene expression random. Recent findings on single- cell variability 
in genome organization confirm that the stochastic nature of chro-
matin organization is related to transcription dynamics [23], but the 
association between structure and gene regulation remains contro-
versial, despite the availability of multiple orthogonal experimental 
techniques to assess it [24].

Some researchers, including Tom Misteli, have proposed that 
this structure self- organizes spontaneously during differentiation, 
without external influence, so as to find a state of maximum thermo-
dynamic equilibrium through random fluctuations of local inter-
actions between molecules of the chromatin [20]. This model would 
make it possible to reconcile the apparently contradictory facts 
that are the apparent structuring of the nucleus and its ability to re-
organize itself in a very dynamic way. But it is also possible to link 
this nuclear structuring with external constraints since chromatin 

molecules and what might seem random gene expression are per-
manently affected by external signals from the cellular environment. 
A recent publication was indeed able to quantitatively describe how 
cells respond to signals in specific ways which are dependent on 
their internal state and prior states as well as on the signal itself [25].

Several types of microenvironmental factors are known to play 
on the 3D epigenome such as mechanical constraints that, through 
mechanotransduction, can affect chromatin and differentiation 
state. Advanced techniques for mechanical manipulation of cells 
accompanied by imaging of the resulting forces have unveiled so-
phisticated mechanisms of cellular response to physical stresses 
[26,27]. Cellular phenotypes, such as proliferation and invasiveness, 
have been related to the stiffness of the extra- cellular matrix via 
the coupling between mechanical force sensing and nuclear local-
ization of transcription co- factors. One such factor is Yes1 associ-
ated transcriptional regulator (YAP), an oncogenic transcriptional 
co- activator responsible for the loss of contact inhibition typical of 
cancers [28].

It is likely that mechanical forces can also impact the global or-
ganization of chromatin in the nucleus. This could be via changes in 
the nuclear localization of other factors that have an impact on chro-
matin structure or through a much faster direct effect of the nuclear 
forces on chromatin compaction. Subjecting cells to pulsed forces 
produces temporary chromatin compaction changes that involve 
euchromatic regions preferentially, suggesting a possible coupling 
between mechanical stimuli and gene regulation [29]. Research 
in mesenchymal stem cells has shown that purely dynamical per-
turbations of cells in the absence of chemical factors can promote 
chromatin compaction changes that lead to differentiation. More 
specifically, it was shown that the dynamic loading of cells produces 
nuclear reorganization involving chromatin condensation mediated 
by actomyosin- based contractility. Repeated cycles of loading led to 
stronger chromatin condensation and the establishment of a mech-
anical memory in the cells, which seems to be encoded by altered 
activity of histone modifiers [30]. This mechanically induced chro-
matin compaction was found to be dependent on EZH2, a histone 
methyltransferase that is involved in gene silencing as a component 
of the Polycomb repressive complex [31]. Mechanical factors are 
now recognized as regulators of nuclear properties in stem cells, and 
properties of the extra- cellular matrix directly impact cellular fate 
[32]. Mechanical forces are now understood to also regulate shut-
tling of factors from the cytoplasm to the nucleus and back, with 
clear implications of a direct connection between mechanical pro-
cesses and gene transcription regulation [33]. Interestingly, there 
does seem to be an impact of mechanical constraints on cell pro-
liferation with relevance to the emergence of non- proliferating but 
more resistant clones in cancer [34].

The 3D nuclear organization and its stabilization would therefore 
crucially depend on the cell’s external constraints. It would rather be 
a phenomenon of ‘hetero- organization’ because it stems from a per-
manent interaction between random fluctuations within the nucleus 
and external signals tending to stabilize it [35]. In that case, nuclear 
organization would therefore be the result of the canalization of cells 
towards a cell type by cell signalling that stabilizes certain chromatin 
conformations according to the genes that these conformations 
allow to be expressed. For instance, the influence of the interactions 
with the cellular microenvironment on nuclear organization during 
the differentiation of mammary cells was shown [36]. The position 
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of certain genes involved in lactation is not the same in the cells of 
the intact tissue as the one observed in the cells cultured in vitro in 
monolayer [36]. The absence of tissue organization and signalling 
resulting from the cellular interactions in this 3D structure is prob-
ably the cause of this difference in nuclear organization. It is clear 
that these interactions strongly contribute to the establishment of 
the nuclear structure. But could their disruption be at the origin of 
the global 3D epigenome and nuclear organization destabilization 
in cancer?

Nuclear structure disruption in cancer has become a major theme 
in molecular oncology, either caused by somatic genomic rearrange-
ments [37– 39], with surprisingly little consequence on expression, 
or by chromatin alterations [40]. It has long been known that cancer 
cells have a very different nuclear organization from that of differ-
entiated cells [41]. This is also exploited by pathologists when diag-
nosing samples [42]. Detailed studies have shown that many genes 
are ‘repositioned’ in cancer cells compared to normal cells, particu-
larly in the early stages of carcinogenesis [43]. However, this repo-
sitioning does not affect the expression level of most of the genes 
tested [43], at least in these early stages and at the level of bulk popu-
lation data.

This early nuclear destructuring in cancer cells is hardly conceiv-
able in the self- organization model. How to explain that these early 
stages of cancer generate such destructuring when they are only sup-
posed to be caused at most by a few genetic mutations? Are these 
mutations alone capable of disrupting this self- organization which is 
the result of a balanced and very complex process? On the contrary, 
if cellular interactions make it possible to gradually set up a nuclear 
organization characteristic of differentiated cell type, their disrup-
tion can certainly modify this organization. It would be therefore lo-
gical that this disorganization would be one of the characteristics of 
the early stages of cancer. Thus, we propose to consider the disrupted 
3D epigenome as an important contributor in the production of cel-
lular entropy and stochasticity and to envisage the origins of this 
disruption of the 3D epigenome at the extra- cellular microenviron-
mental level. Microenvironmental alterations would first affect the 
3D epigenome and the nuclear organization that would become less 

constrained and more flexible and dynamic at the single- cell level, 
and more heterogeneous from cell to cell (Figure 2.1). This tissue 
disruption would consequently make cancer cells plastic and their 
differentiation state more reversible [44]. Those phenomena would 
thus not rely on broken regulatory links arising from mutations, 
even if the role of mutations and their ‘promoting’ effect must not be 
denied [44]. Indeed, evidence for the involvement of the cell’s envir-
onment in establishing alternative epigenomic programs potentially 
leading to cancer was seen in a pancreatic cancer mouse model, in 
which the combination of tissue injury in addition to the common 
oncogenic mutation KRAS gave rise to a unique chromatin state that 
kick- starts the neoplastic transformation [45].

The early nuclear destructuring could have no particular ‘func-
tional significance’: it might only be the result of the disruption of 
cellular interactions that normally maintain this structure in differ-
entiated tissues. But it would directly generate a loss of epigenetic 
stability with an increased epigenomic stochasticity and, conse-
quently, an increased cellular entropy driven by more variable and 
widespread gene expression patterns. The increased epigenetic 
stochasticity in cancer was previously proposed to be mediated by 
large- scale changes in DNA methylation and chromatin in domains 
associated with the nuclear lamina [4] .

2.3. Clues from cellular reprogramming

Other indications on the interactions between the epigenome 
and the increased cellular stochasticity and their potential role in 
tumorigenesis come from the cell reprogramming process. This pro-
cess corresponds to the reacquisition of pluripotency in fully differ-
entiated cells achieved by a small subset of cells through stochastic 
transitions by ectopic expression of a set of transcription factors 
(TFs), known as OSKM [46] that are able to reconstitute a more open 
chromatin configuration. The cells produced are called induced 
pluripotent stem cells. These TFs through their binding of specific 
genome regions ensure the correct maintenance of chromatin inter-
actions between enhancers and promoters [47]. Years after these first 

Figure 2.1. Microenvironmental disruption generates alterations of the 3D epigenome and chromatin structure. In a healthy context, normal 
microenvironmental cues allow a progressive canalization of cells towards differentiation that is characterized by well- defined chromosomal 
territories and chromatin loops (collectively called the 3D epigenome), as well as a more compacted chromatin at the genome scale. In a tumoral 
context, microenvironmental disruptions, such as a more destructured extra- cellular matrix and aberrant cell– cell interactions and communication, 
lead to a more diffused 3D epigenome at different scales and a more open chromatin. These phenomena collectively lead to increased cell 
stochasticity and entropy.
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studies, it was found that much more efficient and deterministic re-
programming of pluripotency could be achieved by expression of 
the OSKM factors combined with repression of Mbd3 [48], a cen-
tral member in a nucleosome remodelling and deacetylation com-
plex, suggesting that reprogramming could be controlled and is not 
purely a stochastic phenomenon. In reprogramming, OSKM factor 
binding can alter topologically associating domains (TADs), regions 
of chromosomal association which display high frequencies of phys-
ical interaction within a given domain but lower frequencies outside 
of these domains [49], which were identified as fundamental units 
of the 3D nuclear organization with compartments and chromatin 
loops [50,51]. The regions bordering TADs, called TAD boundaries, 
contribute to gene expression regulation by restricting interactions 
of cis- regulatory sequences to their target genes. OSKM factors can 
create new boundaries, strengthen them [52], and modify specific 
3D enhancer– promoter contacts [47]. These chromatin alterations 
could affect enhancer– promoter interactions and impact gene 
expression.

Two mechanisms guard the genome against spurious regain of 
pluripotency, namely DNA methylation and the constitutive hetero-
chromatin histone marks. The maintenance of these marks can de-
pend on external signalling that can trigger a phenotypic shift known 
as epithelial to mesenchymal transition (EMT), which is often ob-
served in initial phases of oncogenic transformation but was also 
found to precede reprogramming [53,54]. Thus, cytokine regulation 
in the microenvironment, likely due to immune and other stromal 
cells, has the potential to push the cells to lose their lineage identity.

Consistent with this idea, chromatin modifiers are very often 
mutated in cancer, and a recent pioneering study of single clones 
in colorectal cancer has detected positive selection for mutations 
in chromatin- modifying factors [15]. Moreover, chromatin acces-
sibility alterations, which reflect changes in 3D organization and 
promoter– enhancer networks, were found to be stably inherited 
in the clonal populations and specific to malignant samples but 
not found in pre- neoplastic lesions [15]. Interestingly, these chro-
matin states were often associated with changes in gene expression, 
suggesting that they could more strongly impact phenotypes com-
pared to mutations. In line with the concepts mentioned above, an 
integrated analysis of TF- binding motifs present in regions with al-
tered DNA accessibility implicated the activation of EMT and de-
velopmental programs. The clonal and stable characteristics of the 
detected chromatin alterations suggests that they could be subject 
of Darwinian selection, contrary to gene expression alterations that 
could be just stochastic phenotypic fluctuations.

The study recorded a high number of somatic chromatin acces-
sibility alterations also involving genes traditionally associated 
with colorectal cancer but not mutated in the specific samples. 
Interestingly, the authors were able to confirm that a majority of 
these alterations were clonal, suggesting their importance in the 
development of the tumour. Moreover, since the samples included 
pre- neoplastic adenomas as well as developed carcinoma, it was 
possible to note that contrary to the number of cancer- associated 
mutations, the number of chromatin alterations was increased after 
the onset of malignancy and many of them were associated with 
changes in gene expression. A specific TF motif accessibility analysis 
showed the reduction of interferon signalling and activation of EMT 
programs as well as re- activation of developmental programs via 
Hox genes, which was also confirmed by specific hypomethylation 

of developmentally regulated promoters that are stably methylated 
and repressed in normal samples.

During reprogramming chromatin that is closed in differentiated 
cells regains accessibility while regions specific for the original dif-
ferentiated cell type are closed. It is not fully understood to which 
extent the malignant transformation resembles reprogramming, 
but it seems logical that what might be happening in oncogenesis 
is a very stochastic form of de- differentiation that will generate het-
erogeneous phenotypes in each cell, with increased stochasticity. 
Moreover, specific chromatin factors such as KDM5 have been im-
plicated in therapy resistance via their impact on increasing pheno-
typic heterogeneity, essentially allowing a bet- hedging strategy 
to be developed in the tumour [55]. The up- regulation of lysine 
demethylases has also been associated with resistance in glioma 
cancer stem cells [56].

2.4. Towards an atavistic viewpoint 
on cancer

A complex interplay of external environmental cues modulating 
the activity of TFs can drive the establishment of specific tran-
scriptional programs and reshaping of the 1D and 3D epigenome, 
without necessarily stemming from genetic alterations, which 
can ultimately increase the plasticity of the cells’ phenotypes. In 
cancer, this could occur in cells that have lost coordination from 
interactions at the tissue level. They would then adopt a unicellular 
lifestyle, based on stochasticity, in which bet- hedging strategies 
aiming at maximizing the exploitation of nutritional resources 
dominate [57] and in which stress response elicits a diversification 
of phenotypes [58].

Davies and Lineweaver’s atavistic idea from 2011 proposed to in-
voke that an ancestral program would be accidentally re- activated 
in malignant cells to explain cancer atavistic behaviour [59,60]. It 
is also possible to propose that cancer cells resemble unicellular 
cells in the way they generate specialized cells with optimal cap-
acity to exploit nutritional resources for proliferation through a 
bet- hedging strategy based on cellular stochasticity, while keeping 
a subpopulation in a more plastic state [57,61,62]. Thus, selection 
would retain malignant cells that adopt a microbial cell lifestyle with 
highly stochastic phenotypic fluctuations (because of the lack of 
normal environmental constraints).

Of note, recent studies on colorectal cancers showed that the ma-
jority of intratumour variation in gene expression is not strongly 
heritable but rather plastic [14]. These data argue in favour of a 
mostly non- genetic origin for variation in tumoral phenotypes, con-
tributing to intratumoral heterogeneity, confirmed by the observed 
lack of sub- clonal selection of putative genetic drivers. Thus, at least 
in these cases, most genetic variation seems to have no major pheno-
typic consequences, and transcriptional plasticity might, instead, be 
a major contributor in cancer progression [14]. Also, it was recently 
shown that disrupted epigenetic regulatory networks are frequently 
selected in evolving human cancers and do not promote the selec-
tion of genetically defined subclones [16]. This disruption rather 
provokes an inertia in the modulation of global transcriptional ac-
tivity at the single- cell level that makes cells unable to respond rap-
idly to stress by correctly inducing cell cycle arrest. They then are 
more prone to acquire resistance to environmental stress through 
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long- term adaptation at the population level [16]. These results are 
all in accordance with a model of cancer progression in which loss 
of transcriptional coordination and altered transcriptional plasticity 
are at least as important as genetic alterations, if not more.

Some evidence of the pertinence of the atavistic theory comes 
from the investigation of genes that appeared at different stages of 
evolution. In cancer cells, genes that are disrupted tend to be those 
that appeared with the appearance of multicellularity. Whereas 
primitive genes normally ensure basic cellular processes such as cell 
cycle and metabolism, multicellularity and cancer involve genes re-
lated to cell– cell communication and growth control. Genes altered 
in cancer were found to often represent functional links between 
unicellular and multicellular processes [63], and analysing gene 
ages as projected on interactome networks has shown a strong con-
nection between the topology of protein– protein interactions and 
evolutionary gene origins [64]. At the same time, the topology of 
protein– protein interaction networks can reflect the favourable or 
stressful external conditions of the cell [65].

Given the clear implication of 1D and 3D epigenome organization 
in both establishing and losing coordinated control in cell behaviour 
during development and cancer, one could expect similar associ-
ations between gene evolutionary history and position in the nu-
cleus. Indeed, the analysis of patterns of 3D interaction of genomic 
regions representing chromatin as a network found relationships 
between gene functional categories and location of the genes inside 
the nucleus, identifying that highly connected nodes on these chro-
matin networks formed a rich club related to basic cellular processes 
[66]. We suggest that further studies of global principles of genome 
organization alterations across differentiation or oncogenesis, facili-
tated by network theory frameworks, could reveal that epigenomic 
network topology also carries the signs of successive evolutionary 
programs and identify strong structural– functional relationships in 
the epigenome [66,67]. Indeed genes of different evolutionary ages 
are organised in the 3D epigenome with patterns that can be charac-
teristic of stem, differentiated and cancer cells. This view could sug-
gest a correspondence between structural features of the chromatin 
network and phenotypic attractors reachable by the cells.

2.5.  Conclusions

To go back to the tumour microenvironment context, if an external 
stress situation (mechanical, chemical, inflammatory, metabolic, etc.) 
disrupts the healthy microenvironment, different cell types would 
lose their perception of the context, compromising cooperativity 
between them and generating a sort of conflict in which acquiring 
stochastic, pluripotent, or unicellular- like behaviours would be ad-
vantageous. The increased stochasticity and entropy and the global 
epigenetic restructuring should be seen as a consequence of this 
tissue disruption. Finally, re- stabilizing the 3D epigenome and thus 
decreasing the cellular entropy and stochasticity would require 
playing on the microenvironmental context to restore cues that nor-
mally maintain the 3D epigenome in a fully differentiated state. As 
is often the case, the maximum stability of the differentiated state 
would also not be ideal in healthy tissues to achieve homeostasis, 
which requires some plasticity to allow rearranging the epigenome 
to respond to normal external cues (including stress, cytokines, and 
contact with other cells). This situation would be reminiscent of the 

need for an equilibrium in cancer cells between genetic stability and 
instability [68]. Indeed, genetic and epigenomic stability might even 
be related, in the light of recent findings that implicate the assembly 
of damaged DNA in repair factories [69].

Increasing experimental evidence indicates that the normal 
microenvironment is able to control genetically altered cells and sto-
chastic fluctuations to reduce phenotypic plasticity [44,70– 72]. This 
could also correspond to eliminating specific cancer cell attractors 
that are only reachable in the absence of external controls normally 
exerted by other cells and the physical environment on the cancer 
cell. One of us has already proposed, as a general concept [44,73] and 
applied to multiple myeloma [71,74], that acting adequately on the 
tumour microenvironment, i.e. restoring or mimicking healthy cel-
lular interactions present in the initial tissue, would make it possible 
to ‘re- educate’ it and to control cells by re- stabilizing their pheno-
types, restoring differentiation and stopping cell proliferation. This 
microenvironment- centred therapy could be coupled with mol-
ecules that alter gene regulation (e.g. by ‘epidrugs’ acting on chro-
matin remodelers) towards the establishment of full differentiation 
[71,73,75]. This strategy would certainly help to decrease cancer cell 
entropy and stochasticity, while limiting overall cellular plasticity 
and therapy resistance.
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3

Dimensions of cellular plasticity: 
Epithelial– mesenchymal transition, cancer 
stem cells, and collective cell migration
Caterina A.M. La Porta and Stefano Zapperi

3.1. Cellular plasticity in physiological 
processes and injuries

The concept of phenotypic plasticity in biology can be used to de-
scribe multiple processes associated with the effect of the environ-
ment on the phenotype of the cells. In recent years, biologists have 
started to show that this process is able to drive phenotypic diver-
gence within individual species that is as great as that between dif-
ferent species [1] . The possible role of phenotypic switching for the 
large scale of evolutionary processes such as in macroevolution is 
also debated currently [2, 3]. In this regard, there is ample evidence 
that phenotypic plasticity is related to the natural evolution of plants 
and animals [4, 5, 6, 7], the latter supporting the role of plasticity in 
evolutionary innovation.

Phenotypic plasticity appears to work at the level of cellular evo-
lution as well: it is well documented that the entire intestinal epithe-
lial lining is replaced approximately every 3– 5 days, and a constant 
renewal required to maintain intestinal homeostasis and tissue in-
tegrity [8] . It is, however, quite remarkable that after an event dam-
aging the stem cell compartment the intestinal epithelium displays 
an incredible ability to regenerate. De- differentiation of intestinal 
cells into multipotent stem cells, a process cumulatively termed in-
testinal cell plasticity, provides a mechanism to maintain barrier in-
tegrity and homeostatic stability against persistent injury. Multiple 
factors could damage the intestinal epithelium, including infection, 
acute or chronic inflammatory disease, and genotoxic stress asso-
ciated with chemotherapy/ radiation treatment (for more biological 
details, see [9]). Cellular heterogeneity and plasticity was also shown 
in skin epithelial cells under certain circumstances [10], and similar 
evidence has been reported for liver regeneration. The liver shows a 
remarkable regenerative capacity performing multiple physiological 
functions. Since this organ plays a central role in metabolism and 

detoxification, it often suffers extraneous injury and can gradually 
lose its regenerative ability. Cell reprogramming of hepatocytes and 
biliary epithelial cells has been recently identified as a major pathway 
to generate new hepatocytes in response to liver injury (for more 
biological details, see [11]). The concept of plasticity and the role 
of the environment were better understood analysing macrophages. 
These cells are usually considered plastic, although the environment 
could limit their plasticity. Macrophages are responsible for a mech-
anism by which tissues can avoid excessive immune reactions and 
protect themselves from collateral damage [12]. Another interesting 
example of cellular plasticity is represented by T cells, which are able 
to repolarize changing their phenotype in response to cytokine mi-
lieu, microbial products, and products of metabolism [13,14].

Cellular plasticity is also shown by Schwann cells that are glial 
cells present in the peripheral nervous system, playing a crucial 
role in the development, maintenance, function, and regeneration 
of peripheral nerves. These cells were shown to have important 
reprogramming and morphogenic changes promoting nerve re-
generation and functional recovery during traumatic injuries and 
peripheral neuropathies [15]. Therefore, considering all this evi-
dence, it emerges that plasticity is an important feature of all the 
cells whose role is mainly related to repair damage and restore tissue 
homeostasis.

3.2. Cancer stem cells: evolution and 
plasticity of the tumour

In the past 20 years, the literature clearly showed that the evolution 
of cancer cells depends on the capability of tumour cells to be plastic 
and to be able to change their phenotype depending on the envir-
onment, a feature known as tumour plasticity. An analysis of the 
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scientific literature shows that the evolution of tumours was first de-
scribed as a stochastic process in which the accumulation of genetic 
alterations in cancer cells was considered to be responsible for the 
heterogeneity of the tumours [16]. According to this view, genetic 
or epigenetic alterations may arise during each cellular replication, 
providing a fitness advantage to mutated cells in terms of increased 
proliferation, migration, or invasion capabilities [17]. Once cells 
have acquired a sufficiently aggressive phenotype, they can escape 
from homeostatic control mechanisms typical of healthy tissues, 
where homeostatic mechanisms induce compensatory regulatory 
responses via cellular signalling, apoptosis, and other processes [18], 
and initiate the tumorigenetic process (Figure 3.1) [19- 23]. This view 
of tumour evolution changed over time by accumulating evidence of 
the presence of cell subpopulation, called cancer stem cells (CSCs), 
which was described to be resistant to drugs and apoptosis, mainly 
composed by quiescent cells, overall resembling many biological 
characteristics of stem cells [24] (Figure 3.1). CSCs were identified 
in several tumours, including brain, melanoma, and breast [25- 34]. 
The consequence in terms of therapeutic intervention is that instead 
of using drugs targeting common biological markers for all the het-
erogeneous cells within the tumour, CSCs were investigated with the 
aim of finding out their specific molecular characteristics [24,35,36]. 
According to the CSC hypothesis, the eradication of the tumour is 
only possible after eliminating this subpopulation since even a single 
residual CSC might be able to induce tumour relapse under appro-
priate environmental conditions [35- 38].

The picture of cancer evolution illustrated in Figure 3.1, con-
trasting stochastic evolution with the presence of a special 
subpopulation that maintains itself thanks to a symmetric division 
or CSCs, is however too simplified. Several studies have provided 
evidence that both CSCs and non- CSCs are plastic and capable 
of undergoing phenotypic transitions in response to appropriate 
stimuli, in analogy with stem cell plasticity [39,40] (see Figure 3.2).  
The impact of the occurrence of tumour plasticity within tumour 
populations is crucial from the perspective of therapeutic strategy. 
While targeting CSCs or inhibiting generically the cellular prolif-
eration of the tumours by chemotherapy, the tumour can shrink 
even to a few cells; if these cells have the capability to change their 
phenotype into a more aggressive one in response to environmental 
stimuli, then the tumour can restart growing. The complexity of tu-
mour evolution therefore depends on the interaction with the en-
vironment that under specific conditions might help tumour cells 

switch to a more aggressive phenotype [39,41]. Understanding the 
molecular mechanisms, underlining phenotypic switching can help 
in the development of new therapeutic strategies targeting specific 
markers involved in crucial steps of this process [39,41].

Our group extensively investigated the phenotypic switching of 
human melanoma cells, discovering key factors involved in this 
complex process. We have shown that a complex network of micro 
RNAs (miRNAs) is able to modulate the phenotypic switching 
of human melanoma cells [42]. Within this intricate network of 
miRNAs, we found that miRNa222 is released by cancer cells into 
the environment to control the plasticity of neighbouring cells 
[43]. We suggested that this mechanism is able to control the num-
bers of CSCs in the tumour and is modulated by the same cells in 
response to specific signals received by the environment [42,43]. 
We also showed that circRNAs can crosstalk with miRNAs and 
modulate critical circuits controlling the phenotypic switching in 
human melanoma cells [43- 44]. In particular, we showed a cor-
relation between the level of ZEB1 and SNAI1 and the fraction of 
CSCs in the population [14]. Furthermore, to predict the switching 
between the two biological states of the cells, we developed a math-
ematical model describing the regulatory circuit ZEB1/ SNAIL 
showing that a back- splicing factor was needed to limit circRNA 
production [44].

Cancer plasticity is not a feature of melanoma only, but it is 
possible to find it in all types of tumours. Accordingly, a recent 
paper described the plasticity of breast cancer in xenografts and 
its dependence on the environment, reflecting their adaptation 
to particular environmental cues [45]. Other studies on colo-
rectal cancer showed how an inflammatory environment activates 
nuclear factor kappa- light- chain- enhancer of activated B cells 

Figure 3.1. The competing models of cancer initiation and progression. Stochastic model of cancer initiation posits where most cells in a given 
tumour would be able to initiate a new tumour, and the cancer stem cell model points where only CSCs can initiate tumours. CSCs are maintained 
through symmetric cell division, while asymmetric cell division leads the cells to die.

Figure 3.2. Figure shows the plasticity of tumour cells. CSCs expand 
symmetrically and asymmetrically, and under specific environmental 
conditions, CS can revert into CSC.
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(NF- κB) signalling, promoting the tumour- initiating potential of 
non- stem cells by triggering their de- differentiation [46]. Recent 
experiments using cell ablation with a CRISPR– Cas9 approach to 
insert an inducible version of the suicide- gene caspase 9 (iCasp9) 
into the LGR5 locus in human colorectal cancer organoids con-
firmed tumour plasticity [47]. This study showed that in xenografts 
produced by these organoids the induction of apoptosis reduced 
the tumour size and, upon removal of the inducer, the tumours 
regrew [47]. Moreover, lineage- tracing experiments from differ-
entiated tumour cells demonstrated that these cells regained their 
proliferative potential and restored the LGR5 +  CSC pool [47]. In 
another study, using mouse colorectal cancer organoids engin-
eered to express the diphtheria– toxin receptor under the control 
of the LGR5 locus56, it was shown that the ablation of Lgr5 +  CSC 
cells halted tumour growth, but tumours resumed growth upon 
the cessation of diphtheria– toxin treatment, thus illustrating their 
phenotypic plasticity [48].

3.3. Epithelial– mesenchymal transition, 
metastasis, and predictive strategies 
for cancer aggressiveness

Nowadays people do not die for primary tumours but for metastasis 
[49]. Metastasis or secondary tumours are due to a sequence step in 
which tumour cells leave their primary site, circulate in the blood-
stream, endure pressure in blood vessels, acclimate to new cellular 
surroundings in a secondary site, and escape deadly combat with 
immune cells [39]. Dissemination and invasion start from chromo-
somal instability inside the cells which is caused by continuous 
errors in chromosome segregation during mitosis. In vivo and in 
vitro studies show that metastatic cancer cells migrate individually 
[50] but in humans, and it is believed that seeding requires the joint 
action of a cluster of tumour cells moving together [51]. Metastatic 
cells are supposed to undergo an epithelial– mesenchymal transition 
(EMT), which implies crucial changes in the cells. Epithelial cells 
displaying apical– basal polarity are held together by tight junctions, 
adherens junctions and desmosomes, and are tethered to the under-
lying basement membrane by hemidesmosomes. These cells express 
molecules that are associated with the epithelial state and help main-
tain cell polarity. Transition to the mesenchymal state leads to the 
expression of the EMT- inducing transcription factors ZEB, SNAIL, 
and TWIST, which inhibit the expression of genes associated with 
the epithelial state and concomitantly activate the expression of 
genes associated with the mesenchymal state. These changes in gene 
expression result in cellular changes that include the disassembly 
of epithelial cell– cell junctions and the dissolution of apical– basal 
cell polarity. This progressive loss of epithelial features is accom-
panied by the acquisition of a partial set of mesenchymal features 
with retention of certain epithelial features; under certain circum-
stances, a complete set of mesenchymal features may be acquired. 
Mesenchymal cells display front- to- back polarity and an extensively 
reorganized cytoskeleton and express a distinct set of molecules 
that promote and maintain the mesenchymal state. During EMT, 
cells become motile and acquire invasive capacities. Note that the 
EMT is a reversible process, and mesenchymal cells can also revert 
to the epithelial state by undergoing mesenchymal– epithelial tran-
sition (MET).

Recent evidence has clearly showed that when epithelial cancer 
cells acquire a mesenchymal gene program they increase their 
capability for migration and invasion [52,53]. We have recently 
investigated the EMT by using a combination of numerical simu-
lations of a Boolean network model of the EMT pathways and 
the analysis of bulk and single- cell gene expression data [54]. We 
showed that the EMT involves the transit through a multitude of 
meta- stable states, corresponding to highly aggressive hybrid cells 
that can easily switch under external and internal perturbations 
[54]. Our study, therefore, allowed to reconstruct the topography 
of the phenotypic landscape, as originally envisaged in general 
terms by Waddington many decades ago [55], describing possible 
attractors of the relevant gene regulatory network (for more de-
tails, see [39]). Moreover, phenotypic switching can take multiple 
paths and produce a variety of outcomes corresponding to the as-
tonishing complexity of a cancer cell population. Furthermore, the 
large number of states expressed by the network confirms that we 
should abandon the rigid distinction between epithelial or mesen-
chymal cells [39]. Instead, a continuum of possible cell phenotypes 
with varying degrees of plasticity appears to be more reasonable. In 
the light of these findings, metastasis could be due to one of these 
cancer cells with a hybrid phenotype that can easily migrate and 
switch in the right environment [39]. Dormant cells can also be 
explained in the light of these findings as a state of the cells related 
to the environment [39].

Given the difficulties in curing cancer metastasis, the possibility 
to predict the metastasis risk in patients with a primary tumour ap-
pears to be crucial. The prediction of this risk can help avoid the 
overtreatment of patients suffering side effects with high econom-
ical and social costs. Considering breast cancer, about 20% of these 
tumours are due to triple- negative breast cancer (TNBC), and since 
there is no expression of markers such as hormone and HER2, these 
tumours are lacking specific treatment, growing, and spreading rap-
idly with limited treatment options and typically worse prognosis 
[56]. Using an innovative strategy targeting the complexity of the 
intracellular gene network, we developed ARIADNE, a general algo-
rithmic strategy to assess the risk of metastasis from transcriptomic 
data of patients with TNBC [56]. Using this mapping, we were able 
to stratify patients with TNBC according to their prognosis, as we 
showed by validating the strategy with three independent cohorts of 
TNBC patients [56]. More recently, we have compared ARIADNE 
with immunological strategy to predict the aggressiveness of TNBC, 
stratifying a high- risk population with high immune markers 
that is, however, not properly classified by the tumour immune 
microenvironment- based strategy [57].

3.4. Collective cell migration and 
tumour plasticity

Tumour plasticity plays a critical role in the evolution of cancer, 
as discussed in the previous section. EMT plays an important role 
in this process, thereby identifying crucial targets involved in this 
complex pathway could be critical for identifying new therapeutic 
strategy for metastasis. An extensive overview of these aspect was 
discussed in depth in a recent book [41]. In particular, it is inter-
esting that the immune privilege status of CSCs [41] seems to be 
linked to its quiescent states and not due to an intrinsic property of 
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CSCs. Therefore, the environment is able to modulate the status of 
the cells and helps switching from a quiescent state to a migratory 
phenotype or vice versa. Moreover, many papers showed that col-
lective cell migration occurs at the invasive front of tumours as well 
as observed that CTC clusters in the bloodstream are more effective 
than single CTCs for seeding metastasis [41].

Collective cell migration has been described in terms of the 
so- called jamming– unjamming transition (JUT) and its reverse 
unjamming– jamming transition (UJT) [58] that is believed to rele-
vant both in tissues and cancer cells (for a review, see [59]). JUT/ 
UJT are observed in the rheology of soft materials, such as colloidal 
suspensions, gels, or foams, where flow can be hindered by kine-
matic constrains [60]: jamming corresponds to a dynamic arrest 
into a solid- line state, while unjamming leads to a fluid- like state. 
Several recent studies explored in depth the connection between 
EMT/ MET and JUT/ UJT, but how the two transitions are related 
is still debated. Can the two transition act together or are they mu-
tually exclusive? As discussed in [61], an answer to these questions 
can be obtained by framing the discourse in the broad context of 
the physics of nonequilibrium phase transitions. From this point 
of view, EMT and JUT are fundamentally different because they 
occur in a different phase space although both lead to the mobil-
ization of the cells. JUT/ UJT occur within the physical space of the 
tumour and can be described by the positions and velocities of the 
cells themselves. The cell velocity field [62] or the effective diffusion 
constant D [63] can then be used to distinguish a jammed from an 
unjammed state. For instance, recent experiments on cancer cells, 
both in vitro and in vivo, showed phase transitions between jammed 
solid, active fluid, and active nematic [64] controlled by cell den-
sity and adhesion and described velocity and vorticities [65,66]. 
Contrary to the JUT, in the case of EMT, the relevant degrees of free-
doms are not located in a physical space but are instead the nodes 
of a complex gene regulatory network [54]. Simulations of Boolean 
network models show that EMT/ MET are controlled by a large set of 
biochemical and physical parameters. While cells undergoing EMT 
can induce a JUT in the tumour by reducing cell– cell adhesion, the 
reverse is not necessarily true.

3.5.  Conclusions

In this chapter, we have reviewed recent results on phenotypic plas-
ticity of cancer cells. We discussed the relevance of this concept for 
CSCs and highlighted the role of the EMT in driving metastasis. 
Finally, we discussed the interplay between unjamming and EMT in 
driving collective cancer cell migration.
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Phenotypic switching in cancer:  
A systems- level perspective
Divjoy Singh, Abhay Gupta, Mohit Kumar Jolly, and Prakash Kulkarni

4.1.  Introduction

Waddington’s epigenetic landscape is a commonly used metaphor 
in developmental biology, often invoked to explain the trajectory 
of differentiation of a stem or progenitor cell into a differentiated 
one. In this metaphor, a cell is represented as a ball rolling downhill 
through a rugged landscape of bifurcating valleys which further lead 
to sub- valleys at the foot of the hill. Each of these sub- valleys denotes 
a distinct differentiated cell state or phenotype that is ‘locked’ unless 
perturbed significantly [1]  (Figure 4.1).

Initially, cell- fate decisions during embryonic development were 
thought of as irreversible, but remarkable investigations into cel-
lular reprogramming have shown that differentiated cells can be in-
duced to gain pluripotency, often through ectopic overexpression of 
specific transcription factors. These induced pluripotent stem cells 
can typically proliferate and self- renew indefinitely in vitro and can 
generate the three primary germ layers (endoderm, mesoderm, 
and ectoderm) [2] . Similarly, in oncology, a long- standing concep-
tual framework has been that of a ‘hierarchical (cancer) stem cell’ 
model where cancers have been thought of as organized in hierarch-
ical structures based on their differentiation capacity. At the apex 
are cancer stem cells (CSCs) that are the most stem- like and capable 
of regenerating the lower tiers of cell types, often non- CSCs, thus 
displaying their potential to repopulate a heterogeneous tumour and 
facilitating tumour recurrence and drug resistance [3]. However, re-
search in the past decade across many cancer types has highlighted 
that non- CSCs can give rise to CSCs, under varying environmental 
conditions [4– 8], establishing the ‘plasticity’ model [9]. Together, 
these observations suggest that in both non- cancerous and can-
cerous contexts, ‘stemness’ is a dynamic trait that can be gained or 
lost in individual cells.

What factors control the acquisition of ‘stemness’? Both intra- 
cellular and extra- cellular stimuli have been shown to mediate 
the underlying complex dynamics. For instance, cells undergoing 
epithelial– mesenchymal transition (EMT)— a dynamical process 
through which epithelial cells weaken their cell– cell adhesion and 
gain migratory and invasive features— have been shown to enable 

‘stemness’ through crosstalk among the gene regulatory networks 
(GRNs) regulating EMT and stemness [10– 12]. Recent in vitro and 
in vivo observations have revealed that the hybrid epithelial/ mesen-
chymal (E/ M) cancer cells, instead of the ‘fully epithelial’ or ‘fully mes-
enchymal’ ones, are the most stem- like ones and possess the maximal 
tumour- initiating and metastatic abilities [13– 15]. Computational 
models of many EMT- related GRNs have shown them to be ‘multi- 
stable’, i.e. enabling the coexistence of multiple cell states, including 
one or more hybrid E/ M ones, that can reversibly switch among 
one another [16]. The rates of transitions among these cell states 
depend on various parameters, such as chromatin state, metabolic 
state, drug treatment being given, and the topology of underlying 
GRNs [17– 19]. Not just stemness, other cellular traits often enabling 
metastasis— immune evasion, resistance to targeted therapies, resist-
ance to anoikis (cell death due to matrix detachment), and metabolic 
reprogramming— are dynamically connected to EMT through inter-
connected GRNs [20– 24]. Thus, metastasizing cells often traverse in 
a high- dimensional cell- state space dynamically acquiring or losing 
many phenotypes with varying ‘fitness’, as witnessed in phenotypic 
heterogeneity in circulating tumour cells in cancer patients [25]. 
This plasticity, i.e. the ability to transition to different phenotypes, 
is thus regarded as a hallmark of cancer metastasis that cells employ 
to navigate different time- varying bottlenecks during the invasion- 
metastatic cascade. Therefore, it becomes imperative to investigate 
the systems- level dynamics of phenotypic plasticity. Here, we discuss 
some mechanisms implicated in phenotypic plasticity in cancer.

4.2. Mechanisms underlying 
phenotypic switching

Phenotypic switching or plasticity refers to the reversible transition 
of cells from one state (phenotype) to another, often in response to 
changing environment [26]. It has been implicated in cancer me-
tastasis and in enabling cells to evade therapeutic attacks. Here, we 
discuss some commonly observed mechanisms that govern the dy-
namics of phenotypic switching:
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4.2.1. Multi- stability in regulatory networks

Mathematical modelling of GRNs has been an important endeavour 
to understand the emergent dynamics of complex interactions and 
feedback loops constituting these networks. In the context of cell- 
fate decisions, a GRN commonly noted is a toggle switch, i.e. two 
master regulators (say, X and Y) transcriptionally inhibiting each 
other. This GRN allows for the existence of two mutually exclusive 
states— (Xlow and Yhigh) and (Xhigh and Ylow)— both of which corres-
pond to a specific phenotype/ cell state [27] (Figure 4.1). These two 
states can switch among themselves stochastically. When X and/ 
or Y can self- activate, it allows for the existence of another stable 
state— (medium X and medium Y)— which corresponds to the pro-
genitor or undifferentiated state that is primed to differentiate to one 
of the two above- mentioned mutually exclusive phenotypes [28]. 
Such self- activating toggle switches have been reported at various 
bifurcation points in terms of developmental decision- making, such 
as PTF1A and NKX6 inhibiting each other transcriptionally during 
differentiation of pancreatic progenitor cells (medium PTF1A and 
medium NKX6) into exocrine (high PTF1A and low NKX6) or 
endocrine (low PTF1A and high NKX6) states [29].

The two master regulators engaged in a toggle switch need 
not be both transcription factors; such feedback loops can con-
sist of microRNAs [30] as well. For instance, EMT and its reverse 
mesenchymal– epithelial transition (MET) decisions involve a chi-
meric toggle switch between the microRNA- 200 family and ZEB tran-
scription factor family, driving epithelial and mesenchymal cell states, 
respectively [31,32]. While ZEB1 and ZEB2 transcriptionally repress 
miR- 200 family members, they are inhibited at post- transcriptional 
level. Similarly, RNA- binding proteins can engage in toggle switch 

topology together with microRNAs, for instance, LIN28 and let- 7 
inhibiting each other and controlling ‘stemness’ [33,34]. Moreover, 
GTPases Rac and Rho also are involved in a mutually inhibitory feed-
back loop such that Rac1- mediated cell polarization and lamellipodia 
formation facilitate a mesenchymal- type migration, while Rho- 
driven actomyosin contractility allows for protease- independent 
amoeboid- type migration [35,36]. Computational modelling of all 
these networks has revealed multi- stability as a common trait in their 
dynamics, thus explaining interconvertibility of phenotypes seen ex-
perimentally, driven by various environmental factors such as hyp-
oxia, confinement, and matrix stiffness [37– 39].

Among the above- mentioned instances of cancer cell plasticity, the 
dynamics of EMT/ MET has been quite well studied. Many mathem-
atical models for large and complex GRNs for EMT/ MET have been 
developed in the past decade, all of which indicate multi- stability as 
a hallmark of these networks, irrespective of the modelling strategy 
used (continuous or discrete; deterministic or stochastic), cancer 
subtype being studied, or the scope of interactions considered in 
the model, i.e. considering only intra- cellular interactions or also 
cell– matrix and/ or cell– cell interactions [40– 46]. A recent analysis 
of topology of many such EMT/ MET GRNs highlighted that they 
consist of ‘teams’ of nodes such that members within a team activate 
each other effectively and those across teams inhibit each other, thus 
leading to a ‘toggle switch’ between two teams, one driving EMT and 
other pushing MET [17]. Together, these observations indicate that 
multi- stability, as enabled by mutually inhibitory feedback loops, is 
a cornerstone of cancer cell plasticity.

Another instance where such multi- stability can have important 
clinical implications is the therapy- induced adaptive response in 
terms of cell- state switching. For instance, in oestrogen– receptor 
positive breast cancer, tamoxifen resistance can drive EMT and, in 
turn, EMT can drive tamoxifen resistance because the dynamics of 
underlying GRN allows for phenotypic switch among (epithelial, 
tamoxifen- sensitive) and (mesenchymal, tamoxifen- resistant) cell 
states [47]. Similar analysis of coupling of EMT circuits with those of 
stemness and metabolic switching helps unravel a mechanistic basis 
for their interconnected multi- stable dynamics [10,22].

4.2.2. Asymmetric cell division

Asymmetric cell division (ACD) refers to the event of two daughter 
cells having different fates after mitosis. Often reported in somatic 
stem cells, it allows for one daughter cell to retain ‘stemness’ while 
the other attains a non- stem differentiated state. A balance between 
ACD and symmetric cell division (SCD)— where both daughter cells 
attain the fate of the parent post- mitosis— is essential for homeo-
stasis and development [48]. In mammalian models, a switch from 
ACD to SCD can trigger disruption of tissue homeostasis and drive 
tumour formation [49]. It is also considered to be more closely as-
sociate with CSCs in early- stage tumours, while late- stage tumours 
prioritize SCD and higher proliferation [50]. Various signalling 
molecules, such as p53, CD133, Numb, and Notch, have been shown 
to be implicated in ACD [48]. For instance, reduced p53 levels are 
associated with reduced ACD in aged human epidermis, possibly 
contributing to hypoplasia with age. Treatment of ALDH +  CD44+  
keratinocyte stem cells with nultin- 3 (p53- activator) restored p53 
levels and ACD frequency to adult levels [51].

ACD is reported in multiple cancers such as glioblastoma (GBM) 
and breast cancers. A pre- clinical model of GBM revealed the role 

Figure 4.1. Schematic illustration of Waddington’s epigenetic 
landscape. Source: Adapted from Jia et al. [1] . This rugged topography 
is a metaphorical representation of cell- fate trajectories in a high- 
dimensional molecular space. Different coloured balls shown on this 
landscape represent functionally different cell phenotypes. Starting 
from the top, each ball (or cell) settles steadily in one of the sub- valleys 
at the foot of the hill that depicts terminal cell states. X and Y are master 
regulators driving a cell to attain the phenotypes ‘1’ and ‘2’, respectively. 
The phenotype ‘0’ co- expresses both X and Y at a medium level Xmed/ 
Ymed, reminiscent of the progenitor state. The two differentiated states 
are depicted as ‘1’ and ‘2’— Xhigh/ Ylow and Xlow/ Yhigh, respectively. Due 
to inherent stochasticity in progenitor cell ‘0’, the level of one of the 
molecules (say X) becomes higher than that of the other (say Y). This initial 
asymmetry can further trigger an amplifying cascade of events where 
the levels of X keeps further increasing while that of its repressor Y keeps 
decreasing, eventually rendering its own inhibition by Y as ineffective. 
Consequently, the cell attains one of the two differentiated states Xhigh/ 
Ylow. Similarly, the progenitor cell- state can also give rise to Xlow/ Yhigh.
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of ACD in generating daughter cells with enhanced therapy resist-
ance driven by EGFR, thus amplifying tumour heterogeneity [52]. 
ACD can also help generate a subpopulation of ‘G0- like’ progeny 
cells through division of rapidly proliferating cells, as seen to be en-
riched upon chemotherapy in breast cancer [53]. Similarly, in triple- 
negative breast cancer, where three major subpopulations were seen 
(K14 +  K18+ , K18 + , and K18 +  VIM– ), the progenitor- like K14 +  
K18+  and luminal- like K14–  K18 +  could convert to one another 
through ACD, thus facilitating heterogeneity [54]. Further, in PC- 
3- derived prostate CSCs, the frequency of ACD depended on direct 
cell– cell interaction between CSC and non- CSC subpopulations 
[55], suggesting a mode akin to ‘quorum sensing’ in cellular decision- 
making at a population level [56].

The concept of ACD was recently invoked in two computa-
tional modelling efforts to explain the population dynamics of 
EMT noted experimentally [57,58]. PMC42- LA cells showed a bi-
modal distribution of levels of EpCAM (epithelial cell adhesion 
molecule), and when segregated, the EpCAM- high and EpCAM- 
low subpopulations could recapitulate the parental distribution of 
80% cells in EpCAM- high state and 20% in EpCAM- low state [59]. 
A computational model that incorporated ACD via considering the 
asymmetric distribution in levels of SNAIL, an EMT- inducing tran-
scription factor, could recapitulate these experimental observations 
[57]. While a causal role of ACD in driving this EMT dynamics re-
mains to be established experimentally, the role of ACD in CSC dy-
namics and the association between EMT and CSCs [10,60] together 
argue for it being an important regulator of phenotypic switching in 
cancers through cell division.

4.2.3. Conformational noise

Many proteins lack rigid three- dimensional structures and instead 
exist as an ensemble of interconvertible conformations. Such pro-
teins are known as intrinsically disordered proteins (IDPs). They 
can interact with multiple binding partners and often undergo 
disorder- to- order transitions upon binding to their specific targets, 
leading to promiscuous interactions among proteins involved in a 
signal transduction pathway [61]. Such stochastic fluctuations in 
protein conformations of IDPs or proteins containing intrinsically 
disordered regions (IDRs) are defined as ‘conformational noise’ [62] 
with possible long- reaching impact through its ability to amplify 
pre- existing noise in signalling pathways and in gene transcription 
[63,64]. IDPs or IDRs can lead to phenotypic switching through re-
wiring of multiple protein interaction networks. Moreover, feedback 
loops involving one or more IDPs can also enable multi- stability, 
thereby increasing stochastic cell- state switching [65] (Figure 4.2).

Prostate- associated gene 4 (PAGE4) is an IDP that acts as cancer/ 
testis antigen and is highly expressed in human foetal prostate but 
undetectable in normal adult prostate. Its expression is up- regulated 
in prostate cancer (PCa) in response to various stress factors [66]. 
PAGE4 can be phosphorylated by two kinases: homeodomain- 
interacting protein kinase 1 (HIPK1) and CDC- like kinase 2 (CLK2). 
Phosphorylation of PAGE4 by these two kinases results in opposing 
functions: HIPK1- phosphorylated PAGE4 (HIPK1- PAGE4) po-
tentiates c- Jun while CLK2- phosphorylated PAGE4 (CLK2- PAGE4) 
attenuates c- Jun activity. HIPK1- PAGE4 also exhibits a more com-
pact conformation that can bind AP- 1 compared to CLK2- PAGE4, 
which has a loose random coiling conformation making it hard for 

Figure 4.2. Different forms of cellular noise impacting phenotypic switching. Source: Adapted from Kulkarni et al. [62]. Noise or stochasticity can 
operate at each of the regulatory levels shown here, and the implications of noise shown at one of the levels here can amplify and/ or propagate to 
the next level, thus governing phenotypic switching.
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AP- 1 to bind [67]. These different aspects can impact the depend-
ence of PCa cells on androgen receptor (AR). Dynamical modelling 
of emergent dynamics of feedback loops involving PAGE4/ AP- 1/ 
AR regulatory circuit reveals that cells can oscillate between the 
androgen- dependent and androgen- independent phenotypes [67]. 
Thus, in an isogenic PCa cell population, individual cells at a given 
timepoint may have varying levels of androgen dependence or inde-
pendence, thus enhancing phenotypic heterogeneity.

A recent computational model investigated the emergent dy-
namics of a coupled circuit between SNAIL/ miR- 200/ ZEB (core 
EMT circuit) and PAGE4/ AP- 1/ AR circuits [65]. This coupled cir-
cuit enabled both oscillatory dynamics (the standalone behaviour 
of PAGE4/ AP- 1/ AR circuit) and non- oscillatory one, where various 
phenotypes— epithelial, mesenchymal, and hybrid E/ M— could co-
exist, showcasing multi- stability, depending on the strength of in-
hibition of ZEB1 by AR and that of AR by ZEB1. While epithelial 
phenotype usually co- occurred with oscillatory dynamics of PAGE4/ 
AP- 1/ AR circuit, a transition to hybrid E/ M or mesenchymal pheno-
type led to quenched oscillations and relatively low levels of AR. 
Thus, EMT induction may promote therapy resistance by enabling 
an androgen- independent low- AR PCa phenotype. Overall, this ex-
ample highlighted how different mechanisms such as multi- stability 
in GRNs and conformational noise can crosstalk and enable pheno-
typic plasticity and heterogeneity in a cancer cell population.

4.2.4. Epigenetic remodelling

Cancer has been typically viewed as a clonal disease driven 
by inheriting or acquiring genetic mutations. However, many 
chromatin- based epigenetic mechanisms such as DNA methylation 
and histone modification have been identified in cancer progression. 
Given the dynamic and tissue- specific traits of epigenetic changes, 
their numbers can be potentially much more than that of genetic 
mutations [68]. Recent efforts in genome- wide sequencing have re-
vealed that genetic and epigenetic changes are often intricately con-
nected. For instance, consider the DNA repair enzyme MGMT that 
is often hypermethylated and silenced in many cancers. It normally 
protects from mutations happening at guanine base; thus, its inacti-
vation can accelerate genome mutability. In GBM, MGMT promoter 
methylation sequence can influence the efficacy of treatments. 
Further, epigenetic changes can respond quite quickly to their mi-
croenvironmental cues compared to genetic changes that would 
need cell division(s) to accrue. With evidence pointing towards the 
possible absence of metastasis- driving mutations, analysing epigen-
etic alterations has gained a centre stage in metastasis [68].

Chromatin- based cell- state changes have been implicated in 
drug- tolerant cells as well. Upon exposure of PC9 lung cancer cells to 
gefitinib at a concentration 100- fold greater than the corresponding 
IC50 value for 9 days, a small (~0.3%) subpopulation of largely quies-
cent ‘drug- tolerant persisters’ (DTPs) was obtained. Approximately 
20% of DTPs resumed proliferation even in the presence of the drug, 
yielding ‘drug- tolerant expanded persisters’ (DTEPs). When cul-
tured in drug- free medium, DTPs resumed growth and reacquired 
sensitivity to drug. Chromatin- modifying enzyme KDM5A was 
found to be up- regulated in DTPs and DTEPs, and its down- 
regulation significantly reduced DTPs and DTEPs upon treatment 
of gefitinib or cisplatin. Thus, histone demethylase KDM5A was es-
sential to allow phenotypic switching for reversible drug tolerance 
[69]. A follow- up study demonstrated that DTPs serve as reservoirs 

for the emergence of genetically diverse drug- resistant clones [70], 
thus showcasing another instance of interplay between genetic and 
epigenetic layers. Similar observations are reported in other cancer 
types such as melanoma and colorectal cancer [71– 73].

The epigenetic cell state also underlies varying susceptibility of 
cells to undergo EMT/ MET. When epithelial and mesenchymal 
populations from human breast cancer metastatic biopsies were iso-
lated and functionally evaluated in vivo, the ones showing loss of 
EpCAM were ‘locked’ in a mesenchymal state and consequently had 
compromised metastatic potential. ZEB1 and GRHL2— key tran-
scription factors driving EMT and MET, respectively— impacted 
global epigenetic programs that governed cellular plasticity and 
metastatic spread [19]. Such ‘epigenetic memory’ is likely to be lost 
after specific cell divisions, as predicted in silico, and shown con-
ceptually in vitro [74], but corresponding in vivo analysis remains 
to be carried out to examine for plasticity. Further, cells undergoing 
EMT also undergo epigenetic remodelling, thus making an intuitive 
understanding hard to state, owing to feedback interplay between 
the dynamic genetic and epigenetic regulatory programs.

4.3.  Conclusions

The dynamics of phenotypic switching and consequent non- genetic 
heterogeneity in cancer cells is beginning to be elucidated, owing to 
technological advancements such as single- cell analysis, lineage tra-
cing, and integration with computational modelling [75]. Acquiring 
a predictive understanding of the multi- dimensional phenomenon 
of phenotypic switching can accelerate design of better therapeutic 
strategies to overcome adaptive drug resistance and restrict metas-
tasis. Here, we highlight some key processes enabling phenotypic 
switching in multiple cancer types— multi- stability in GRNs, con-
formational noise, ACD, and epigenetic reprogramming— and pre-
sent an argument to strengthen our conceptual understanding of 
these dynamical hallmarks of cancer too.
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5

Morphological state transition during 
epithelial– mesenchymal transition
Biplab Bose

5.1.  Introduction

Biologists for ages have collected information on the shape, size, and 
behaviour of living organisms. With the invention of the microscope, 
a new world opened before us. Using microscopes, we catalogued life 
at the cellular level. It allowed us to characterize human cells using 
size and shape. Together, size and shape define the morphology of a 
cell. We can also include information on subcellular structures such 
as the shape and size of the nucleus or cytoskeletal structures to de-
fine the morphology of a cell.

Morphology is controlled by the underlying molecular pro-
cesses and connected with cellular functions and tissue organiza-
tion. Therefore, cell morphology provides clues for many diseases. 
Since the early 20th century, cytological examinations of tumour 
samples have been used to characterize cancers [1] . Malignant cells 
are irregular in shape and size, with an unusually large nucleus [2]. 
These cells also display aberrations in the cellular ultrastructures. 
As morphology provides vital clues, pathologists, even in this age 
of multi- omics, look for morphological aberrations of cells to detect 
and grade tumours [3].

Microscopy is now a well- developed field of quantitative investiga-
tion. Developments in digital imaging, image processing, and statis-
tical learning have opened several opportunities for the quantitative 
analysis of cell morphology. Imaging provides high- throughput, 
higher dimensional data that complements other cell profiling experi-
ments like single- cell RNAseq. Morphological information obtained 
through imaging is now used to screen drugs and detect drug resist-
ance [4– 7]. Using high- throughput imaging, Wu et al. [8]  observed 
that the morphology of cancer cells is highly heritable and predictive 
of their metastatic potential. Even attempts have been made to con-
nect the gene expression profile of cells with their morphology [9,10].

This chapter focuses on the quantitative analysis of morphological 
changes during the epithelial– mesenchymal transition (EMT). In 
EMT, epithelial cells lose anchorage dependence, cell– cell adhesion, 
apico- basal polarity, and become more motile and mesenchymal- 
like [11]. Cells gain the ability to migrate and invade surrounding 
tissues, which is crucial for embryonic development and tissue 

repair [12]. However, EMT can also promote cancer cell metastasis 
and the emergence of drug resistance in cancer cells [13].

During EMT, cells undergo characteristic changes in gene expres-
sions with a decrease in the expression of molecules associated with 
the epithelial phenotype (e.g. E- cadherin and β- catenin) and a con-
current increase in the expression of mesenchymal molecules (e.g. 
N- cadherin and vimentin) [14]. Coupled feedback loops involving 
multiple transcription factors of the Snail, Twist, and Zeb families, 
and several microRNAs, regulate the transcriptional reprogram-
ming during EMT [15].

Expression of EMT markers and their temporal changes are 
widely used to investigate EMT in vivo and in vitro. Molecular tech-
niques can be scaled up for many samples and a large panel of EMT 
markers. One can perform marker- based studies using patient sam-
ples. High- throughput techniques such as microarray and single- 
cell RNAseq further popularized the marker- based studies of EMT.

However, the expression of marker molecules is a proxy, not a 
direct measure of the phenotype of a cell. The structure and func-
tion of a cell define its phenotype. In every experimental system, 
cells undergo two observable changes during EMT— change in cell 
morphology and cell motility. The underlying molecular processes 
for these two changes are broadly conserved. Even then, molecular- 
level observations vary across different experimental systems, 
leading to confusion in defining EMT [11,16,17]. Further, most 
studies follow the change in the expression of a handful of markers 
and do not investigate other associated molecular processes, such as 
post- transcriptional or post- translational modifications. Therefore, 
it has been recommended [11] that the EMT status should be de-
fined in terms of cellular properties, such as morphology and mo-
tility, rather than relying only on molecular markers.

Prior to the induction of EMT, epithelial cells remain tightly 
packed with strong cell– cell and cell– basement adhesion. Epithelial 
cell form tightly packed monolayer in vitro cell cultures. Under the 
microscope, these cells look like cobblestones [18]. With the progres-
sion of EMT, these cells lose contact and change shape to elongated or 
spindle types [18]. These cells disperse individually or in tinny clus-
ters of cells. In certain cell lines, cell shape may change to circular [19].
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This chapter defines a cell’s phenotype or phenotypic state in 
terms of its morphology. For example, the cobblestone shape is one 
phenotype, whereas the spindle- type cell represents another pheno-
type. Therefore, the change in the phenotype of a cell during EMT is 
its transition through different morphological states. Through quan-
titative image analysis, we can identify cells of different morphology 
and study the dynamics of morphological state transition during 
EMT. The quantitative imaging- based approach can be extended to 
include information on cell motility and expression of the molecular 
markers. The experimental techniques discussed in this chapter are 
on in vitro cell culture- based studies. However, the concepts and 
mathematics presented in this chapter can be used in suitable in vivo 
experiments.

Figure 5.1 shows different components in the quantitative 
morphodynamical study of EMT. These components are discussed 
at length in this chapter. First, we discuss different imaging tech-
niques. Subsequently, we discuss data generation through image 
processing and the identification of morphological states. Following 
these, we explore different mathematical modelling approaches for 
EMT and discuss the use of morphological data in those models. 
We also discuss the lessons learned through such morphodynamical 
studies of EMT.

5.2. Imaging the morphological 
dynamics in EMT

Phase contrast microscopy is the simplest way to observe the mor-
phological changes during EMT. With a suitable digital camera, 
one can generate digital images that can be used for subsequent 

quantitative image analysis. However, these images are usually un-
suitable for image analysis. The first step in image analysis is cell 
segmentation— identifying individual cells in the image. Images 
from phase contrast microscopy lack the adequate contrast required 
for automated cell segmentation.

Staining the cells with a dye resolves the contrast problem. 
Fluorescent dyes, like HCS cell mask, are used to stain the cytoplasm, 
and images are captured using an epi- fluorescence microscope [19]. 
These images are suitable for common cell segmentation protocols. 
One can additionally use DAPI and FITC- Phalloidin conjugate to 
counterstain the cell nucleus and the cytoskeleton, generating add-
itional contrast and morphological information.

A popular multi- dye approach is the Cell Painting assay, where 
several cellular components are stained using six dyes [20]. One 
should use a multi- channel high- content imaging system to make 
the most of this assay.

Traditionally, fluorophore- tagged antibodies against EMT 
markers, like E- cadherin, and vimentin, are used in EMT experi-
ments [18]. Fixed cells are treated with fluorophore- tagged anti-
bodies and imaged using an epi- fluorescence microscope. Images of 
fluorescently labelled cells are suitable for image analysis. They pro-
vide additional molecular information apart from the morphology. 
However, cells usually have a heterogeneous and time- varying ex-
pression of these markers. Therefore, labelling with antibodies may 
not always help segment cells. We recommend that readers consult 
the article by Moreno- Bueno et al. [18] prior to designing any im-
aging experiment.

One limitation of dye/ antibody- based techniques is that we must 
fix the cells before staining and imaging. Therefore, the cells imaged 
at different time points are different. For these experiments, multiple 

Figure 5.1. Quantitative investigation of the morphological state transition during EMT— different components.

 

 

   

 

 

 

 

 

  

  

 

 



41CHAPTER 5 Morphological state transition

flasks/ plates are identically treated and fixed at different times for 
imaging. The data generated through these experiments are aggre-
gate snapshot data and add limitations in data analysis.

Live- cell imaging is an alternative to fixed- cell imaging. Through 
live- cell imaging, one can track the changes in the morphology 
of individual cells over time and make direct quantitative esti-
mates of the morphological dynamics. However, live- cell imaging 
is technically challenging as it requires a special imaging set- up 
and additional computational tools for tracking individual cells. 
We recommend that readers consult the articles by Ettinger and 
Wittmann [21] and Nketia et al. [22] to obtain an overview of live- 
cell imaging.

We can use cells expressing fluorescent proteins to facilitate the 
quantitative analysis of live- cell images [23,24]. Fluorescent markers 
have been developed targeting specific cellular components that 
work like the dyes used in the Cell Painting assay [23,24].

Wang et al. [25] used a cell line that expresses fluorescently tagged 
vimentin. They performed live- cell imaging simultaneously using 
differential interference contrast (DIC) and fluorescent microscopy 
to chase the TGF- β- induced EMT in these cells. DIC images gener-
ally have better contrast than phase contrast microscopy. They ex-
tracted the morphological information from the DIC images. The 
fluorescently tagged vimentin complimented the morphological 
data to decipher the cell’s trajectory during the EMT.

Digital holographic microscopy and quantitative phase im-
aging (QPI) are gaining popularity as they allow label- free, three- 
dimensional imaging of live cells [26,27]. Lam et al. [28] used QPI 
to classify cells as epithelial or mesenchymal. Kamlund et al. [29] 
used holographic microscopy to monitor the progression of EMT 
in live cells.

Algorithms and computational pipelines have also been devel-
oped to process label- free images [30– 32]. These algorithms expand 
the scope of conventional transmitted light imaging techniques 
(such as brightfield, phase contrast, and DIC).

5.3. Image processing and 
feature extraction

Good- quality images are the raw data for morphological studies. 
Post imaging, we process those images to identify each cell and ex-
tract quantitative morphological information.

For a few images with a handful of cells, we can manually identify 
each cell. However, quantitative image analysis needs many images 
with thousands of cells. Therefore, we have to use algorithms to auto-
mate the process.

Identifying individual cells in an image using an algorithm is 
known as segmentation. Cell segmentation is not a trivial job. Cells 
are usually irregular in shape and are not standard geometric ob-
jects. Further, in monolayers, multiple cells remain adhered to each 
other. That makes it difficult to differentiate two cells, particularly 
for unlabelled cells.

There are several types of segmentation algorithms [22]. The trad-
itional methods are threshold- based algorithms and identify the 
cells using the difference in pixel intensities/ colour values of a cell 
and the background [33,34]. Other algorithms, like the watershed, 
also use the difference in pixel intensities to differentiate a cell from 
the background [35].

Of late, machine learning algorithms have been gaining popu-
larity in image segmentation. Several general- purpose machine 
learning algorithms have been implemented to segment and iden-
tify cells [36,37].

Extraction of quantitative morphological data goes hand in glove 
with image segmentation. As mentioned earlier, cells are not of de-
fined geometric shapes. A cell identified by us as circular or elliptical 
need not be precisely a circle or an ellipse. Further, two cells that we 
perceive as similar in morphology may have subtle but crucial dif-
ferences. Therefore, we need to define and measure different quanti-
tative attributes related to the morphology of a cell. These attributes 
are called ‘morphological features’ and collectively used to define the 
morphology of a cell.

Popular image analysis tools can extract hundreds of morpho-
logical features from the image of a cell. Morphological features can 
be of two types. One set of features is related to the cell’s size and 
geometry, and the other quantifies non- geometric aspects such as 
textures and brightness. Features such as area and perimeter capture 
the size of a cell. Some common geometric features are form factor, 
eccentricity, circularity, compactness, aspect ratio, solidity, Hu mo-
ment, and lengths of the major and minor axes.

The texture and brightness of a cell image provide additional mor-
phological information. Texture- related features, like Haralick fea-
tures [38], provide information on the roughness and smoothness 
of a cell. Different pixel intensity- related features, such as integrated 
intensity, mean intensity, and distribution of pixel intensities, help 
differentiate different cells.

When cells are counterstained for the nucleus or EMT markers, 
we can perform additional image segmentation for those counter-
stains. Subsequently, relevant feature information can be extracted 
for these secondary objects [39]. For example, if DAPI is used to 
stain the nucleus, additional segmentation is used to identify the nu-
cleus of each cell and then extract morphological features of each 
nucleus.

All the morphological features that we have discussed are prede-
fined. The purpose of feature extraction is to represent a cell in terms 
of the quantitative values of these morphological features. When we 
use predefined features, every cell is a point in a multidimensional 
hyperspace defined by those predefined features. However, one can 
argue that a cell image may have some unknown features that are 
more effective in capturing the morphological heterogeneity in a 
population of cells.

Machine- learning- based techniques are now developed as an 
alternative to predefined feature- based analysis. Deep learning 
algorithms, such as variational auto encoder (VAE) and convo-
lution neural network, are used to embed each cell image in a low- 
dimensional hyperspace [40– 43]. The quantitative information from 
this embedding space is used as features in subsequent analysis. The 
dimensions of the embedding hyperspace do not have any direct 
one- to- one connection with any particular morphological aspect. 
Even then, these methods effectively identify cellular heterogeneity, 
classify cells, and capture morphodynamics [40,41,44,45].

Popular programming languages, such as MATLAB, Python, and 
R, have functions/ packages for image analysis that can be used to 
create a complete image analysis pipeline— from image segmenta-
tion to feature extraction. There are standalone software for per-
forming large- scale analysis for microscopy images. ImageJ [46] 
and CellProfiler [47] are two popular open- source platforms widely 
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used to segment images, identify cells, and extract morphological 
features.

The choice of image processing and analysis tools depends upon 
several factors— the imaging technique, the number of images, the 
type of quantitative data to be generated, and the user’s skills in com-
putation. Therefore, one should decide on the image analysis tools 
early in the study. Algorithms used for image segmentation and fea-
ture extraction requires user- defined hyperparameters. Therefore, 
one must keep a good image analysis record and use the pipeline 
consistently with all batches of images. Further, we must be careful 
about image processing and feature extraction quality. The reader 
may consult the article by Caicedo et al. [48] to understand the crit-
ical issues in single- cell image analysis.

5.4. Identifying the  
morphological states

In EMT, epithelial cells acquire mesenchymal features. These cell 
types, epithelial and mesenchymal- like, are two phenotypic states. 
However, recent studies indicate that EMT is not a two- state pro-
cess and may involve one or more intermediate states [49– 51]. These 
intermediate states are known by different names— hybrid states, 
partial EMT, and incomplete EMT [51].

Whatever the number of states, we need to identify those in a 
population of cells undergoing EMT and investigate the state transi-
tion dynamics. Therefore, the dynamical study in EMT involves two 
steps— classifying cells in different phenotypic states and developing 
a quantitative model for the dynamics of cells over these states.

Most of the existing works in EMT define the state of a cell using 
molecular markers. However, in this chapter, we define the pheno-
typic states based on the morphology of cells. As discussed in the 
preceding sections, we can generate quantitative data on hundreds of 
morphological features of cells using image analysis. Subsequently, 
we have to identify the phenotypic state of a cell using those mor-
phological features.

So, we have a classification problem where we assign a cell to a 
particular state, such as epithelial, hybrid, or mesenchymal, based on 
morphological features. However, the morphology of a cell cannot 
be defined using a handful of features. One extracts hundreds of 
features to characterize the morphology of a cell. Therefore, the 
identification of the morphological state of a cell is a multivariate 
multi- class classification problem.

Multivariate classification is not new in cell biology. Single- cell 
gene expression data are often used to identify cell types using multi-
variate classification algorithms [52,53]. We can use similar algo-
rithms but use morphological feature information instead of gene 
expression data.

One approach could be where we have already decided on the 
phenotypic states in EMT and use a classifier [23,54,55] to identify 
cell states. Devaraj and Bose [19] used this approach in their work on 
morphological state transition dynamics in EMT. Through micros-
copy, they observed that cells in their experiments could be divided 
into three morphological groups— cobble, spindle, and circular. 
Upon induction of EMT, the population distribution of cells in these 
three morphological states changed with time. Further experiments 
showed that spindle and circular cells were migratory, but cobbles 
were non- migratory.

They used CellProfiler Analyst [56] to classify cells using the mor-
phological features extracted from microscopic images of fixed cells 
stained with a dye. CellProfiler Analyst provides several classifiers, 
such as Random Forest, Support Vector Machines, and AdaBoost 
[57]. The user trains any of these classifiers using the training dataset 
and subsequently uses it to classify the cells in the test data in prede-
fined morphological states.

To train the classifier, Devaraj and Bose [19] used a training 
dataset (~100 images per cell type) and manually labelled those cells 
as cobble or spindle or circular based on their visual perception. 
The training data must have a balanced representation of all the cell 
types. Therefore, one may have to pool individual cell images from 
samples imaged at different time points.

Whatever the method used, the trained classifier must be evalu-
ated for its performance [58]. Confusion matrix and ROC are widely 
used to evaluate the performance of a classifier. CellProfiler Analyst 
also provides tools for the evaluation of a classifier. The number 
of images used for training affects the performance of a classifier. 
Therefore, the size of the training data must be optimized by com-
paring the performance of classifiers trained with datasets of dif-
ferent sizes.

Devaraj and Bose [19] assumed three morphological states. 
However, while investigating EMT in MCF- 10A cells, Leggett et al. 
[59] divided cells into two discrete states, epithelial and mesen-
chymal. They trained a Gaussian mixture model for these two types 
of cells and used that classifier to estimate changes in the distribu-
tion of these two subpopulations during TGF- β- induced EMT.

We must decide the number of classes or labels a priori for any 
classification problem. EMT must have at least two classes, epithelial 
and mesenchymal. However, deciding the number of intermediate 
phenotypic states is not trivial. To circumvent this issue, we can use 
clustering algorithms to decide the number of phenotypic states 
during EMT.

Clustering is unsupervised. We partition the given samples into 
distinct subsets through clustering. An algorithmic approach is used 
to decide the suitable number of subsets or clusters. Clustering al-
gorithms are widely used for phenotypic identification using flow 
cytometry [60] and single- cell gene expression data [52,61].

The k- means algorithm and its variants are popular clustering al-
gorithms [62– 64]. Hierarchical clustering [65], density- based clus-
tering [66], and graph- based clustering [67] algorithms are also used 
to identify cell types. We can re- purpose these algorithms to identify 
distinct clusters in morphological feature space. Each cluster would 
represent a unique phenotypic state.

Single- cell gene expression data is higher dimensional, involving 
thousands of genes. Dimension reduction techniques, like principle 
component analysis (PCA) [68], are used to reduce the dimension 
of the data prior to clustering. Morphological feature space is also 
of higher dimension with hundreds of features. Therefore, the data 
dimension must be reduced before clustering. Dimension reduction 
helps in the clustering and visualization of clusters.

PCA is a linear method that captures the global variations within 
data. Therefore, it may not perform well for imaged- based data. 
Non- linear dimension reduction techniques, such as t- distributed 
stochastic neighbour embedding [69] and uniform manifold ap-
proximation and projection [70], can be used in place of PCA.

Deep learning has also been used to identify cells of different 
phenotypes from microscopic images [71]. Often, these algorithms 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43CHAPTER 5 Morphological state transition

perform feature extraction and phenotypic classification directly 
from the segmented images. UPSIDE is a deep learning pipeline 
that uses brightfield images and performs unsupervised discovery 
of morphological states of cells [40]. It uses a VAE to learn the lower 
dimensional latent features that can be used to regenerate the im-
ages. Upon training, each cell is represented by a vector of latent 
features. Subsequently, UPSIDE clusters the cells in the latent space 
using the Louvain method for community detection. Each cluster is 
a morphological state.

Wu et al. [31] used another VAE, vector quantized variational 
autoencoders, to represent cells in a lower dimensional latent feature 
space. They performed PCA of the data in the latent space to find 
that the first few principal components well correlate with cellular 
properties such as geometry and optical density. Subsequently, they 
used the top principle components and displacement of cells during 
live- cell imaging to create trajectory feature vectors (TFVs) for each 
cell. A Gaussian mixture model was used to identify clusters of cell 
types in the TFV space.

Longden et al. [4]  used standard feature extraction tools to ex-
tract hundreds of morphological features from millions of cells in an 
assay for drug resistance. Subsequently, they reduced the dimension 
of the feature space using an autoencoder. The lower dimensional 
latent feature space allowed them to discriminate between different 
types of cells.

An autoencoder encodes the information in such a way that im-
ages can be recreated by decoding the information in the latent 
space. That makes the latent space embedding interpretable in terms 
of the morphology of a cell. Further, one can use the autoencoder to 
predict a cell shape, making it a predictive model.

5.5. The dynamics of morphological 
state transition

Once we have classified cells in different morphological states, we 
can count the number of cells in a particular state at a particular 
time. So, the quantitative image analysis of EMT provides the popu-
lation distribution of cells in different morphological states. During 
EMT, this population distribution changes with time. How can we 
use this information to understand the underlying dynamics and the 
governing principles of EMT?

The search for the governing principle behind the phenotypic 
changes of cells is an old problem in biology. In 1957, Waddington 
[72] proposed the metaphor of the epigenetic landscape for the 
emergence of diverse cell types through the differentiation of cells 
during embryogenesis. He visualized the unidirectional differen-
tiation process as rolling a pebble over a landscape of hills and 
valleys. A pluripotent cell rolls down from a high hill to valleys 
through a series of branching points. Each valley corresponds to 
a particular phenotypic state. In this metaphor, differentiation 
is a journey over a potential landscape, from higher to lower 
potential.

We can use a similar potential landscape metaphor to under-
stand EMT. In the landscape view of EMT, each phenotypic state 
is a well (or local minima) in the potential landscape, and cells 
move from one well to another. However, how would we connect 
the metaphor of potential landscape with the quantifiable cellular 
processes?

Works of Jacob and Monod [73], Kauffman [74], Thomas [75], and 
others led to the idea that gene regulatory networks can have mul-
tiple stable steady states (or attractors) and that the phenotypes of a 
cell are those stable steady states. This idea connected Waddington’s 
landscape to the dynamical systems theory. Each low- potential well 
or valley of the landscape is a stable steady state of the underlying 
molecular network.

This dynamical systems view is the prime driver in the math-
ematical modelling of EMT. We can represent the gene regulatory 
network of EMT by a system of ordinary differential equations. 
Concentrations of molecules are the dependent variables in this 
model. Therefore, the molecules involved in EMT define the state 
space, and the trajectories in this state space represent the dynamics 
of cells during EMT.

From an initial position in this state space, a cell follows a trajec-
tory and eventually reaches a stable steady state. The system can have 
multiple stable steady states, each representing a unique phenotypic 
state. Interestingly, the number of stable steady states in an EMT net-
work can vary with the value of one or more control parameters. 
This property is known as the bifurcation in a dynamical system. The 
EMT- inducing signals control bifurcation parameters. Depending 
upon the architecture, EMT networks show different types of bifur-
cation. Readers may consult the articles by Tripathi et al. [15] for a 
comprehensive outline of the dynamical systems view of EMT.

In molecular network- based studies, one measures the expression 
of different EMT- related molecules and represents their relation-
ships using a system of ODEs. In the morphology- based approach, 
we measure changes in different morphological features during 
EMT. However, we do not know how these features are related. 
Therefore, we cannot construct an ODE- based model using these 
morphological features.

Alternatively, one may relate the morphological state of a cell with 
its molecular state and then use the ODE- based model of molecular 
networks to study the morphological state transition dynamics. 
Attempts have been made to connect the morphology of a cell to its 
gene expression state [9,10]. However, the mapping between gene 
expression and morphology may not be injective. Therefore, such an 
approach should be used with adequate caution.

Discrete state transition models are better suited for morphology- 
based studies. Such models assume that there are several distinct 
morphological states, and during EMT, cells jump from one state 
to another. If state transitions are stochastic, we can consider them 
Markov processes [76]. In a Markov process, the system stochastic-
ally jumps from one state to another with a probability that depends 
only upon the system’s current state.

There are different state transition models. The simplest model is 
a sequential, irreversible transition through intermediates from the 
epithelial to the mesenchymal state. The sequential model can also 
be reversible. The most elaborate model assumes reversible transi-
tions between any two states.

Suppose, during EMT, a cell can be in m possible morphological 
states and jump from one state to another. Let the probability that 
a cell is at the kth state at time t be πk

t , and the probability of tran-
sition from the ith to the jth state be pij. The probability transition 

matrix is P =   =
pij i j

m

, 1
. P is an m m×  stochastic matrix such that 

0 1≤ ≤pij  and pij
j
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If the state of the system at time t is ∏ =  t

t t

m

t
π π π1 2, , , , then the 

state at t + 1 is

 ∏ = ∏+t t1 P (5.1)

Equation (5.1) is the governing equation of the system and pro-
vides the lineage trajectory during EMT.

Here, we have assumed that the transition probabilities do not 
change with time. Though this assumption of time homogeneity is 
reasonable for many systems, one must be careful before making it.

Through the quantitative image analysis, we calculate the fre-
quency of cells in each state. These frequencies are used to construct 
the state vectors. In live- cell imaging, the same plate/ flask is imaged 
at sequential time points. There are algorithms to track a cell in those 
sequential image frames. Some tools perform both cell tracking and 
cell classification [23]. Following individual cells, one can calculate 
the transition frequency from one cell type to another. These fre-
quencies are used to construct the transition probability matrix P.

Gordonov et al. [24] developed a live- cell image analysis pipeline 
(SAPHIRE) that performs cell tracking, phenotypic identification, 
and estimating state transition probabilities. SAPHIRE uses PCA for 
dimension reduction. Subsequently, it uses a hidden Markov model 
with Bayesian model selection to generate the state transition model 
with estimated states and state transition probabilities.

Estimating P from fixed- cell imaging data is not trivial. Here, we 
are not following the same cells over time. Instead, different samples 
are fixed and imaged at different time points. Therefore, we obtain 
aggregate data by estimating the number of cells in different states 
for each time point.

There are methods to estimate the state transition probabilities 
from aggregate data [76]. Different regression models are used to 
fit the data to Equation (5.1) and estimate P [77– 79]. Buder et al. 
[80] developed a root- finding method to estimate P for experiments 
where one starts with a pure population of cells. Farahat and Asada 
[81] proposed a Bayesian estimation of transition probabilities. 
Karacosta et al. [82] used convex optimization with sparsity con-
straint and bootstrapping to estimate transition probabilities for an 
EMT model from aggregate data.

One can use a differential- equation- based state transition model. 
Let there be m discrete morphological states. The probability of a cell 
in the kth state is qk. The rate of change of this probability is given by

 
dq

dt
k q k qk

ik i
i k

kj k
j k

= −
≠ ≠
∑ ∑  (5.2)

Here, kik  is the rate constant for the transition from the ith to the 
kth state.

Considering all the states, we obtain a system of ODEs:

 
d

dt
q Kq=  (5.3)

Here, q is the state vector with the probabilities for different states, 
and K is the coefficient matrix with the rate constants for state tran-
sitions. K is estimated by fitting this model to data.

Goetz et al. [83] used an ODE- based model to study EMT dy-
namics. They assumed a sequential irreversible three- state model— 
epithelial, intermediate, and mesenchymal. These three states were 
defined in terms of the expression of E- cadherin and vimentin.

However, they observed that the three- state model did not fit well 
with the data. Therefore, they assumed that these three experimen-
tally observed states are macrostates, each having multiple hidden 
microstates. So, they increased the number of intermediate states in 
their model. They used an iterative model- fitting approach to decide 
the number of intermediate states.

Another approach for modelling state transition is to use discrete- 
time difference equations. For a system with m states, we can write

 N t t r N tk ik i
i

m

+( ) = ( )
=
∑∆

1

 (5.4)

Here, N tk ( ) and N t tk +( )∆  are the number of cells in the kth state 
at time t and t t+ ∆ , respectively. rik  is the rate of transition from the 
ith to the kth state.

Devaraj and Bose [19] used difference equations to model EMT. 
They assumed three morphological states in EMT and included cell 
death and birth in their model. Further, they assumed time- varying 
rate parameters. They fitted the model using a constrained optimiza-
tion algorithm and determined the dominant state transition paths. 
Their model showed that the morphological state transition in their 
experimental system was reversible and had the signature of hyster-
esis or memory.

The morphological state space is continuous. Nevertheless, till 
now, we have considered discrete morphological states. We can 
eliminate this assumption and investigate EMT as a continuous 
movement of cells in the multidimensional morphological space. 
In this regard, one can use the approach taken by Chang and 
Marshall [84].

They used live- cell imaging to study the morphodynamics of 
mouse embryonic cells. First, they reduced the multidimensional 
feature data to two dimensions by PCA. Subsequently, transition 
vectors for all the cells were calculated in this reduced state space. 
Interestingly, their analysis showed that the detailed balance is valid 
in this system. Therefore, they used the equilibrium formalism and 
calculated a potential landscape using the probability density of oc-
cupancy of different positions in the two- dimensional state space. 
The assumption of detailed balance may not be valid for EMT. Even 
then, one can use the transition vectors to investigate the dynamics 
in reduced state space and identify novel dynamical features.

Wang et al. [25] used live- cell imaging to study TGF- β- induced 
EMT in cells expressing fluorescent vimentin. They used PCA to sep-
arately reduce the dimension of morphological and Haralick feature 
spaces and selected four dominant principal components. Time- 
varying data of each cell was projected in this four- dimensional 
space, and single- cell trajectories were identified. Trajectories ana-
lysis showed that this experimental system had two types of paths 
for EMT.

They further extended this work [85] by reconstructing reaction 
coordinates (RCs) and pseudo- potentials to understand the transi-
tion paths. As per the reaction rate theory, an RC is a scalar geo-
metric parameter that describes the progression along a reaction 
path in a multidimensional state space. They concluded that TGF- β 
treatment destabilizes the epithelial state attractor that eventually 
disappears, and cells move to the mesenchymal attractor. However, 
this process involves two sequential collisions between an attractor 
and saddle, generating two paths for state transition.
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5.6. Conclusions and future directions

High- throughput imaging platforms are getting more sophisticated, 
cheaper, and easy to use. Quantitative analysis of images captured 
through these platforms generates vast higher dimensional mor-
phological data. Like single- cell gene expression data, single- cell 
morphological data comes in the bracket of ‘big data’. Therefore, 
big data analysis tools should be fully utilized to study cellular 
morphodynamics.

Several algorithms have been developed in the past decade for 
lineage tracing and inferring cellular trajectory from single- cell 
transcriptomic and flow cytometry data [86]. These algorithms con-
sider a cell or a cluster of similar cells as a dot in the multidimen-
sional molecular expression space and connect those dots to create 
trajectories for the emergence of one cell type from another. These 
algorithms can be suitably appropriated for morphological data to 
identify different cell types during EMT and to infer the trajectories 
between these cell types.

The trajectory inference algorithm SCUBA [87] uses time- course 
single- cell gene expression data. It assumes that every branching 
point in the trajectory is binary. It uses an iterative clustering al-
gorithm to estimate the cellular hierarchy and build the trajectory. 
Several other trajectory inference algorithms, such as Waddington- 
OT [88], CSHMM [89], and Cstreet [90], use time series data and 
possibly are suited for inferring the morphological state transition 
trajectories during EMT.

We often have vast data in many natural and engineering prob-
lems whose underlying governing equations are unknown. In some 
instances, we may know the governing equations, but the high di-
mensionality of state space limits computational analysis. Data- 
driven algorithms are very successful in identifying dominant 
spatial and temporal modes in the data and creating reduced- order 
models [91,92]. We believe biologists can leverage those algorithms 
to find the governing principles for morphological state transition 
in EMT.

In the same vein, Taylor- King et al. [93] have developed the algo-
rithm ‘dynamic distribution decomposition (DDD)’ to capture the 
dynamics of cells in a higher dimensional space using a linear com-
bination of a set of basis functions. They used this algorithm to ana-
lyse single- cell mass cytometry data of iPSC reprogramming. DDD 
may be used to analyse higher dimensional morphological feature 
data and capture the key states and trajectories during EMT.

According to the dynamical systems theory, bifurcation in the 
regulatory network gives rise to EMT [15]. Investigation of bifur-
cation requires knowledge of the regulatory network and an ODE- 
based model. However, morphological data is not suitable for an 
ODE- based study of bifurcation. Even then, one may capture signa-
tures of bifurcation directly from morphological data.

The transition through the bifurcation point is equivalent to the 
phase transition across a critical point. Near the critical point, sys-
tems show critical slowing down and high fluctuation. Correlations 
and fluctuation in the state variables can be used as signatures of 
critical transition [94,95]. Mojtahedi et al. [96] used this approach 
to study critical transition during the differentiation of murine 
multipotent cells. They showed that increased gene– gene correlation 
and reduced cell– cell correlation are signatures of critical transition 
during differentiation.

Similar ideas were used to study gene expression in cancer metas-
tasis [97] and mathematical investigation of the EMT network [98]. 
We propose that one may use single- cell morphological feature data 
in place of gene expression data to detect signatures of critical tran-
sition during EMT.

Till now, only a handful of studies have used morphological 
data to study the dynamics of EMT [19,25,29,39,85]. These in-
vestigations have shown that the data from quantitative image 
analysis are robust and suitable for mathematical modelling. 
Further, these morphodynamical studies successfully detected 
critical dynamical features of EMT— bifurcation and hysteresis. 
We believe that the quantitative morphological study will soon 
become an integral part of EMT research and complement the 
molecular data.
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Evolution- informed multilayer networks: 
Overlaying comparative evolutionary 
genomics with systems- level analyses for 
cancer drug discovery
Laurie Graves, Ayalur Raghu Subbalakshmi, William C. Eward, Mohit Kumar Jolly, 
and Jason A. Somarelli

6.1. Cancer is a speciation event 
that exists within a dynamic 
ecological system

We tend to think of the evolution of life as a never- ending con-
tinuum that is unidirectional. While this unidirectionality is true on 
a timescale, it is also true that, on a phenotypic scale, evolutionary 
selection produces reversions in the phenotypes that are observed 
depending on environmental conditions. Indeed, the evolution of 
life on Earth has included countless examples in which populations 
of organisms have reverted to previously observed phenotypes. For 
example, Earth’s first eukaryotic cells were likely to have been unicel-
lular. From early unicellular organisms, there arose all of the multi-
cellular eukaryotic life we observe today; however, multicellular 
organisms exhibit features reminiscent of speciation events in which 
single cells revert from phenotypes consistent with multicellular be-
haviour to those akin to unicellular behaviour. These reversions en-
able single cells within a multicellular organism to compete for space 
and resources to survive within the dynamic ecology of the body 
(Figure 6.1). Reversion events from multicellular-  to unicellular- like 
phenotypes are observed across almost all multicellular life. When 
these reversion events possess specific features (e.g. survival and 
proliferation, and ability to spread), they are collectively referred to 
as cancer. The reversion events known as cancer are strongly associ-
ated with age, suggesting a relative loss in the evolutionary pressure 
to restrain cells in multicellular states beyond reproductive age [1] .

The cellular phenotype of cancer is mediated by underlying alter-
ations in genotype, rendering the cancer and normal tissue of the host 
genetically distinct. In this way, the appearance of cancer within in-
dividual organisms can be considered a speciation event according 
to the biological definition of a species— a population of individuals 

able to successfully interbreed and give rise to fertile offspring. In the 
case of cancer, the offspring are the daughter cells produced by cell 
division. The appearance of new cancer species can be found across 
all multicellular life, suggesting these events are a common feature of 
multicellularity [2] . Cancer speciation events are constrained by the 
host environment such that if cancer species sufficiently disrupt the 
ecosystem of the body, they can directly and indirectly induce death 
in the host. Put simply, the speciation events that lead to the path-
ology, we call cancer, are— in almost all cases— evolutionary dead 
ends. Fascinating exceptions to this are the transmissible cancers ob-
served in dogs, Tasmanian devils, and molluscs [3,4]. In the latter case, 
cancer has even been transmitted between different species of clams 
[3]. Another example that illustrates the potential for cancer to live on 
outside the confines of the body is in the establishment of cell cultures 
from cancer cells, some of which have been propagated continuously 
for decades. These examples lend support to the notion that cancer 
speciation events can propagate if given an appropriate environment.

6.2. The complexity of cancer 
necessitates systems- level approaches

Cancer speciation events are subject to evolutionary constraints 
in the same way as any other population of species in the natural 
world. Despite being genetically and epigenetically diverse both 
within and between individuals, cancer cells converge onto key 
‘hallmark’ phenotypes known as the hallmarks of cancer. The cancer 
hallmarks— observed across all cancers— are a striking example 
of convergent evolution and exemplify the need for cancer cells to 
possess certain key phenotypic features in order to survive and re-
produce in the body [5] . The body’s ever- changing environment 
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induces alterations to the selective pressures and subsequently shifts 
the genetic and molecular make- up of the cancer cell population 
as ecological fitness dynamics change. One well- studied example 
of this phenomenon is age. As we age, the ecological landscape of 
the body shifts to a more cancer- permissive state, with alterations 
in immune function, fibroblasts and other stromal components, 
senescence- associated signalling, and extra- cellular matrix com-
position [1,6]. Combined with increased mutational burden, the 
cancer- permissive, aged environment allows for cancer to take hold, 
survive, grow, and spread.

Another way in which the dynamics of the body change with 
time is with cancer treatment. Cancer therapy can often introduce 
rapid and substantial changes to selective pressures within the body 
through the removal of key resources necessary to sustain survival 
and reproduction (i.e. cell division). Resource removal can lead to 
shifts in population dynamics by creating new ecological niches 
through competitive release and, in some instances, by fuelling add-
itional adaptive processes [7,8].

The complex and ever- changing genetic and molecular diver-
sity of cancer cell populations requires approaches that can enable 
integration of multiple layers of genetic, genomic, and phenotypic 
information with the variables of time, treatment, and spatial con-
text in an interpretable framework. Systems biology provides such 
a framework. This systems- level approach has been made more 
accessible through improvements in genomics technologies, par-
ticularly with respect to innovations in single cell and spatial ‘- 
omic’ techniques [9,10]. However, although these technologies 
have provided an unprecedented understanding of the genetic and 
non- genetic complexity and dynamics of cancer cell populations, 

the high costs and demand for computationally intensive analysis 
pipelines have also thus far delayed the clinical applicability and 
broad research utility of these tools. Even with unlimited financial 
and technological resources, the vast quantities of data generated by 
these studies requires a systems- level perspective to distill key in-
sights. These insights must then be translated into clinical action and 
decision- making, and most physicians outside of major academic 
medical centres are largely untrained in these techniques and how or 
whether to incorporate this information into their clinical practice. 
Continued education and efforts at integrating transdisciplinary ap-
proaches are needed to bring these new tools and concepts to bear 
on clinical treatment. One promising approach may be the use of 
multidisciplinary tumour boards— which not only include clinicians 
from different specialties but also engage genomics experts, systems 
biologists, statisticians, and evolutionary biologists— to integrate 
these new layers of knowledge into clinical decision- making [11].

6.3. A comparative evolutionary 
paradigm expands opportunities 
to understand cancer and rapidly 
evaluate new treatment options

Despite tremendous advances in our understanding and clinical 
management of cancer, there remains a substantial need to unravel 
the complexity of cancer ecology, particularly with respect to how 
cancer cell population genetic structure is shaped by the surrounding 
microenvironment and how the microenvironment is shaped by 
cancer cells. These aspects of cancer biology are challenging to model 

Figure 6.1. Cancer as a speciation event within a heterogeneous ecological system. Genetic dysregulation initiates oncogenesis, and subsequent 
unchecked cell replication within a cancer- permissive microenvironment of the tissue due to age, environmental insult, etc. induces clinically 
observable cancer. Cell and population survival is impacted by the cell's ability to acquire resources, including oxygen, growth factors, and glucose, 
to establish a pro- tumour microenvironment and to withstand selective pressures, such as nutrient and oxygen deprivation, immune predation, or 
chemotherapy. Cell populations with the greatest fitness advantage are able to survive and proliferate.
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using traditional platforms, which typically seek a reductionist ap-
proach of studying features in isolation (e.g. cells and single genes/ 
proteins). While these approaches have been— and continue to be— 
successful in identifying fundamental features of cancer and have led 
to the discovery of nearly all of our currently approved treatments 
for cancer, it is also clear that widely used preclinical models often do 
not accurately recapitulate the complexity of human cancer, leading 
to many potential cancer ‘cures’ in preclinical models that ultimately 
fail in human clinical trials. To overcome some of the limitations of 
current systems, a subset of researchers have turned to comparative 
oncology, in which naturally occurring cancers in other animals 
serve as models for human tumours. This comparative evolutionary 
approach frames cancer systems and gene regulatory networks ana-
lyses within the fundamental paradigm of evolution, which enables a 
more complete understanding of all other layers of biological organ-
ization and interaction. This comparative evolutionary perspective 
can take several forms, including the study of cancer rates across the 
tree of life, leveraging cross- species comparisons to understand fun-
damental processes of somatic mutation and cancer signalling within 
and between species, and capitalizing on comparative oncology 
studies in companion animals or animals in human care as naturally 
occurring ‘models’ of human disease [2,12– 14]. To date, compara-
tive oncology has largely focused within cancer in companion ani-
mals, including that of dogs, cats, and horses [15]. However, cancer 
is prevalent in many mammalian species, with cancer- related mor-
tality approaching 20– 40% in some, and there is much to learn about 
similarities and differences in cancer risk and cancer biology across 
all species [12]. Utilization of a systems- based comparative oncology 
approach in which cancer is studied broadly across species holds 
great potential in the exploration of cancer biology and in the identi-
fication of novel therapeutic strategies.

One unique way in which comparative oncology can inform cancer 
biology is to study the conserved and divergent patterns of cancer 
risk. For example, early observations in the cross- species study of 
cancer biology led to the generation of Peto’s paradox, based on the 
observation that cancer risk does not scale proportionally with size 
or with lifespan [16]. There are a number of hypothesized mechan-
isms to explain Peto’s paradox, including cross- species differences 
in rates of stem cell division and acquisition of somatic mutations, 
efficiency of DNA repair mechanisms, and tumour suppressor gene 
expression. Cross- species analyses of mammals have demonstrated 
that cetaceans, with lifespans approaching 100– 200 years, are among 
those with the lowest number of DNA substitutions per site per mil-
lion years, suggestive of slower somatic mutation rates [17]. An add-
itional study demonstrated that, despite wide variability in yearly 
somatic mutation rates, end- of- life mutational burdens across spe-
cies tend to be relatively similar and that the somatic mutation rate 
per year inversely correlates with lifespan rather than with mammal 
size [13]. For example, despite a 23,000- fold difference in adult body 
mass, the giraffe and naked mole rat (Heterocephalus glaber) have 
similar lifespans and somatic mutation rates, whereas even with 
similar body mass, the lifespan and mutation rates between a mouse 
and a naked mole rat differ significantly [13]. The naked mole rat’s 
lifespan may exceed 30 years, yet they are highly resistant to cancer 
with no reported cases in the literature [18– 21]. In addition to low 
rates of somatic mutations, cancer resistance in the naked mole rat 
is mediated by sensitivity to early contact inhibition by fibroblasts 
that secrete high molecular weight hyaluronic acid and have low 

hyaluronidase activity [18,19]. Furthermore, the genome of the 
naked mole rat is under positive selection for genes associated with 
protection of telomere length, which likely contributes to their long 
lifespan and cancer resistance [18].

In addition to differences in somatic mutation rates across life-
spans, comparative genomic studies have also identified that cancer 
resistance in other mammals has evolved due to conservation or 
expansion of tumour suppressor genes. The TP53 gene in the blind 
mole rat (Spalax) is highly conserved, which contributes to its cancer 
resistance through cell cycle regulation and IFN- β- induced cell ne-
crosis [18,22]. In some larger mammals, TP53 gene expansion is 
believed to be an evolutionary protection against carcinogenesis. 
Among whales and other cetaceans, whole genome analysis has re-
vealed that the evolution of cetacean giantism correlates with large 
segmental duplications of tumour suppressor genes and genes related 
to apoptosis, cell cycle regulation, B- cell immunity, complement ac-
tivation, cell adhesion, and cell signalling [17]. Studies of the genome 
of African (Loxodonta africana) and Asian (Elephas maximus) ele-
phants found 20 copies of the TP53 retrogene, and that in response 
to DNA damage, elephant cells demonstrated a significant apoptotic 
response [16,23]. The study of TP53 retrogene evolution within the 
Proboscidean lineage discovered expansion in TP53 retrogene copy 
number over a 25 million year evolutionary scale, ranging from 3– 
8 copies in the extinct prehistoric American mastodon (Mammut 
americanum), to 14 copies in the Woolly (Mammuthus primigenius) 
and Columbian (Mammuthus columbi) mammoths, and to 12– 17 
copies in the modern Asian elephant genome [24]. Furthermore, in-
crease in TP53 copy number over time correlated with increasing 
body size in the Proboscidean lineage, providing additional sup-
port for the hypothesis that TP53’s tumour suppressive effects are 
an important evolutionary adaptation against cancer in larger 
mammals [24]. In addition to TP53, the genome of the African ele-
phant, manatee, and rock hyrax have evolved through ancestral and 
lineage- specific duplication events to contain 7– 11 copies of the leu-
kaemia inhibitory factor (LIF) gene [25]. LIF, an interleukin 6 class 
cytokine, is known in different circumstances to function either as a 
tumour suppressor or an oncogene. Studies in African elephants re-
veal that LIF6, one of the duplicated genes with low expression under 
normal physiology, is up- regulated by TP53 in response to DNA 
damage, inducing enhanced apoptosis. While the other duplicate 
LIF genes are not expressed and remain pseudogenes, LIF6 evolved 
to become a functional gene early in the Proboscidean lineage. These 
findings suggest that through its enhanced apoptotic signalling, LIF6 
expression is another potential mechanism through which evolu-
tion supported the large body size of African elephants and other 
Proboscideans in concordance with Peto’s paradox [25].

The study of the cancer genomes of animals has also pinpointed 
conserved oncogenic drivers across species. Chromosomal aberra-
tions associated with several human haematologic malignancies are 
conserved in canine disease, including the ‘Raleigh chromosome’, a 
t(9;26) translocation leading to the BCR– ABL fusion gene, which is 
homologous to the t(9;22) translocation known as the Philadelphia 
chromosome in humans [26]. A comparison of canine oral squa-
mous cell carcinoma (SCC) to human head and neck squamous cell 
carcinoma (HNSCC) revealed high homology in pathways involving 
cell cycle regulation, immune function, and transcriptional repro-
gramming and also identified shared therapeutic vulnerabilities, in-
cluding increased expression of PD- L1, CTLA4, and CDK4/ 6 [27]. 
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Across canine mammary tumours and human breast cancers, mu-
tations in PIK3CA have been identified as a conserved oncogenic 
driver [28].

Studies of cancer across species have also enabled researchers un-
precedented access to tissues and patient samples, particularly in cases 
of rare human cancers that are more prevalent in other species. For 
example, osteosarcoma is a rare but highly aggressive bone tumour 
that occurs in children and adolescents, with an incidence of just 4 per 
million cases yearly in the United States [29]. By contrast, it is one of 
the most common tumours in canines. Human and canine osteosar-
coma share significant genomic and clinical overlap, yet canine osteo-
sarcoma occurs with substantially higher frequency (~25– 30,000 
cases/ year) and follows an accelerated course when compared to that 
in humans [15,30]. Comparative genomic studies of osteosarcoma 
have demonstrated conserved genomic features between the two spe-
cies [30,31]. Leveraging the expanded access to genomic data from 
canines, these studies identified novel genes that correlated with pa-
tient outcomes in both canines and humans, including an association 
between CD86 expression and metastasis- free survival and an asso-
ciation between IL- 8 and SLC1A3 and poor overall survival [30,31].

Similarities in tumour biology between human and canine tu-
mours as well as greater accessibility to canine osteosarcoma and 
other sarcoma tumour samples through collaboration with veter-
inarians contribute to the application of a comparative oncology 
model to study novel therapeutic strategies in osteosarcoma and 
other sarcomas [32]. These comparative oncology pipelines have 
identified (1) heterogeneity in drug response across osteosarcoma 
cell lines from different species, (2) species- specific clustering by 
drug response, and (3) key similarities in drug response among 
canine and human preclinical models, such as the combined sen-
sitivity to CRM1 nuclear export and proteasome inhibitors, which 
was validated in PDX models [32]. A similar drug discovery pipe-
line was applied as a precision medicine tool in the case of canine 
leiomyosarcoma, in which the patient- derived cell line underwent 

drug screening and in vivo PDX validation prior to use of the most 
effective agent, bortezomib, back in the canine patient [33]. The pa-
tient experienced a mixed response to bortezomib, reflecting exten-
sive tumour heterogeneity that was also observed on whole exome 
sequencing of the patient’s primary and recurrent tumours [33]. 
Among numerous additional canine comparative oncology clin-
ical trials, the study of recombinant listeria vaccines that express a 
chimeric HER2/ neu fusion protein has been particularly impactful, 
as the clinical benefit seen in canines has been translated into a 
Children’s Oncology Group (COG) Phase 2 trial for children and 
young adults with recurrent osteosarcoma (NCT04974008) [34].

Comparative studies across a range of species, from humans, to 
canines, to naked mole rats and whales, provide tremendous in-
sight into diverse mechanisms of carcinogenesis and natural cancer 
resistance. Through the study of both overlapping and divergent 
biological features within oncology using a comparative oncology 
model, scientists, veterinarians, and physicians are able to iden-
tify novel targets and vulnerabilities for the ultimate benefit of pa-
tients across species. Use of a comparative oncology platform can 
also permit more efficient study of novel therapies for prioritization 
into human clinical trials. In particular, research in rare cancers 
that affect non- human patients would benefit from implementation 
of comparative oncology models to expand knowledge in tumour 
biology and to identify novel treatment strategies.

6.4. Combining systems- level analyses 
across evolutionary scales has potential 
to highlight fundamental actionable 
targets for investigation across species

In addition to the multiple layers of biological information within 
human cancers, a deeper understanding of cancer systems across 
species has the potential to provide key insights (Figure 6.2).  

Figure 6.2. Comparative systems biology frameworks to reveal conserved and unique network features in cancers across species. A proposed 
schematic is shown for the construction of evolutionary- informed gene regulatory networks. Data from a range of relevant species would be used as 
input for networks. Species choice could be scaled by evolutionary time depending on the question. Input matrices could include gene gain/ loss, 
mRNA or protein expression, protein– protein interactions, phospho- protein data, etc. Inter-  and cross- species gene regulatory network analyses 
would be used to pinpoint common and unique interactions between species.
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This comparative systems biology framework aims to identify simi-
larities and differences between species based on the structure of 
gene regulatory networks rather than differences in expression or ac-
tivity levels of specific mRNAs or proteins [35]. For instance, mouse 
models are often used to study human diseases under the assumption 
that orthologous genes give rise to similar phenotypes [36]. However, 
if the gene regulatory networks containing orthologous genes be-
come rewired across species, due to gene gain/ loss events, changes in 
cis- acting sequences, or epigenetic differences, this can result in the 
emergence of different phenotypic consequences [37]. This concept 
is exemplified in the analysis of liver samples from 15 mammalian 
species for their promoters, enhancers, and transcriptional activity 
levels, which demonstrated that the robustness of gene regulatory 
networks depended on the level of conservation of promoters and 
enhancers [38]. The conserved sequences were found to function as 
buffers for gene expression changes, whereas newly evolved regula-
tory networks can bring about complexity to the underlying regu-
latory landscape [38]. This difference in gene regulatory networks 
between species (e.g. humans and mice) has also been observed in 
the p53 regulatory network [39]. While expression levels of genes 
regulated by p53 that are involved in DNA damage response, metab-
olism, apoptosis, and cell cycle regulation varied extensively between 
humans and mice, a comparison of genome- wide enhancer sequence 
datasets studied across six mammalian species also revealed substan-
tial conservation [40]. In this case, even when variation existed in the 
gene regulatory sequences of the mammalian species, the sequences 
responsible for the enhancer regulatory activity were found to be 
conserved for over 180 million years of evolution [40]. Similarly, a 
common mechanism was implicated in both primary tumours and 
organ development [41]. This observation was based on comparing 
gene expression profiles of mouse cerebral development between 
postnatal day 1 through day 60 with that of medulloblastoma cells. 
Consistent results were reported upon comparing a developing 
mouse lung with lung cancer cells. Such conserved gene regulatory 
network components can also be found among different cancer types 
[42]. For instance, network analysis performed on breast cancer, 
ovarian cancer, and renal cancer identified a core gene regulatory 
network consisting of genes responsible for key hallmarks of cancer, 
including chromatin remodelling, cell cycle regulation, and immune 
response modulation. Incorporating species- level information into 
network- based models can provide important new insights into both 
common features and species- specific features of cancer. As a con-
ceptual example, one could envision a scenario in which gene regu-
latory network models were inferred using, e.g. data on gene gain/ 
loss, protein– protein interaction, and co- expression across species to 
identify how network properties change over evolutionary time and 
infer the fundamental, core properties of these networks. Analogous 
to the use of evolutionary sequence conservation as a means to pin-
point functional domains within a nucleotide or protein sequence, 
this cross- species network inference may identify core features of 
cancer- relevant networks (Figure 6.2).

6.5.  Conclusions

With rapid growth in the fields of multi- omics, deep learning, ad-
vanced imaging, and spatial ‘omics’, we have begun to further elu-
cidate the complexity of cancer systems; however, studies using 

these novel technologies remain predominantly focused on mice 
and humans. Toolkits that can interrogate multi- ‘omics’ and spa-
tial ‘omics’ across species are needed to expand our knowledge of 
cancer’s fundamental properties. Similarly, functional genomics 
platforms must be developed for rapid and low- cost deployment 
across species ([15], and references therein) to functionally perturb 
systems and understand gene regulatory network structure across 
species. Platforms such as DepMap and Expression Atlas serve as 
exemplary benchmarks for quality and ease of use. Repositories that 
include species- level genomics data, such as The Integrated Canine 
Data Commons (https:// canine comm ons.can cer.gov/ #/ ), and data-
bases of medical information across species, such as The Species360 
Zoological Information Management System (ZIMS) (https:// www.
spe cies 360.org/ ), will greatly facilitate cross- species study of gene 
regulatory networks in cancers and their association with clinical 
outcomes. These datasets can be integrated into network- level ana-
lyses to pinpoint actionable nodes within and between species.

Beyond the development of tools, technologies, and data reposi-
tories, however, a fundamental change in mindset is needed from 
practitioners across fields. Researchers, clinicians, and the public 
should collectively and urgently embrace the interconnected fates 
of the environment, animal health, and human health through a 
One Health perspective. Through this One Health lens that includes 
evolutionary- informed analyses of gene regulatory networks, cancer 
research can be made more robust, spurring further insights into 
the fundamental properties of cancer systems and their vulner-
abilities. At the clinical/ translational level, comparative oncology 
clinical trials can be integrated within existing preclinical/ transla-
tional pipelines to speed both discovery and clinical evaluation of 
novel agents and treatment approaches for cancer. These efforts will 
serve to improve the health and well- being of cancer patients from 
any species and can underscore the need to sustainably steward the 
health and well- being of all life on Earth.
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Landscape of cell- fate decisions in cancer 
cell plasticity
Jintong Lang, Chunhe Li, and Jinzhi Lei

7.1.  Introduction

Cancer is a disease involving unregulated cell growth, and its rates 
are rising as more people live to older ages and as lifestyle changes 
in the developing world [1] . The chances of surviving cancer vary 
greatly by the type, the location, and the time of starting treatment. 
For example, the tumour progression of breast cancer can be signifi-
cantly delayed by current therapies. However, the recurrence is often 
inevitable, which results in high mortality rates [2].

Cancer can be defined as a disease in which some abnormal cells ig-
nore the normal rules of cell division and grow uncontrollably. Unlike 
normal cells, cancer cells will grow and proliferate uncontrollably, 
which can be fatal. It is assumed that mammalian cells have similar 
molecular networks that control cell proliferation, differentiation, and 
cell death, which suggests that the changes in these networks at the mo-
lecular, biochemical, and cellular levels are all important factors leading 
to the transformation from normal cells to cancer cells [3– 9]. Moreover, 
the dynamics of cancer evolution is essentially a process of cell regener-
ation, during which cancer cells show plasticity with random changes 
in their epigenetic state and result in heterogeneity of cells with diverse 
abilities of cellular regeneration. Hence, the interactions between cell 
stochastic plasticity and tumour growth form complex multiscale dy-
namics in tumour evolution [10– 15].

Great efforts have been devoted to understanding the mechan-
isms of cancerization, e.g. using gene regulatory network (GRN) 
models, either using deterministic or stochastic models. However, 
there are still challenges in many respects. In this chapter, we review 
some approaches using mathematical models to study cancer evolu-
tion. We introduce cancer gene network models, stochastic analysis 
approaches (energy landscape and transition paths) of cancer net-
works, as well as multiscale modelling for tumour evolution.

7.2.  Method

7.2.1. Cancer gene network model

Based on the regulatory relationship between genes, the GRN can be 
constructed by literature mining or network inference approaches 

from gene expression data. Hanahan and Weinberg proposed 10 
hallmarks of cancer [4,5]. These hallmarks are characterized by cer-
tain key cancer marker genes, such as EGFR for proliferative signal, 
VEGF for angiogenesis, HGF for metastasis, hTERT for unlim-
ited replication, HIF1 for glycolysis, CDK2 and CDK4 for evading 
growth suppressors, and so forth. Starting from these cancer marker 
genes and some critical tumour suppressor genes, such as P53, 
RB, P21, etc., a cancer GRN can be constructed by searching for 
the interactions among these key genes as well as the interactions 
among other cancer- associated genes (Figure 7.1A). In Figure 7.1A, 
arrows represent activation and short bars represent repression. 
The network mainly includes three kinds of marker genes: apop-
tosis marker genes (green nodes, including BAX, BAD, BCL2, and 
Caspase), cancer marker genes (magenta nodes, including AKT, 
MDM2, CDK2, CDK4, CDK1, NFKB, hTERT, VEGF, HIF1, HGF, 
and EGFR), and tumour repressor genes (light blue nodes, including 
P53, RB, P21, PTEN, ARF, and CDH1).

Based on the GRN structure, one can write down the ordinary 
differential equations (ODEs) to describe the time evolution of the 
expression levels for each component. The Hill functions are often 
used to describe the activation and inhibition regulations among 
different genes [17– 19]. The ODEs take the form
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Here, Fi represents the driving force for the time evolution of the 
activity of the ith gene (i =  1,2, . . . ,16). ki is the degradation rate. 
Ai denotes the aggregate of genes that activate the ith gene in the 
network, while Bi denotes the aggregate of genes that inhibit the ith 
gene in the network. aji is the activation constant from the jth to the 
ith gene, while bji is for the inhibition. sji is the threshold level for the 
regulation from xj to xi, and n is the Hill coefficient of the regulation.

7.2.2. Energy landscape 
for stochastic analysis

To provide a global picture and study the stochastic dynamics of the 
cancer system, the energy landscape approach provides a powerful 
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tool. The time evolution of a dynamical system is determined by a 
probabilistic diffusion equation (Fokker– Planck equation). Given 
the system state P(x1, x2, . . ., xN, t), with x1, x2, . . ., xN representing 
the levels of components (e.g. the gene expression level), we have 
an N- dimensional partial differential equation. In the above cancer 
GRN, there are 32 genes, so N =  32. Usually, it is hard to solve a high- 
dimensional diffusion equation due to the huge state space of the 
system. Following a self- consistent mean- field approach [20– 23], we 
can split the probability into the products of probabilities of indi-

vidual ones: P x x x t P x tN ii

n

i( , , , , ) ( , )1 2 … ∼∏  and solve the probability 
self- consistently. In this way, we effectively reduce the dimension-
ality of the system from MN to MN (M is the dimension for each 
gene expression level), and the computation of the above problem 
becomes feasible.

However, for a multidimensional system (as a complex gene net-
work system), it is still challenging to solve the diffusion equations 
directly. One possible way is to start from the moment equations 
and assume specific probability distribution based on physical con-
straints. For example, using Gaussian distribution as an approxima-
tion, one needs to calculate two moments, the mean and the variance. 
When the diffusion coefficient (quantifying the noise level) is small, 
the moment equations can be approximated to [24,25]

 x F x(t)
⋅

= [ ]( )t  (7.2)

 σ σ( ) A A( ) ( ) 2D x(t)t t t t t= + + [ ]σ( ) ( )T

 (7.3)

Here, x̄ , σ(t), and A(t) are vectors and tensors, and AT(t) is the 
transpose of A(t). The elements of matrix A are specified as 

Aij
i

j

F t

x t
=

∂ [ ]
∂

[ ]X( )
D x(t)

( )
.  is the diffusion matrix. For the external 

noise only cases, D[x̄ (t)] is not dependent on x̄ (t), i.e. D =  diag(d, 
d, . . ., d). For the intrinsic noise cases, D[x̄ (t)] is dependent on x̄ (t). 

Based on these equations, we can solve x ̄ (t) and σ(t). Here, we only 
consider the diagonal elements of σ(t) from the mean- field approxi-
mation and define σ(t) =  diag(σ1, σ2, . . ., σN). Therefore, the evolution 
of probability distribution for each variable can be acquired from the 
Gaussian approximation:
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Here, x ̄ (t) and σ(t) are the solutions of Equations (7.2) and (7.3). 
From the mean- field approximation, we can extend this formula-
tion to the multidimensional case by assuming that the total prob-
ability is the product of each individual probability for each variable:
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When t → ∞, x ̄i(t) and σi(t) approach the constants x ̄i and σi, the prob-
ability distribution obtained above corresponds to one steady state 
or basin of attraction. If the system has multiple stable states, there 
are several probability distributions localized at each basin with dif-
ferent variances. Therefore, the total probability is the weighted sum 
of all these probability distributions:

 P x x x t P x x x t wN j
j

N

N j

ss

( , , , , ) ( , , , , ).1 2
1

1 2 =
=

∑  (7.6) 

where Nss denotes the total number of the sable states, and j denotes 
the index of the corresponding stable states.

The weighting factors (wj) characterize the relative sizes of a dif-
ferent basin of attraction. We determine the weights wj by giving a 

Figure 7.1. Energy landscape of cancer. (A) The diagram for the cancer network. Red arrows represent activation and blue filled circles represent 
repression. The network includes 32 nodes (genes) and 111 edges (66 activation interactions and 45 repression interactions). (B) The tristable 
landscape for the cancer network. The yellow path represents the path from normal state attractor to cancer state attractor, and the magenta path 
represents the path from cancer state attractor to normal state attractor. Black paths represent the apoptosis paths for normal and cancer states.
Source: Taken from [16].
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large number of random initial conditions to the ODEs to be solved 
and collecting the statistics from these different solutions. Finally, 
we can construct the potential landscape by U P( ) 1nx x= −

ss
( )

[17,22], with Pss representing the steady- state probability distribu-
tion (in practice we let t to be very large to obtain the steady state). 
To visualize the landscape, we can choose two critical marker genes 
to display a two- dimensional landscape (Figure 7.1B).

7.2.3. Transition path quantification

The energy landscape provides a global description of the stability of 
cell types. To study the stochastic dynamics in the cell- fate transition 
process, one can calculate the most probable transition path between 
stable states based on the large deviation theory [26,27]. From the 
Freidlin– Wentzell theorem, the most probable transition path from 
the stable state i at time 0 to the stable state j at time T t t T

ij
, ( ), ,φ∗ ∈[ ]0  

can be acquired by minimizing the action functional ST [ϕij]:
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2

0
.
 

(7.7)

This is called the minimum action path (MAP).
However, one limitation for the transition path from the large 

deviation theory is that it assumes zero noise limitation [28]. To 
overcome this limitation, a path integral approach has also been de-
veloped to calculate the transition paths between stable states so that 
we can study the effects of noise on these transition paths. Based on 
the path integral approach [17], we have
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where Pt represents the transition probability, and S(x(t)) is the ac-
tion and L(x(t)) is the Lagrangian.

To calculate the most probable transition path from one stable 
state to another one, we need to minimize the action S to maximize 
the transition probability. Here, the Lagrangian is written as [17,29]

 L
D
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4
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2
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where V
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So, we can write the generalized momentum and Hamiltonian:
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 H L eff( ) ( ) ( )x x P x xm= − + ⋅  = E  (7.11) 

We consider Eeff as a hyper- parameter and choose Eeff =  −Vmin 
(here Vmin is the minimum of effective potential). Each path connects 
two stable states in this case, so V will reach its minimum when x is 
the most stable state among multiple stable states.

Then, we substitute Equation (7.11) into the action, we obtain 
S dt( ) ( ( ) ) .x P x x xm= ⋅∫  − H( )  To calculate the action of the path, 
we need to transform the formulations into a different representa-
tion in x space and discretize the integral. The target function can 
be written as
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where Ntp is the total number of points on the transition path, and 
Pλ is a penalty function keeping all the length elements close to their 
average:
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Here, N represents the number of components, and i is the index for 
different components in the system. In this way, we can calculate the 
transition action of any path given one starting point and one ending 
point. Finally, we can obtain the most probable transition path by 
minimizing the transition action S.

7.2.4. Multiscale modelling of heterogeneous 
stem cell regeneration

In addition to the gene network and transition of cell states, the pro-
cess of cancer cell regeneration is essential for the cancer evolution 
dynamics, during which cell plasticity and heterogeneity are crucial. 
Here, we review a general mathematical framework for modelling 
the evolutionary dynamics of cancer with plasticity and heterogen-
eity in cells. This model integrates the classical G0 cell cycle model 
with epigenetic state transitions during cell divisions and results in 
a differential– integral equation that involves different scale inter-
actions. The model framework enables us to formulate the dynamics 
of tumour cells landscape during tumour evolution and numerically 
investigate the dynamics through the technique of individual cell- 
based modelling.

7.2.4.1. Homogeneous stem cell regeneration

A simple model of stem cell regeneration, the G0 cell cycle model, 
was introduced by Burns and Tannock in 1970 (Figure 7.2A) [30]. 
This model assumes a resting phase (G0) between two cell cycles. 
Stem cells in cell cycles are classified into a resting or proliferating 
phases. The resting- phase cells can either re- enter the proliferative 
phase at a rate β that involves negative feedback or are removed from 
the resting pool with a rate κ due to differentiation, aging, or death. 
The proliferating cells are assumed to undergo mitosis at a fixed time 
τ after entry into the proliferative compartment and to be lost ran-
domly at a rate μ during the proliferating phase.

Let s(t, a) be the number of stem cells at time t with age a in the 
proliferating phase and Q(t) be the number of cells in the resting 
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phase. The above biological process can be described by the fol-
lowing age- structured equation [30,31]:

 

∂ ( )
∂

+
∂ ( )

∂
= − ( ) > < <

= ( ) − ( ) +(

s t a

t

s t a

a
s t a t a

dQ

dt
s t Q

, ,
, , ,

,

µ τ

τ κ

0 0

2 β )) >Q t, .0

 (7.14)

The boundary condition at age a =  0 is given by

 s t Q t Q t, .0( ) = ( )( ) ( )β  (7.15)

Here, the proliferation rate of resting- phase cells is represented by 
the function β(Q), which is dependent on the number of cells in the 
resting phase.

We can integrate the first equation in (7.14) through the 
method of characteristic line and obtain a delay differential equa-
tion model

 
dQ

dt
Q Q e Q Q= − ( ) +( ) + ( )−β βκ µτ

τ τ2 ,  (7.16)

where Q t Q tτ τ τ( ) = −( ). This equation describes the general popula-
tion dynamics of stem cell regeneration.

Biologically, the self- renewal ability of a cell is associated with 
both microenvironmental conditions, e.g. growth factors and 
various types of cytokines, and intracellular signalling pathways 
[32,33]. Despite the complex signalling pathways, the phenomeno-
logical formation of Hill function dependence can be derived from 
simple assumptions regarding the interactions between signalling 
molecules and receptors [34,35], and is given by

 β β βQ
Q

n( ) =
+ ( )

+0 1

1

1 θ
, (7.17)

where β0 represents the maximum proliferation rate of normal cells, 
and θ is a constant for the half- effective cell number. Here, the posi-
tive parameter β1 is introduced to represent the possible mutations 
in cancer cells that enable a cell to achieve sustained proliferative sig-
nalling or to evade growth suppressors, which represent hallmarks 
of cancer [36].

7.2.4.2. Heterogeneous stem cell regeneration

The G0 cell cycle model describes the population dynamics of 
homogeneous stem cell regeneration. To model the heterogeneity 
in stem cells, we introduce a variable x (often a high- dimensional 
vector) for the epigenetic state of cells and Ω for the space of all pos-
sible epigenetic states in resting- phase stem cells [12,35,37]. The epi-
genetic state x represents intrinsic cellular states that may change 
during cell division. Biologically, the epigenetic state of a cell can 
be any molecular levels changes that are independent of the DNA 
sequences, including the patterns of DNA methylation, nucleosome 
histone modifications, and transcriptomics [38– 43].

Through the epigenetic state x x∈Ω, ( , )letQ t  represent the 
number of cells at time t in the resting- phase and with epigenetic 
state x. Now, the total cell number is given by

 Q t Q t d( ) ( , )=
Ω∫ x x  (7.18)

The proliferation of each cell is regulated by the signalling path-
ways that are dependent on extracellular cytokines released by all 
cells in the niche and the epigenetic state x of the cell [34,44,45]. Let 
ζ(x) be the rate of cytokine secretion by a cell with state x, and

 c t Q t d( ) ( , ) ( )=
Ω∫ x x xζ  (7.19)

represents the effective concentration of cytokines to regulate cell 
proliferation. The proliferation rate β can be written as a function of 
cytokine concentration c and the epigenetic state x, i.e.

 β( ) β βc
c n

, ( )
( ( ))

( )x x
x

x=
+

+0 1

1

1 θ
 (7.20)

Moreover, the apoptosis rate μ, the cell cycle duration τ, and the 
differentiation rate κ are dependent on the epigenetic state x and 
are denoted by μ(x), τ(x), and κ(x), respectively. Here, we assume 
that these rates depend only on the state of each cell. The cell- to- cell 
interactions are not included in the current model framework.

To consider cell plasticity in each cell cycle, we introduce a tran-
sition function p(x, y) for the inheritance probability, which repre-
sents the conditional probability that a daughter cell of state x comes 
from a mother cell of state y after cell division, i.e.

Figure 7.2. Dynamical model of stem cell regeneration. (A) Illustration of the G0 cell cycle model. (B) Multiscale model framework of 
heterogeneous stem cell regeneration.
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 p( ) ( | ).x, y x y= = =P state of daughter cell state of mother cell  

It is obvious that

 p d( )x, y x
Ω∫ = 1 

for any y ∈Ω.
Now, similar to (7.14), when stem cell heterogeneity is included, 

we obtain the corresponding age- structured model equation

 ∇ = − > < <’ ( , , ) ( ) ( , , ),( , ( ))s t a s t a t ax x x xµ τ0 0  
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(7.21)

and

 s t c t Q t c t Q t d( , , ) ( ), ( , ), ( ) ( , ) ( ) .0 x x x x x x= =
Ω∫β( ) ζ  

Here, ∇ = ∂ ∂ + ∂ ∂′ t a, and the epigenetic state x can be considered 
as a parameter for the first equation. Hence, we can apply the char-
acteristic line method and obtain

 s t c t Q t e( , ( ), ) ( ( )), ( ( ), ) .( ) ( )τ τ τ µ τx x x x x x x x= − − −β( )  

Thus, substituting s t( , ( ), )τ x x  into the second equation in (7.21), we 
obtain the following delay differential– integral equation (here, we 
only show the equation for t ≥ τ that is important for the long- term 
behaviour):

∂
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(7.22)

Here, cτ =  c(t − τ).
Equation (7.22) provides a general mathematical framework for 

modelling the dynamics of heterogeneous stem cell regeneration 
with the epigenetic transition. Biologically, equation (7.22) connects 
different scale components (Figure 7.2B): the gene expression values 
at the single- cell level (x), the population dynamic properties (β(c, 
x), κ(x), and μ(x)), cell cycle (τ(x)), cytokine secretion (ζ(x)), and the 
transition of epigenetic states (p(x, y)). In this equation, the func-
tions β(c, x), κ(x), μ(x), τ(x) describe the kinetic properties of cell 
cycling and are termed as the kinetotype of a cell [35]. This frame-
work can be applied to different problems related to cell regener-
ation, such as development, aging, and tumour evolution.

7.2.4.3. The transition function p(x, y)

The transition function p(x, y) is key to describe the plasticity of 
cells. However, the exact formula of the transition function is dif-
ficult to determine biologically, which is dependent on the complex 
biochemical reactions during the biological process of cell division. 
Nevertheless, while we consider p(x, y) as a conditional probability 

density, we can focus on the epigenetic state before and after cell div-
ision and omit the intermediate complex process.

Usually, we are interested in the expressions of genes that are in-
volved in the gene network. In this case, dynamics of the expression 
of genes, x(t), can often be described by a stochastic process of a de-
terministic chemical rate equation

 
d

dt

x
F(x)= .  (7.23)

The function F describes the regulatory relationship that is de-
termined by the structure of gene regulation networks, e.g. the 
epithelial– mesenchymal transition (EMT) network. Equation (7.23) 
often depends on the parameters p that are stochastically changed 
over time and hence can be written in the form of nonautonomous 
equations:

 
d

dt
t

x
F(x; p( ))= . (7.24)

The above equations are often valid only within one cell cycle. 
During cell division, epigenetic information (histone modification, 
DNA methylation, etc.) redistributes to two daughter cells followed 
by the re- establishment of epigenetic marks. Meanwhile, the pro-
teins and mRNA are also redistributed to the two daughter cells. 
Mathematically, cell division brings discontinuous boundary con-
ditions in variables x and parameter p. Hence, the above equation is 
extended below over divisions
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 cell division

 (7.25)

Here, ℘ =( ( ))( , )f fx,p ψ φ  represents the random number with a 
probability density function given by f(x, p). The equations of form 
(7.25) provide a general framework for describing the dynamics of 
single- cell cross- cell divisions. In this way, we can obtain phenom-
enological formulations for the transition function through nu-
merical simulation based on GRNs and the laws of epigenetic state 
inheritance during cell division [46- 48]. For more discussions, refer 
to [49].

Alternatively, we can assume the phenomenological formulations 
directly based on experimental observations. Let the epigenetic state 
x =  (x1, . . . , xn) represent n independent state variables, and assume 
that these states vary independently during cell division, then

 p p xi
i

n

i( , ) ( , ),x y y=
=

∏
1

 

where pi(xi, y) means the transition function of xi given the state y of 
the mother cells.

The transition function pi(xi, y) can be represented as the den-
sity function of xi, which is often phenomenological assumed based 
on the biological implications. For example, we can assume the beta 
distribution for the normalized nucleosome modifications [46] or 
gamma distribution for transcription levels [50].

Here, we assume that 0 < xi < 1, and pi(xi, y) is given by the density 
function of a beta distribution, i.e.
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where Γ(·) represents the gamma function. Here, the transition func-
tion depends on two share parameters a and b, which are functions 
of the epigenetic state y of the mother cell. To determine the func-
tions ai(y) and bi(y) from experimental data, if we write the mean 
and variance of xi, given the state y, as

E( | ) |x xi i i

i

i iy y y
y

y y= =
+

−φ
η

φ φ( ),
( )

( )( ( )),Var( )
1

1
1  (7.27)

through predefined functions ϕi(y) and ηi(y), the shape parameters 
are given by

 a bi i i i i i( ) ( ) ( ), ( ) ( )( ( )).y y y y y y= = −η φ η φ1  (7.28)

Here, the functions ϕi(y) and ηi(y) always satisfy

 0 1 0< < >φ ηi i( ) , ( ) .y y  

Since the predefined function ϕi(y) and ηi(y) are associated with 
conditional expectation and variance through (7.27), they provide 
a bridge to connect the above model formulation with experimental 
data at single- cell level.

7.2.4.4. Hybrid computational model of multicellular tissues

Equation (7.22) provides general mathematical frameworks to 
model stem cell regeneration when heterogeneity and plasticity of 
epigenetic or genetic states are included. This framework can be 
used to describe many biological processes associated with stem cell 
regeneration, including development, aging, and cancer evolution 
[35]. Nevertheless, it is too expensive to numerically solve Equation 
(7.22) when high- dimensional epigenetic states are considered. In 
applications, we often develop hybrid computational models for 
multicellular tissues based on the above frameworks.

Based on the above mathematical framework, a hybrid numerical 
scheme can be developed that combines a discrete stochastic pro-
cess for the epigenetic/ genetic states of individual cells with a con-
tinuous model of cell population growth. In numerical simulation, 
a multicellular system is represented by a collection of epigenetic 

states for each cell as Ωt i i
i

Q t

C= ( ) {
=

( )
x

1
, where Q(t) represents the 

number of resting- phase stem cells at time t. During a time interval 
(t, t +  dt), each cell (Ci(xi)) undergoes proliferation, apoptosis, or 
terminal differentiation with a probability given by the kinetic rates. 
The probabilities of proliferation, apoptosis, or differentiation are 
given by β(c, xi)dt, μ(xi)dt, or κ(xi)dt, respectively, and hence are de-
pendent on the epigenetic state of each cell. The total cell number 
Q(t) changes after a time step dt in accordance with the behaviours 
of all cells. When a cell undergoes proliferation, the epigenetic states 
of daughter cells randomly change according to the transition func-
tion p(x, y). In this hybrid model, all detailed molecular interactions 
are hidden within the kinetic rates and the transition function. 
Moreover, we can also include a stochastic process for differential 
equations for the signalling dynamics within one cell cycle as well as 
microenvironmental variables that may depend on the cell behav-
iour of all cells. The proposed hybrid model can be implemented by 
single- cell- based models through GPU architecture [51].

The above hybrid numerical scheme can also be integrated with 
the stochastic modelling of gene networks through which the gene 
expression dynamics in individual cells are described with math-
ematical models of form (7.25). The kinetotype (β, μ, κ, and τ) of 
each cell is dependent on the gene expression state x. The above pro-
cedure gives a multiscale dynamical model.

7.3. Applications of stochastic analysis 
to cancer and EMT network

Cancer metastasis is the most fatal stage of cancer which accounts 
for over 90% of cancer deaths [52]. The EMT plays a critical role in 
embryonic development and might contribute to cancer metastasis 
[53– 56]. Many classical EMT marker genes are related to cancer 
metastasis [57]. However, it remains elusive how to elucidate the 
mechanistic connections between EMT and cancer metastasis quan-
titatively. In this section, we introduce the EMT model and the rela-
tionship between EMT and cancer metastasis based on the method 
in the previous section.

7.3.1. Landscape and transition path 
of EMT network

EMT, a basic developmental process that might promote cancer me-
tastasis, has long been shown to be related to the acquisition of malig-
nant cell traits, such as motility, invasiveness, and tumour- initiating 
potential, and is therefore associated with the progression of cancer 
metastasis [54,58– 60]. In this subsection, we review some results of 
EMT gene network models from stochastic dynamics perspective.

As mentioned above, a GRN should be constructed first. By com-
bining the EMT network [61], an important transcriptional factor 
Ovol2 [62], and an important microRNA miR- 145 [27,63], and 
merging three microRNAs with similar functions (miR- 200a, miR- 
200b, and miR- 200c), we obtained a GRN for EMT including 16 
components. So, the EMT model includes 16 representative gene/ 
microRNA components [64]. Here xi (i =  1, 2,  . . ., 16) stands for the 
expression levels of TGF- β, ZEB1, ZEB2, SNAI1, SNAI2, TWIST1, 
FOXC2, GSC, TCF3, VIM, miR- 145, miR- 141, miR- 200, miR- 34a, 
Ovol2, and CDH1, respectively. The circuit consists of 12 transcrip-
tional factors and 4 microRNAs. The network diagram is shown in 
Figure 7.3A.

Then, the landscape can be quantified to study the stochastic dy-
namics of a GRN (Figure 7.3B). Here, we choose the key variables 
ZEB1 and CDH1 as the coordinates and projected the landscape to 
two- dimensional space since ZEB1 is a major M marker gene and 
CDH1 is a major E marker gene.

On the landscape, the basins (namely attractors, blue region) rep-
resent stable states or phenotypes (Figure 7.3B). It follows that the 
closer to the stable states, the lower the potential energy, and the 
cell is more likely to stay there. The six basins of attraction on the 
landscape represent six different cell states characterized by different 
gene expression patterns in the 16- dimensional state space, namely 
the six stable- state solutions of the ODEs. These states correspond 
to E state (epithelial state, high CDH1, and low VIM/ ZEB1 expres-
sion), M state (mesenchymal state, high VIM/ ZEB1, and low CDH1 
expression), three intermediate states close to E state (IE1, IE2, and 
IE3, intermediate expression close to E state), and one intermediate 
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state close to M state (IM, intermediate expression close to M state), 
respectively.

Further, the 16- dimensional transition path or MAPs between 
neighbouring stable states can be calculated by the path integral ap-
proach. The MAPs are shown in Figure 7.3B on the landscape. The 
red MAP from the E state to the M state corresponds to the EMT 
process, while the green MAP from the M state to the E state corres-
ponds to the MET process. Here, we minimize the transition action 
by the method of simulated annealing. The results of landscape and 
transition paths indicate that the cell- fate transition process for EMT 
needs to go through the intermediate states.

7.3.2. Landscape and transition path of  
EMT– metastasis network

In this subsection, we aim to introduce the relationship be-
tween EMT and metastasis, and discuss the mechanism of EMT- 
promoting metastasis from a GRN perspective. To do so, we first 
construct an EMT– metastasis regulatory network by merging an 
EMT gene network and a metastasis network obtained by literature 
mining (Figure 7.4A). The network includes 10 nodes and 26 links 
(8 activations and 18 repressions).

Similarly, following the self- consistent approximation approach, 
we determined the steady- state probability distribution and then 
mapped out the potential landscape for the EMT– metastasis system. 
Because it is difficult to visualize the landscape in a 10- dimensional 
space, we selected two variables as the coordinates and projected the 
10- dimensional landscape into this two- dimensional space, by inte-
grating out the other eight gene variables. We chose the two key vari-
ables ZEB and BACH1 as the two coordinates for the landscape since 
ZEB is a major EMT marker gene and BACH1 is a major metastasis 
marker and regulator gene. We found four stable cell states emerging 
on the landscape for the EMT– metastasis system (Figure 7.4B). The 

landscape surface is characterized by different colours, where the 
blue region represents a lower potential or higher probability, and 
the red region represents a higher potential or lower probability. The 
four basins of attraction on the landscape represent four different 
cell states characterized by different gene expression patterns in 
the 10- dimensional state space. These states separately correspond 
to M state (metastatic state, high ZEB/ high BACH1 expression), 
A state (anti- metastatic state, low ZEB/ low BACH1 expression), and 
two intermediate states (I1 and I2, intermediate ZEB and BACH1 
expression).

To study the transitions among individual cell types, we calcu-
lated kinetic transition paths by minimizing the transition actions 
between attractors, obtaining MAPs (namely the above method). 
The MAPs for different transitions are shown on the landscape in 
Figure 7.4B. magenta solid lines represent the MAP from A state 
(antimetastatic cell state) to I states, and to M state (metastatic cell 
state), and the white solid lines represent the MAP from M to I, and 
to A state. The dashed lines represent the direct MAP from A to M 
and from M to A states, respectively. The lines represent the MAPs, 
with the arrows denoting the directions of the transitions. The MAP 
for pro- metastatic process and the MAP for anti- metastatic process 
are irreversible since the forward and reverse kinetic paths are not 
identical. This irreversibility of kinetic transition paths is caused by 
the non- gradient force or curl flux [22,66].

7.3.3. Landscape analysis of EMT– metastasis– 
metabolism network

Abnormal metabolism is an important hallmark of cancer, which 
has been explored in previous studies [5,67]. A computational model 
for cancer metabolism has been constructed using ODEs, which in-
cludes two genes (AMPK and HIF- 1) and two metabolites (noxROS 
and mtROS) [68]. As mentioned above, the EMT has been suggested 

Figure 7.3. Landscape and transition path for EMT. (A) The diagram of EMT gene regulatory network. The network consists of 12 transcriptional 
factors (rectangle nodes), 4 microRNAs (ellipse nodes), and 53 regulatory links. Blue arrows represent activation and red bars represent repression. 
The six genes represented by the pink nodes (miR- 145, miR- 141, miR- 200, miR- 34a, Ovol2, and CDH1) are E markers, and the other genes 
represented by the blue nodes are M markers. (B) The landscape and transition paths between different attractor states in the CDH1/ ZEB plane. 
The landscape surface is characterized by different colours, where the blue region represents a lower potential or higher probability and the yellow 
region represents a higher potential or lower probability. The red curve represents the transition path of EMT and the green one represents the 
transition path of MET. 
Source: Taken from [64].

 

   

 

 

 

   

 

  

  

 

 



Cancer Systems Biology66

to be related to metastatic progression. Therefore, a key question is 
whether there is any relationship between EMT, metabolism, and 
cancer metastasis.

To uncover the mechanisms underlying the interplay between 
EMT, metabolism, and metastasis, we established a metabolism– 
EMT– metastasis GRN by incorporating the core components 
for each process through mining the experimental literature 
(Figure 7.4C). The metabolism– EMT– metastasis network involves 
16 components (10 genes, 2 metabolites, and 4 microRNA) and 51 
regulation links (22 activations and 29 inhibitions). AMPK, HIF- 1, 
mtROS, and noxROS are the core components controlling cellular 
metabolism (Figure 7.4C, blue box). SNAIL, ZEB, OCT4, MDM2, 
miR- 145, miR- 200, miR- 34, and P53 are the core components gov-
erning the EMT (Figure 7.4C, green box). RKIP, BACH1, LIN28, and 
Let7 are the core components governing the metastasis (Figure 7.4C, 
yellow box) [69].

Based on the network structure, we can write down the ODEs 
describing the time evolution of relative expression levels for each 
of the 16 genes or metabolites. Then, we calculated the steady- state 

probability distribution of the system and acquired the potential 
landscape (Figure 7.4D). Similarly, it is hard for visualization be-
cause we are dealing with a 16- dimensional potential landscape. 
Here, we pick two representative marker genes, HIF- 1 and ZEB, as 
two coordinates and project the 16- dimensional landscape into the 
two- dimensional space.

On the landscape, the blue region represents a high probability 
or low potential, and the yellow region represents a low probability 
or high potential. We identified four stable states on the land-
scape, which characterize epithelial (E), abnormal metabolism (A), 
mesenchymal (M), and metastatic (Met) cell states, respectively 
(Figure 7.4D). Importantly, we identified a new intermediate state, 
which we defined as the abnormal metabolism (A) state since it has 
an increased expression of the glycolysis marker gene HIF- 1. Here, 
the E state has a low HIF- 1 and low ZEB expression. So, the marker 
genes for the abnormal metabolism, the EMT, and the metastasis 
are all off. The A state has a high HIF- 1 and low ZEB expression and 
therefore corresponds to an abnormal aggressive metabolic pheno-
type (i.e. aerobic glycolysis state) whereby cancer cells change their 

Figure 7.4. Landscape of cancer by coupling EMT, metastasis and metabolism circuit. (A) The diagram for the core circuit of EMT– metastasis 
network. Red arrows represent activation and blue bars represent repression. Magenta nodes represent pro- metastatic genes and cyan nodes 
represent anti- metastatic genes. Circle nodes represent proteins and hexagonal nodes represent microRNAs— u34: miR34; u200: miR200; 
u145: miR145. (B) The landscape and corresponding MAPs for the EMT– metastasis network. A: anti- metastatic state; M: metastatic state; I1, 
I2: intermediate state. Here, ZEB and BACH1 are selected as the two coordinates. (C) The regulatory network for the interplay among EMT, 
metabolism, and cancer metastasis. (D) The landscape for the interplay among EMT, metabolism, and cancer metastasis. Source: Panels (A) and 
(B) are taken from [27] and Panels (C) and (D) are taken from [65].
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metabolism to produce energy more quickly. Besides, we have a 
mesenchymal state with a high HIF- 1 and high ZEB expression and 
a metastatic state with a high HIF- 1 and high ZEB expression.

To quantify the kinetic transitions among these states, we calcu-
late the kinetic transition paths among different cell states by min-
imizing the transition actions S, namely MAPs. Figure 7.4D shows 
the landscape and transition paths for the quadrastable system. The 
magenta paths denote the transitions from the epithelial state to the 
metastatic state (metastatic progression process), whereas the cyan 
paths denote the transitions from the metastatic state to the epithe-
lial state (de- metastasis process). The transition paths for the E to 
metastasis state transition and the backward transition paths from 
metastasis to the E state are not identical, reflected by the disparity 
between the forward and backward kinetic transition paths. This 
irreversibility of MAPs is a consequence of non- gradient force, i.e. 
curl flux [22,66].

7.4. Cancer cell plasticity and 
drug resistance

The landscape of EMT network is important to explore the transi-
tion of a cancer cell between different epigenetic states. In tumour 
progression, EMT is a process in which epithelial cells lose their 
junctions and polarity to gain a motile mesenchymal phenotype. 
Epigenetic plasticity of cancer cells is essential for EMT and drug 
resistance of cancer cells [70,71]. Thus, modelling of cancer cell plas-
ticity is essential for the understanding of tumour evolution [12].

To apply the model framework (7.22) to cancer evolution with cell 
plasticity, we need to select proper epigenetic variable x and the de-
pendence of the kinetotype of a cell on the epigenetic state. We usu-
ally do not include the transcriptome of all genes in the epigenetic 
variable. Instead, specific genes are often selected into the epigenetic 
state, such as the genes in the EMT network when concerning cancer 
cell plasticity and drug resistance. Alternatively, we can also define 
the epigenetic variable as macroscopic variables that can describe 
the state of a cell, such as the stemness that is associated with the 
potential of self- renewal and differentiation [72] or the single- cell 
entropy that is associated with the malignance of a cell [73]. Here, 
two examples are introduced to show how the framework (7.22) can 
be applied to model cancer cell plasticity and drug resistance.

7.4.1. Modelling tumour evolution with cancer 
cell plasticity

Now, we consider the situation with epigenetic state x =  (x1, x2), 
where x1 represents the stemness of a cell and x2 stands for the 
malignance of a cell. Here, x1 and x2 are normalized to the interval 
[0, 1] so that the epigenetic state x ∈ Ω =  [0, 1] × [0, 1]. Moreover, to 
consider the effect of the microenvironment on cancer evolution, we 
introduce a microenvironment index u, which represents the effects 
of the microenvironment on malignance and cell survival.

Mathematical formulations for the dependence of kinetic rates on 
the epigenetic state are given below. First, both proliferation rate β 
and differential rate κ are dependent on the stemness x1. The dif-
ferentiation rate usually decreases with the increase of stemness. 
The proliferation rate, however, depends on the stemness in a more 
complex way. A larger value x1 means a higher level stemness, which 
means the potential of a quiescent state with a low proliferation rate. 

The proliferation rate increases with the decrease of x1, which means 
the state of progenitor cells. Furthermore, the proliferation rate de-
crease to zero when the stemness further decreases to zero, which 
means the state of terminal differentiation. From these assumptions, 
referring to (7.20), we define the proliferation rate and differenti-
ation rate as
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and
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Here, we simply take c as the cell number Q. The coefficient θ(x) 
represents the repression of cell proliferation through cell responses 
to microenvironmental cytokines and is dependent on the malig-
nancy. Hence, we assume that θ increases with the malignancy 
and hence

 θ θ θ
θ

( ) ,x = +
+0 1
2

1 2

2

2 2

x

x

s

s s
 (7.31)

here θ0, θ1, and θ2 are parameters.
To model the dependence of cell survival on the microenviron-

ment and malignancy, we introduce a fitness function

 g u x x xu u( , ) . ( )2 2 2
13 0 1= − −  (7.32)

to represent how a cell with malignancy index x2 may fit the micro-
environmental condition u. Better fitness implies a lower apoptosis 
rate of the cell, and hence the apoptosis rate can be defined as

 µ
µ

ρ
( , ) .

( , )
x u

e g u x
=

+
0

1 2
 (7.33)

Here, μ0 and ρ are constants, so there is a maximum apoptosis rate   
μ0 =  (1 +  ρ) when the fitness g =  0.

Similar to the previous argument, the transition function

 p p x p x( , ) ( , ( , ),x y y) y= ×1 1 2 2  

where pi(xi, y) are density functions of beta distribution
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The shape parameters ai(y) and bi(y) are defined by the predefined 
functions ϕi(y) and ηi(y) according to (7.27) and (7.28).

We can usually take η1(y) =  η2(y) =  η as constants. The stemness of 
the daughter cell usually depends on the stemness of the mother cells, 
and hence ϕ1(y) =  ϕ1(y1), and the malignancy of the daughter cell de-
pends on the malignancy of the mother cell so that ϕ2(y) =  ϕ2(y2). 
The functions ϕi are often increased functions because of the inertial 
effects. Here, we take the Hill type functions

 φ
α

α1 1 1 1
1 1

1 5

1 1
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c d

y
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Here, c1, c2, d1 are constants, and d2 may depend on the microen-
vironmental index u. When the microenvironment becomes ab-
normal (increases of u), the cells tend to be more malignancy so that 
d2 increases with u. Figure 7.5A and B shows the plots of functions 
ϕ1(y1) and ϕ2(y2).

Based on the above formulations, Figure 7.5 shows an example 
simulation of abnormal cell growth dynamics when the micro-
environmental index changes from normal value (u =  0.1) to ab-
normal value (u =  0.9). From the simulation results, obvious changes 
in the epigenetic state of cells are seen on day 150 before the ob-
vious increase in the cell number. These results show how cell plas-
ticity drives abnormal cell growth in response to changes in the 
microenvironment.

7.4.2. Cell plasticity and immune escape 
after CAR- T therapy

Cancer immunotherapy has been a breakthrough in recent years. 
However, cancer immune escape often occurs after the administra-
tion of immunotherapy [75– 77]. Here, we introduce an example 
of how cancer cell plasticity induces immune escape after CAR- T 
therapy.

Chimeric antigen receptor (CAR) T- cell therapy targeting 
CD19 has been proven to be an effective therapy for B- cell acute 
lymphoblastic leukaemia (B- ALL). The majority of patients 
achieve a complete response following a single infusion of CD19- 
targeted CAR- T cells; however, many patients suffer a relapse after 

therapy, and the with leukaemic cells, 60% of the mice relapsed 
within 3 months, and the relapsed tumours underlying mech-
anism remains unclear.

When second- generation CAR- T cells are injected into mice re-
tained CD19 expression but exhibited a profound increase in CD34 
transcription [78]. Based on these observations, an individual 
cell- based computational model was developed to show the mech-
anism of cancer cell- plasticity- induced immune escape after CAR- T 
therapy. Here, we introduce the main assumption and formulations 
of the model. For detailed discussions, refer to [78].

Experimental results show that relapsed tumours in mice after 
infusion with CD19- 28z- T cells retained CD19 expression but ex-
hibit a subpopulation of CD19+  CD34+  and CD123+  CD34+  tumour 
cells, which are not shown in control NGFT- 28z- treated mice. Based 
on this observation, key assumptions were proposed that CAR- T-  
 induced tumour cells transition into haematopoietic stem- like cells 
(by promoting CD34 expression) and myeloid- like cells (by pro-
moting CD123 expression), and hence escape CAR- T cell targeting. 
In the model, each cell was represented by the epigenetic state of 
marker genes CD19, CD22, CD34, and CD123, which play im-
portant roles in the CD19 CAR- T cell response and cell lineage dy-
namics. The proliferation rate β and differentiation rate κ depend on 
CD34 expression level through

 β β
θ

θ
=

+
×

+
+0

6

6

5 8 34 2 2 34

1 3 75 34N

. [ ] ( . [ ])

( . [ ])
,

CD CD
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κ κ=
+0 6

1

1 4 0 34( . [ ])
.

CD
 

Figure 7.5. Simulation of microenvironmental- change- induced abnormal cell growth. (A) The function ϕ1(y1). (B) The function ϕ2(y2) with u =  0.1 and 
u =  0.9, respectively. (C) The function u(t) in simulation. (D) Cell number Q(t) following the changes in the microenvironmental index. (E– H) Epigenetic 
state of cells at different time points. Parameter values are s0 =  1, a1 =  6.8, a2 =  2.2, a3 =  3.25, s1 =  3.5, θ1 =  1,000, θ2 =  0.4, s2 =  8.5, b1 =  2.1, s3 =  6.0, 
μ0 =  0.3, c =  1.0, c1 =  0.055, c2 =  0.06, d1 =  1.3, α1 =  1.2, α2 =  2.2, β0 =  10.0, κ0 =  0.5, η =  70, and d2 =  0.68u +  0.35. Source: Replotted from [74].
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Here, N represents the total cell number. Here, the expression level of 
CD34 can be considered as the stemness of a cell. Hence, similar to the 
above argument, the functions β and κ were utilized so that a cell has 
a low proliferation rate and differentiation rate in the quiescent state 
with high level [CD34], a high proliferation rate and low differentiation 
rate in the progenitive state with intermediate level [CD34], and a low 
proliferation rate and high differentiation rate when the cell is mature 
and ready for differentiation. The apoptosis rate μ includes a basal rate 
μ0 and a rate associated with the CAR- T signal

 µ µ µ= + ×0 1 Signal,  

 Signal CD34 CD123
CD19

CD19 CD22
=

+ +
f R t([ ],[ ])

[ ]

[ ] [ ]
( )

γ

γ γ
19

19 221
,,  

 f
X Xn n

([ ],[ ])
([ ]/ ) )( ([ ]/ ) )

CD CD
CD34 CD123

34 123
1

1 10 1
0 1

=
+ +

 

Here, R(t) is the predefined CAR- T activity. CD34 and CD123 are 
marker genes of stem- like cells and myeloid- like cells, respectively, 
which were assumed to inhibit CAR- T signalling.

Similar to the previous discussions, the expression levels of marker 
genes changed randomly following the transition probability of beta 
distributions, and the shape parameters were dependent on the state 
of the mother cells and the CAR- T signal. For example, given the ex-
pression level of CD34 in cycle k as uk, the expression level for cycle   
k +  1 (denoted by uk +  1) is a random number of beta distribution with 
probability density function

 P u u u
u u

B a b
B a b

a b

a bk k

a b

( | )
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( , )
, ( , )

( ) ( )
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− −
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1 134 341 Γ Γ
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where the shape parameters a and b are dependent on the condi-
tional expectation and the conditional variance of uk +  1. When

 E u u u u u u uk k k k k( | ) ( ), ( | ) ( )( ( ))+ += =
+

−1 34 1
34

34 34 34 34
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1φ

η
φ φVar ,, 

then

 a u b uk k= = −η φ η φ34 34 34 341( ), ( ( )). 

In the model, it was assumed that η34 =  60 and
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and let

 α34 341 45 0 16= + × ×. . [CD19]+ SignalA  

to represent the promotion of CD34 expression by CD19 and the 
CAR- T signal. For details of the model, refer to [78].

Simulations shown in [78] effectively reproduced experimental 
results and predicted that CAR- T cell- induced cell plasticity can 
lead to tumour relapse in B- ALL after CD19 CAR- T treatment. 
Specifically, simulations show the increase of the fractions of CD34+  
and CD123+  cells from day 5 to day 23 after treatment, during which 

the cell number begins to increase. The fractions of CD34+  and 
CD123+  cells decrease to low levels at the latter stage due to the ex-
haustion of CAR- T cells. These results suggest the occurrence of cell 
plasticity in response to therapy stress that is essential for tumour re-
lapse. Cancer cell plasticity is a major obstacle to the effective treat-
ment of many cancers. The modelling technique introduced in this 
chapter provides a general framework to study this process.

7.5. Evolution of the Waddington landscape

We have seen that Waddington’s epigenetic landscape is a general 
and qualitative concept of understanding cell- fate decisions and 
plasticity. Waddington landscape provides a great picture of how a 
cell selects its type during development as well as the possibility of 
cell- type switches due to trans- differentiation. The concept of land-
scape is also important when we try to describe the dynamic change 
of the epigenetic state of cells in a multicellular tissue. In the situ-
ation of tumour evolution, many cells undergo regeneration and 
cell- type transitions to form a landscape of the epigenetic state of all 
tumour cells. Here, we introduce a mathematical model to describe 
the evolution of the Waddington landscape.

From Equation (7.22), let

 Q t Q t( ) ( , )= ∫Ω
x xd  (7.36)

to represent the total cell number. The relative cell number with epi-
genetic state x is given by

 f t
Q t

Q t
( , )

( , )

( )
.x

x
=  (7.37)

The function f (t, x) shows the evolution of the probability density 
of epigenetic states, and the evolution of the landscape is given by

 W t f t( , ) log ( , ).x x= −  (7.38)

From (7.22), and integrating both sides of the equation, we obtain
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(7.39)

If we omit the heterogeneity, all rate functions are independent of x 
and c(t) =  Q(t), we re- obtain the delay differential equation (7.16) for 
homogeneous stem cell regeneration.

From (7.37), (7.39), and (7.22), we obtain the equation for f(t, x) as
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we have
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∂
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Equation (7.41) gives the evolution of the Waddington landscape 
of a system of stem cell regeneration with cell heterogeneity and 
plasticity.

Particularly, when the system reaches the equilibrium state that 
Q(t) and f(t, x) are independent of the time t, we can write

 

Q t Q f t f

W t W c t Q t c

( ) *, ( , ) * ( ),
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= =

= = ∫
x x
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then equation (7.40) becomes

2 β µ τ( * , ) * ( )( ( , ) * ( )( ) ( )c e f p f
Ω∫

− −y y x y x) yy y d  

 − + − + =∫f f c c* ( ) * ( )(( ( * , ) ( )) ( ( * , ) ( ))) .x y x x y y y
Ω

β βκ κ d 0  

Thus, define a nonlinear operator Fc as

F f c e f p fc[ ] ( , ) ( )( ( , ) ( )( ) ( )= −∫ −2 β µ τ

Ω
y y x y x) yy y d  

− + − +∫f f c c( ) ( )(( ( , ) ( )) ( ( , ) ( )))x y x x y y y.
Ω

β βκ κ d  

Equation (7.42) becomes a nonlinear eigenvalue problem

 F fc[ ] .= 0  (7.42)

The equilibrium state density function f∗(x) corresponds to the 
eigenfunction of the operator Fc with a positive eigenvalue c∗. The 
Waddington landscape is given by

 W f*( log * ( ).x x) = −  (7.43)

Thus, the mathematical formulation provides a general method of 
calculating the evolution of Waddington’s landscape during tumour 
evolution.

7.6.  Conclusions

In this chapter, we reviewed mathematical modelling approaches of 
cancer gene networks. From these approaches, we can quantify the 
underlying potential landscape of the cancer network and identify 
the attractor states in gene network state space as distinct biological 
functional states (normal, cancer, and apoptosis states). Through 
the landscape topography and kinetic transition rates between at-
tractors, the global stability and the capability of the transitions be-
tween normal and cancer states can be quantified. Based on the path 
integral method, one can uncover the underlying mechanism of the 
state transition and quantify the transition process among different 
cell states. Further, using the landscape and transition path frame-
work, one can interrogate the important relationship between cancer 
metastasis, EMT, and metabolism. Several examples are introduced 

to illustrate the procedure for stochastic analysis of these dynamical 
processes. The results for the landscape and kinetic transition paths 
for the cancer network, as well as the EMT– metastasis– metabolism 
network, can help to develop strategies for cancer prevention and 
treatment.

Tumour evolution is a multiscale dynamical process in which sto-
chastic gene network regulations interconnect with cell cycling to 
form a complex interaction relationship. It is not enough to focus on 
cell plasticity in a single cell while we try to understand the dynamics 
of tumour evolution. Here, we introduce a mathematical framework 
to describe the dynamics of cell regeneration with highlights on cell 
heterogeneity and plasticity. The model provides an integration of 
multiple scales of interactions, including single- cell epigenetic state, 
cell behaviour, cytokine secretion, the transition of epigenetic state 
during cell cycling, microenvironmental conditions, and population 
dynamics. This model framework can be applied to different prob-
lems related to cell regeneration, such as development, ageing, and 
tumour evolution. Through the model, we are able to develop a com-
putational model to simulate the process of microenvironmental- 
change- induced abnormal growth and cell- plasticity- induced 
immune escape after CAR- T therapy. Moreover, the evolution of 
Waddington’s epigenetic landscape can be obtained from the model. 
Hence, the model introduced in the chapter provides a logical con-
nection between cell- fate decisions at the single- cell level and the 
tissue growth level.
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The road to cancer and back: A 
thermodynamic point of view
Arnab Barua and Haralampos Hatzikirou

8.1.  Introduction

The process of decision- making involves selecting important choices 
and responses based on specific criteria [1] . In the realm of cellular 
biology, cell decision- making refers to the process by which cells 
choose a new state, such as cell fates or phenotypes, in response to 
their microenvironmental surroundings [2,3]. This process is cru-
cial in understanding cancer cell differentiation, in which cancer 
stem cells differentiate into various specialized cell types in an ap-
propriate microenvironment. However, the differentiation process 
is complex and involves an intricate interplay between various fac-
tors, including cell intrinsic dynamics and extrinsic microenviron-
mental signals. Despite significant progress, there are still limited 
insights into how progenitor cells encode and process these factors 
to generate different cell types. Despite significant progress, our 
understanding of how these factors are encoded and processed by 
progenitor cells to generate different cell types remains limited.

In 2006, scientists discovered that almost any normal cell can be 
sent back to a state of pluripotency by expressing appropriate tran-
scription factors [4] . This process of somatic reprogramming using 
Yamanaka factors offers insights into how cancer stem cells may 
originate. A prime example of this process is neurological cancers, 
such as primary glioblastomas [5] and retinoblastomas [6], which 
result from the de- differentiation of glial and photoreceptor cells, re-
spectively. Recently, de- differentiation has been recognized as a hall-
mark of cancer under the general concept of phenotypic plasticity 
[7] where experimental and theoretical approaches have been de-
veloped to study it [8]. Physiological tissue differentiation is a com-
plex process that involves a delicate balance of intrinsic and extrinsic 
factors that result in coherent fate decisions. Here, we focus on the 
question of how probable is the reversal of normal tissues back to 
pluripotency, which is associated with cancer.

The theory of cell differentiation, formulated by Waddington 
[9,10,11], provides a framework for modelling single- cell fate de-
cisions within a dynamical systems approach [12,13,14]. In this 
perspective, cell states are represented as vectors of molecular ex-
pressions that can be measured through experimental techniques, 

such as high- throughput - omic data, flow cytometry data, biopsy 
markers, etc. [10,15,16]. Normal states correspond to fixed points 
of microstate attractors, which are associated with a probability 
distribution peaked around the fixed point [17,18]. On the other 
hand, cancer and stem- cell- like states can be viewed as limit- cycle 
attractors, as they do not correspond to stable fixed points. A cancer 
state can be compatible with various interchangeable molecular 
microstates [19]. However, the Waddington theory does not con-
sider cell sensing and the corresponding interactions that occur 
within the tissue. Therefore, further theoretical developments are 
necessary to address these limitations and answer outstanding ques-
tions in this field.

In this chapter, we present the least microenvironmental uncer-
tainty principle (LEUP) [20,21,22] (for details please see Box 8.2), 
a statistical mechanics motivated theory that models cell decision- 
making in a multicellular environment. The LEUP draws inspiration 
from various dynamic Bayesian inference theories, including the 
Bayesian brain hypothesis [23], the free- energy principle [24], and 
Bialek’s work [25]. Specifically, the LEUP proposes that cells acquire 
knowledge about their microenvironment through various sensing 
mechanisms, such as receptor– ligand binding [26], pseudopodia 
extension [27], mechanosensing [28], proton- pump channels [29], 
gap junctions, among others. We postulate that cell sensing informs 
cell decisions, and the LEUP is founded on the idea that cells adapt 
to sensed microenvironmental data to make decisions, resulting 
in a decrease in the local microenvironmental entropy of the cell 
decision- maker.

In this study, we aim to develop a thermodynamic- like theory for 
a generic cell differentiation process using the tools of stochastic 
thermodynamics to address our research question. Stochastic 
thermodynamics is a powerful tool for systems where small- scale 
dynamics are significant [30,31– 33,34,35]. Our main biological 
assumption is that normal cells can revert to an abnormal state 
through the process of carcinogenesis [36,6,37]. Stochastic thermo-
dynamics enables us to identify the conditions where single- cell 
de- differentiation is possible, i.e. microscopic reversibility, while 
the tissue remains thermodynamically robust, i.e. macroscopically 
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irreversible. To describe the cell- level de- differentiation process, we 
employ Crook’s fluctuation theorem [38,39], a central tenet of sto-
chastic thermodynamics.

The chapter is organized as follows: in Section 8.2, we out-
line the basic features and concepts of LEUP in connection to cell 
decision- making. In Section 8.3, we show the main steps in deriving 
a thermodynamic point of view for tissue cancerization based on 
cell de- differentiation. In Section 8.4, we discuss the interplay of 
cancer hallmarks that appear to influence the probability of turning 
tissue into cancer. We conclude and discuss our results in Section 
8.5. Finally, we would like to state that the details for most of our 
theoretical demonstrations can be found in [40].

8.2. A potential cell decision- making principle

In this section, we focus on the idea of cell decision- making from the 
point of view of a principle, which is recently proposed as the LEUP 
as in ref. [22].

8.2.1. Relation to Bayesian learning

Let us define the internal variables of the nth cell as xn and external 
variables surrounding the nth cell as yn which contains the informa-
tion within a particular interaction radius ℓ around the nth cell (see 
Box 8.1 for our definition of microenvironment). Note that cells can 
reshape the interaction radius while changing internal biophysical 
mechanisms. Moreover, we assume that cell decisions, interpreted as 
changes in the cellular internal states xn within a decision time τ, are 
the fusion of (i) sensing their microenvironment and (ii) an existing 
predisposition about their internal state. In a Bayesian language, the 
former can be interpreted as the empirical likelihood P(yn|xn) and 
the latter as the prior distribution P(xn). We propose that cells evolve 
the distribution of their internal states through Bayesian learning. 
This means that after each decision, the cell updates its internal state 
distribution from Pt(xn) to Pt+ τ(xn). The cell is effectively trying to 
develop more informative priors over time to minimize the energy 
cost associated with sampling its microenvironment.

According to Bayesian learning, the posterior of the previous time 
Pt(xn|yn) becomes prior to the next time step, i.e. P x P x yt T n t n n+ ( ) = ( | ).

Therefore, the Bayesian learning dynamics read

 P x
P y x P x

P yt T n

t n n t n

t n

+ ( ) =
( ) ( )

( )
|

,

 ⇒
( )

( ) = ( )
+ln ln

P x

P x

P y x

P y
t T n

t n

t n n

t n

( | )
. (8.1)

At this point, we assume that there exists an attainable steady- state 
internal state probability density function (pdf) P(xn) ≥ 0. Now 
multiplying and dividing the first part of Equation (8.1) with the 
steady- state pdf, splitting the logarithm into a sum and averaging 
both sides equilibrium distribution P(xn), we obtain

 D P P D P P
P y x

P yt t T

t n n

t n

( || ) ( || ) ln ,− =
( )

( )+

|
 (8.2)

where D Q P dxQ x
Q x

p x
( || ) = ∫ ( ) ( )

( )ln  denotes the Kullback– Leibler 

divergence of two probability distributions. In turn, we average 
Equation (8.2) with the joint pdf Pt(yn, xn) and we obtain the 
following:

 D P P D P P I x y I x yt t T t n n P t n n( || ) ( || ) , , ,− = ( ) = ( )+  (8.3)

where I(xn, yn) is the mutual information between internal and ex-
ternal cell states at time t. On the right- hand side, the averaging has 
no effect on the mutual information since it is a scalar. Approaching 
the system to the equilibrium pdf and using a well- established re-
sult from information theory [41], the left- hand side of the above 
is always positive. This is a requirement since mutual information 
should always be a positive quantity.

At this point, it is important to state that Bayesian learning is an 
oversimplification of reality. Also, it is known that biological pro-
cesses are typically out of equilibrium. To improve the realism of 
our model, we introduce an arbitrary parameter β ∈ R that meas-
ures the characteristic timescale of the equilibration process. Since 
we have assumed a mesoscopic point of view for the cell decision- 
making process, it is reasonable to consider an information source/ 
sink term η(t), which is of deterministic or stochastic nature. Then, 
the Bayesian learning model reads

 ∆D I x y tT n n= + ( )β η, ) . (8.4)

In the following, we assume the term η(t) =  0. Since ΔD ≥ 0, it can 
approach zero only when its time derivative is negative.

Then, this implies

 β
dI y x

dt
n n,

.
( )

≤ 0  (8.5)

At this point, can see the critical role of the parameter β since 
when β < 0 it maximizes and for β ≥ 0 it minimizes in time mutual 

Box 8.2 What is the least microenvironmental uncertainty 
principle (LEUP)?

During development cells decide over their fate by adapting to their 
available microenvironmental information. These decisions lead to the 
higher organization of tissues. LEUP is a mesoscopic theory postulating 
that during the above process the rate of the microenvironmental en-
tropy (uncertainty) is negative.

Box 8.1 What is microenvironment? 

A composition of neighbourhood cells, extra- cellular matrix, chemical 
signals, and ligands inside a finite area around a cell that influences cel-
lular functions and behaviour.

The goal of this principle is to understand cellular decision- making 
from the perspective of informative decision- makers that increase the 
microenvironmental information over time (see Box 8.2). LEUP idea was 
inspired by observing developing tissues or, generally, multicellular sys-
tems, where cells and tissues acquire specific differentiated phenotypes 
and organized/ low entropy patterns, respectively. The challenges that 
LEUP aspires to confront are summarized in Box 8.3. In this section, we 
discuss the main concepts and some technical aspects of LEUP.
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information. When the system maximizes the mutual informa-
tion between the microenvironment and the cell variables, and as-
suming that the microenvironmental distribution P(yn) stays almost 
invariant, then we can deduce that the microenvironmental en-
tropy decays

  β β≤
( )

≤0 0: ,
dS y x

dt
n n|

 (8.6)

which is exactly the LEUP premise ( for further details about LEUP 
challenges please see Box 8.3). This is in concordance with Bialek’s 
proposition that biological systems follow a maximum information 
principle [25].

8.2.2. Equilibrium distribution

At this point, we are interested in calculating the steady- state distri-
bution P(xn). As we have assumed a timescale separation between 
internal and external variables, we can now formulate the equilib-
rium distribution calculation as a variational problem regarding 
the maximization of entropy of cell internal states S (xn). In turn, 
we constrain our maximization problem by I y xn n( ,( ) that is the 
experimentally observed mutual information of a specific tissue. 
Considering the internal states as a continuous variable, one can 
write the variational problem as

δ

δ

β

λP x

S x dxP x dyP y x i y x I x y

P x dn

n n n

( )
( ) + ∫ ( )∫ ( ) − ( )





− ∫ ( )
( | ) : ( ,

xx − 












=

1
0,

 
(8.7)

where δ δ/ P xn( ) is the functional derivative. Two Lagrange multi-
pliers are defined as the sensitivity parameter β, and λ is related to a 
constraint that ensures the normalization of cellular internal states. 
Interestingly, one can also use other biological partial knowledge in 
terms of various constraints subject to Equation (8.7). Now, we can 
write the solution of Equation (8.7) as

 P x
e

dx e

e

Zn

I y x

n

I y x

S y xn n

n n

n n

1
1

( ) =
∫

=
( )

( )

−

′

β

β

β,

,

( | )

,
′

 (8.8)

where Z e dxS y x

n
n n

1( ) ( | )β β= ∫ − ′ ′  is a normalization constant. In the litera-
ture, such distributions are called entropic priors [42].

At this point, we want to generalize (8.8) to a biologically rele-
vant scenario of cell differentiation where we include the cell 
division phenomena. The differentiation process occurs in the 
case of asymmetric cancer progenitor cells [43]. We assume that 
asymmetric proliferation follows a Binomial distribution where 
N y xn n( | ) in the microenvironment proliferate at a rate µ τ∝ −Τdiv

1 . 
Assuming small proliferation rates, the proliferation distribution 
converges to a Poisson process with a rate μN (yn | xn). So, the prob-
ability of the internal cellular state of the central nth cell can be 
expressed as

 

P x
N y x

N y x e e

e

n

n n

n n

N y x S y x

S y x

n n n n

n n

( )
( | )

( | ) ( | ) ( | )

( |

∝ × ×

=

− −

−

1 µ β

β )) ( | )

( , )
,

−µ

β µ

N y xn n

Z
 (8.9)

where the new normalization factor of P(xn) is defined 
Z e dxS y x N y x

n
n n n n( , ) .( | ) ( | )β µ β µ= − −∫  The first product term is the prob-

ability of a cell from the microenvironment to proliferate. Now, using 
Equation (8.9), we can say that the entropy of internal variable is

 

S x P x P x dx

S y x N y x Z

n n n n

n n x n n xn n

( ) ( )ln ( )

( | ) ( | ) ,

= − ∫

= + +β µ 1n  (8.10)

Figure 8.1. The schematic diagram of the microenvironment of a cell decision maker, where ℓ is the maximum microenvironmental sensing radius. 
The microenvironment is a composition of cells with different phenotypes.

Box 8.3 Challenges addressed by LEUP theory

 • Lack of mechanistic knowledge: Quantification of the cell state dy-
namics without the complete knowledge of the underlying intrinsic 
mechanisms.

 • Cell– tissue feedback: Dissecting the relative contribution of intrinsic 
and extrinsic factors of cell decision- making dynamics to the spatio-
temporal order in multicellular systems.

 • Multiscale information processing: Understand the impact of cell- level 
information processing in the tissue- level dynamics and organization.
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where ⟨ . . . ⟩ is the average value with respect to the internal cellular 
states.

8.3. How probable is it for normal 
tissues to become cancerous?

Let us now focus on the de- differentiation process. A cellular 
microstate corresponds to a cell phenotype that lives in a tissue, 
which could be gene expression, RNA molecules, receptor distri-
bution, etc. A microstate is typically considered as a stable attractor 
of the internal variables [17]. Here, we denote these steady states of 
internal variables as xs and xd corresponding to differentiated and 
pluripotent/ cancer cells, respectively. In turn, we define a cellular 
macrostate as a statistical observable (e.g. average) related to a cel-
lular ensemble involving different phenotypes. Macrostates contain 
information about external variables, within a finite neighbour-
hood around a cell, here labelled as ys and yd. The macrostate ys de-
scribes the microenvironment of pluripotent cells characterized by 
the microstate xs; the macrostate yd accordingly denotes the micro-
environment of differentiated cells characterized by the microstate 
xd. We denote the number of pluripotent/ cancer cells neighbouring 
a cell of microstate xs as N(ys|xs) and the number of differentiated 
cells neighbouring a cell of microstate xd as N(yd|xd). The total 
number of pluripotent and specialized cells inside the system is de-
noted as N(s) and N(d), respectively. Based on (8.9), we can write 
the probability of the cell to be in the specific microstate xi, where 
i =  {s, d}, as

 P x
e

Zi

S y x N y x

i

i i i i i i

( ) =
− −β µ( | ) ( | )

. (8.11)

8.3.1. Microreversibility and de- differentiation

Now we discuss, using the thermodynamic lens, how probable is 
that cells de- differentiate. Let the technical assumptions of Crook’s 
theorem being fulfilled [38,39], then we can write

 ′ =
→( )





→( )



















( )

( )β ∆Q
w x x x

w x x x

k

s d

k

d s

ln , (8.12)

where ′ ≡β
1

T
, in which T is the temperature of the heat bath and 

ΔQ is the total heat released into the bath over the course of a par-
ticular xs → xd transition. The corresponding transition probability 
is w x x xk

s d[ ]( )( ) →  with k denoting one of the possible paths of this 
transition. The de- differentiation probability, which is the reversal 
of xd along the exact same path k, is denoted as w x x xk

d s[ .( )( ) →  
Equation (8.12) states that when a cell differentiates (forward tran-
sition) some of the metabolic energy used is transformed into heat. 
Therefore, the probability of reversing this transition to the same 
pluripotent phenotype has a much lower probability to occur. Thus, 
Equation (8.12) substantiates a relation between metabolic needs 
and microreversibility at the cellular level. These arguments are in 
line with the ideas presented in [5] , where differentiation is regarded 
as a series of reversible transitions through many microstates. In 
particular, stem cell phenotypes exhibit reversible oscillations until 

an attractor drives them towards a differentiated state. Within this 
picture, de- differentiation is likely to occur only as a low- probability 
series of microstate transitions. In our model, such changes in 
phenotypes are interpreted as Brownian jumps and the associated 
heat losses are assumed to be due to potential changes in cell me-
tabolism. Finally, a significant source of heat losses comes from cell 
proliferation, which is required during the differentiation process 
[44]. However, there are other minor heat dissipation sources that 
are disregarded since they act on shorter timescales, such as physical 
friction, changes in the cytoskeleton, etc.

The Crooks’ theorem in (8.12) is valid for a single differentiation 
trajectory that connects the emergence of a single pluripotent state 
to a particular differentiation transition. However, there are multiple 
ways that a differentiation and de- differentiation process can take 
place. As shown in [40], we can derive a general reversibility rela-
tionship that reads

 
w x x

w x x
Q x xs d

d s

x x
T

d ss d

( )

( )
exp ,

→
→

=   →′ →β ∆  (8.13)

where w x xs d( )→  is the differentiation transition probability and 
w x xd s( )→  is the de- differentiation one (reverse). The above ver-
sion of Crooks’ theorem in (8.13) averages overall paths leading to 
differentiation and also to de- differentiation.

8.3.2. Macroreversibility and tissue cancerization

Having established the cell- level reversibility relation in Equation 
(8.13), we can draw our attention to its impact on macroscopic 
(tissue) transitions. At this point, let us assume that tissue dynamics 
follow a Markov process. The transition probability from a pluripo-
tent tissue state to a normal tissue reads

 W s d dx P x s w x x
d

d s s d→( ) = →∫ ( | ) ( ), (8.14)

and the transition probability back to pluripotency, associated with 
tissue cancerization, reads

 W d s dx dx P x d w x x
d

s

d

d d d s→( ) = →∫ ∫ ( | ) ( ), (8.15)

where P x ss( | ) is the probability that the system is in the microstate 
xs, given that it is observed in the macrostate s, and w x xs d→( ) is 
defined as before. These processes are illustrated in Figure 8.2. In 
turn, one can write the expression of total entropy production of 
such transitions as

 ∆ ∆ ∆f Q S
Z

Zx x
T

s d s d

s

d
s d

= + −








′ → → →

β LEUP n1 . (8.16)

In other words, this expression of entropy production can be con-
sidered as a generalization of the second law of thermodynamics 
(see also ref. [39]).

The pluripotent tissue differentiation transition s → d corresponds 
to the probability W W s d+ = →( ). On the other hand, the transition 
d → s denotes that healthy tissue de- differentiates into a cancerous 
tissue and it is quantified by the backward transition probability of 
W W d s− = →( ). At this point, we can rewrite the fluctuation the-
orem in terms of W +  and W− as
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W

W
f

+

− ≤ exp( )∆ . (8.17)

To understand the thermodynamic constraint that ensures the ro-
bustness of differentiated tissues, we assume that there exists a max-
imum forward transition probability from s to d in such a way that

W
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Q S N
Z

Zx x
s d s d s d
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d
s d
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LEUPexp ln
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→ → → →
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



′β τ∆ ∆ ∆




 (8.18)

Equation (8.18) implies that if the entropy production Δf, i.e. the 
sum of all contributions from different biological processes, is posi-
tive then the tissue remains physiological. If Δf < 0, then a differenti-
ated tissue can be destabilized and become cancerous.

The last relation is central to our work since it connects the prob-
ability of tissue cancerization to four cell processes that have been 
identified as hallmarks of cancer [7,45] (see Figures 8.3 and 8.4). We 
further elaborate on this in the following section.

8.4. The interplay between hallmarks 
of cancer

In the previous section, we have shown that the tissue reversibility 
probability depends on changes in the following four cell pro-
cesses: metabolism, proliferation, epigenetic regulation, and cell 
decision- making. These correspond to hallmarks of cancer as con-
ceptualized by Hanahan and Weinberg [7,45].

8.4.1. Increased net cell proliferation

Cell proliferation is a fundamental process in the development of or-
ganisms, allowing for the creation of new cells that form tissues and 
organs. This process is typically regulated by nutrient availability in 
the microenvironment and gene regulatory networks that are in-
fluenced by neighbouring cells. While cell proliferation is essential 
for survival in normal cells, in cancer cells, it becomes uncontrolled 
and can spread rapidly. This uncontrolled net proliferation is the most 
common hallmark of cancer, leading to the formation of tumours 
and other abnormal neoplasia. In particular, increased net prolifer-
ation is a combination of the following hallmarks: sustained prolif-
erative signalling, evasion of growth suppressors, and resisting cell 
death. The proliferation of cancer cells is typically much greater than 
that of normal cells, leading to a negative N Cs d→ <  term in entropy 
production (Equation (8.16)).

8.4.2. Deregulation of cell metabolism

 Metabolism is a critical set of chemical reactions that enable cells 
to survive in their microenvironment. It encompasses two types of 
reactions: catabolic reactions, which break down nutrients from the 
microenvironment, and anabolic reactions, which create essential 
molecules such as proteins, carbohydrates, and fats. In cancer cells, 
changes in metabolism are a hallmark that distinguishes them from 
normal cells. Specifically, the glycolysis pathway, a subset of cata-
bolic reactions, operates differently in cancer cells. While normal 
cells utilize aerobic glycolysis to break down glucose into carbon di-
oxide and water, cancer cells rely on anaerobic glycolysis or fermen-
tation to transform glucose into lactate. This difference in metabolic 
pathways affects the amount of heat dissipation during glycolysis, 

Figure 8.2. Microscopic/ macroscopic transitions between two 
distinct cell/ tissue types. Source: Adapted from [3] .

Figure 8.3. The probability of issue cancerization is a function of changes in four different biological processes: metabolism, proliferation, 
epigenetic adaptations, and phenotypic plasticity. These processes are identified as hallmarks of cancer.
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with anaerobic glycolysis releasing slightly more heat than aerobic 
glycolysis. In [46], the authors calculated that the amount of heat re-
leased in aerobic glycolysis is around 2,820 kJ/ mol, and in anaerobic 
glycolysis, the number is around 2,929.4 kJ/ mol. So, the difference in 
heat dissipation ∆Qx x

T
s ds d→ →  is 109.4 [40]. In Equation (8.17), the first 

term in the entropy production equation reflects the contribution 
of metabolic changes during the transition from pluripotent cells to 
normal cells, which is positive in nature. In the case of transition to 
cancerous tissue, the sign of the term is expected to be inverted.

8.4.3. Epigenetic reprogramming and 
genome instability

Epigenetics is the study of how genes interact with the complex world 
of inter- cellular and microenvironmental factors. The genetic infor-
mation passed down from one generation to the next is stored in the 
DNA sequence, acting as a blueprint or memory. However, this pro-
cess is also influenced by epigenetic changes that affect how genes are 
turned on or off, such as DNA methylation and histone modifications.

In cancer, epigenetic reprogramming is a hallmark of the disease. 
Usually, this process is mediated by DNA methylation [47], where 
methyl groups impact to turn ON/ OFF the gene or histone modifi-
cation [48] and the genetic switch is modified by the tightness prop-
erties of histone proteins around the DNA.

Epigenetic changes towards pluripotency or differentiation imply 
weak or strong constraints on the mRNA/ protein expression giving 
rise to associated entropy changes [16]. This implies that the avail-
able phase space of admissible phenotypes increases for pluripo-
tent cells and decreases in the case of differentiated ones. Therefore, 

the origin of the term ln 
Z

Z
s

d









  in the entropy production (Equation 

(8.16)) shows epigenetically mediated change in the phase space and 
consequently the sign of the term becomes positive since Zs > Zd.

8.4.4. Abnormal cell decision- making and 
phenotypic plasticity

 Phenotypic plasticity is a hallmark cancer capability that allows 
cells to adapt to different microenvironments and stimuli, resulting 

in various disruptions of cellular differentiation. This includes 
the ability to de- differentiate from a mature state to a progenitor 
state, block terminal differentiation from progenitor cell states, 
and transdifferentiate into different cell lineages. As we have ar-
gued before, phenotypic plasticity can be regarded as a form of cell 
decision- making.

A cellular decision- maker needs to sense and gather know-
ledge about its surroundings, which can then influence the 
microenvironment’s structure and organization over time through 
a feedback loop. Interestingly, in cancer cells, the microenviron-
mental architecture has little structure, while in normal cells the 
microenvironment exhibits specific patterns or expected spatial ar-
rangements (such as the Notch- delta pattern described in [49]). The 
second term in the entropy production (Equation (8.17)) precisely 
quantifies the net change in microenvironmental entropy during the 
transition from a cancer cell to a normal cell, which represents in-
formation about the overall architectural change of the microenvir-
onment. The value of the term ∆SLEUP s d→  can be positive or negative 
depending on the microenvironmental distribution, which is related 
to the sensing radius [40]. During development, the distribution of a 
pluripotent is assumed to be a random Poisson distribution, while in 
differentiated tissues the microenvironmental distribution belongs 
to a class of hyperuniform structures [40,50]. The latter implies that 
the term ⟨ΔSLEUP⟩s→d is positive.

8.5.  Discussion

In this chapter, we investigated the question of how probable 
is tissue cancerization under the assumption of mature cell de- 
differentiation. To tackle this problem, we have employed a com-
bination of stochastic thermodynamics and a recently proposed cell 
decision- making theory, the so- called LEUP. The main result of this 
theoretical treatment is Equation (8.18) which compares the prob-
abilities of a tissue becoming/ staying normal versus returning to a 
pluripotent/ cancerous state. Interestingly, our analysis shows that 
tumorigenesis can be a result of four processes that have been rec-
ognized as cancer hallmarks: metabolism, proliferation, epigenetic 
regulation, and cell plasticity.

Our proposed theory has important and interesting implications 
for cancer research and therapy. In clinical practice, cancer ther-
apies have primarily focused on anti- proliferative strategies, such 
as chemotherapy and radiotherapy. Although metabolic repro-
gramming has also been considered as a therapeutic target, it has 
not been mainstream used in clinics [51]. Also, epigenetic therapies 
hold the promise of being effective, but they are still tested in clinical 
trials [52]. However, recent research by West et al. [53] has identi-
fied the critical role that changes in tissue organization play in tu-
mour evolution. Our theory establishes a mechanistic connection 
between tissue architecture and cell decision/ sensing mechanisms. 
Notably, the experimental work by Levin’s group [54] demonstrates 
that disrupting ion channel sensing in tissue can induce tumorigen-
esis. We suggest that investigating changes in cell sensory processes 
is crucial for effective cancer treatment.

Our theory may contribute to stepping forward in our under-
standing of cancer development and treatment. It provides a quan-
titative framework that takes into account the complex interplay of 

Figure 8.4. A modified representation of the hallmarks of cancer cells 
(inspired by [22,23]).
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metabolic, proliferative, epigenetic, and plasticity changes that can 
lead to cancer or its therapy. With our theory, we can envision quan-
tifying the impact of specific therapeutic modalities on increasing 
entropy production and assess how many different therapies must 
be combined to achieve a full reversal of cancerous tissue back to 
a healthy physiological state. Of course, achieving this goal still re-
quires further research in the context of specific cancers.
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Cellular plasticity as emerging target 
against dynamic complexity in cancer
Paromita Mitra, Uday Saha, Subhashis Ghosh, and Sandeep Singh

Considering the microevolutionary perspectives, a tumour is com-
posed of heterogeneous cell populations. Tumour cell heterogeneity 
is being well characterized by recent advancements in single- cell 
multi- omic techniques. Increasing reports are revealing that het-
erogeneous tumours show the existence of different subtypes of 
cancer cell populations at both phenotypic and genotypic levels [1] . 
Acquisition of certain driver gene mutations by the cell of origin 
and the influence of tissue microenvironment over these cells are 
the major events that influence cancer initiation. These factors are 
vital to generate the initial mixed cell population with varied pheno-
typic and genotypic properties. Eventually, a group of cancer cells 
get the advantage of genetic evolution to act as clonal subpopulation. 
A number of recent studies have unfolded the characteristics of the 
cancer cells at the levels of genetic and epigenetic alterations [2]. 
These subpopulations dynamically interact and give rise to func-
tional diversity, such as phenotypic heterogeneity, evasion of the im-
mune response, and therapeutic stress for survival and metastasis 
[3]. Poorly differentiated high- grade tumours show drastic alter-
ations in tissue histology and architecture, suggesting the existence 
of multiple cellular states or lineages of cells, whereas low- grade tu-
mours exhibit relatively moderate or well- differentiated histology. 
Prognostically, the poorly differentiated high- grade tumours show 
worse outcomes compared to the well- differentiated low- grade tu-
mours. Therefore, addressing various potential questions related 
to tumour evolution and its functional implications will have huge 
clinical implications. Approaches are needed to simultaneously 
measure the cell state and lineage in aggressive cancers. Addressing 
these aggressive features, the term ‘cellular plasticity’ has been used 
to refer to the shifting in cellular identity following a well- regulated 
process within genetic clones. Cellular plasticity in cancer is often 
found similar to the process activated during embryonic develop-
ment to form the whole organism or during wound healing and 
repair of adult tissues through the dynamic levels of some specific 
molecular regulators of lineage identity and differentiation states 
[4]. Moreover, this aspect of cancer biology is majorly ignored due to 
the assumption that all phenotypic changes must be caused by gen-
etic mutations. However, against this prevailing paradigm where so-
matic evolution is responsible for cancer progression, the evidence 

of cellular plasticity and non- genetic heterogeneity establishes the 
major paradigm shift in cancer biology.

Epithelial- to- mesenchymal transition (EMT) and its inverse pro-
cess mesenchymal- to- epithelial transition are two reversible and 
dynamic mechanisms involved in embryonic development of ver-
tebrates. The physiologic significance of EMT has been explored by 
both in vitro and in vivo studies. The well- orchestrated/ organized 
pattern of EMT develops the delicate and complex multicellular or-
gans through the cellular terminal differentiation. EMT is also func-
tionally visible at the time of wound healing of adult skin. During the 
course of wound healing, epithelial keratinocytes from the edge of 
the wound attain a migratory nature to cover up the wound. This is a 
prime example of the programmed nature of EMT process. Talking 
about the pathological significance, EMT program is quite evident 
in epithelial- originated carcinomas and often be correlated with the 
histology and tumour grade. The migratory behaviour of cancer 
cells is explained by reprogrammed EMT. Being a cellular program, 
EMT is not a restricted phenomenon; rather, the evolving studies are 
revealing that the cancer cells may exist in a range of degrees of tran-
sitions between epithelial and mesenchymal states [5] .

Often linked to EMT, stemness or stem- cell- like properties in 
cancer cells are explained by cancer stem cell model where cells are 
organized as hierarchical structures in which only stem- like cancer 
cells (SLCCs) or cancer stem cells (CSCs) are having the ability to 
initiate cancer and therefore, based on this potential, they occupy 
the top of the hierarchy. CSCs asymmetrically divide to generate 
themselves and transient amplifying cells with high proliferative 
capacity as intermediate populations. The differentiated cells with 
non- tumorigenic ability are the bulk of the cancer cell population 
and, therefore, are placed in the bottom position [6] . However, the 
recent pieces of evidence suggest that stemness in cancer cells can be 
achieved over time, even by differentiated cells, suggesting cellular 
plasticity [7]. Hence, the unidirectional rigid hierarchies of SLCC 
models are widely debated.

Due to their long- term tumorigenic ability, cancer cells with 
stem- cell- like abilities are reported to be responsible for cancer ini-
tiation, progression, metastasis, and resistance to therapy. Thus, the 
evolving concepts of plasticity of CSCs and interconversion between 
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CSCs and non- CSCs have further fuelled the complexity of cancer. 
Mathematical models in plasticity and non- genetic heterogeneity 
provide theoretical frameworks to assess cellular transition dy-
namics and predict tumour behaviour and response to therapy [8] . 
Several models predict the associated regulatory networks in EMT 
and have shown how the cellular plasticity maintains a stable hybrid 
type of cell to drive a non- genetic heterogeneity in tumour [9,10]. 
Bidirectional transition between CSCs and non- CSCs has caught the 
attention to develop suitable models incorporating the prediction 
on the degree of plasticity. The nonhierarchical model to quantita-
tively determine cellular switching that often requires self- renewal 
of CSCs and transition rates of the non- CSC population are thus 
more reliable to explain the plasticity in cancer [11]. In a recent re-
port, we have revealed the phenotypic diversity among SLCCs in 
multiple oral tumour tissues and cell lines. By multiplexing putative 
cell surface stemness markers, CD24, CD44, and endogenous alde-
hyde dehydrogenase (ALDH), we have demonstrated the stochastic 
and cisplatin- induced bidirectional interconversions on the ‘ALDH- 
axis’ and unidirectional non- convertible on the ‘CD24- axis’. A tran-
sition map connecting these states (subpopulations) and transition 
probabilities was created using a discrete time Markov chain model. 
These subpopulations showed distinct transcriptional make- up and 
maintenance of stemness among differentiating populations as hy-
brid states of SLCCs [12]. The key role of SOX2 as a transcription 
factor in regulating stemness has been well demonstrated in mul-
tiple cancer models [13]. SOX2 and SOX9 axes have been reported 
to be responsible for maintaining progenitor- like states of alveolar 
cells in lung adenocarcinoma [14]. Finding such molecular switches 
responsible for the dynamic changes between tumorigenic and non- 
tumorigenic cancer cells will provide rationale for adoptive therapy.

Resistance towards the therapy is the major cause of relapse, 
recurrence, and cancer- related mortality. Upon treatment with 
chemotherapy, radiotherapy, and targeted therapies, such as EGFR 
tyrosine kinase inhibitors in lung cancer, anti- HER2 therapies in 
breast cancer, BRAF inhibitors in melanoma, and even due to the 
immunotherapy, there is the emergence of the resistant cells [15]. It 
was initially proposed to be similar to the Darwinian selection of the 
cell population with the advantage of the genetic alterations that edge 
them to therapy. However, landmark studies have demonstrated the 
emergence of therapy resistance among genetically identical clones 
[16]. Therefore, apart from the genetic factors, non- genetic events, 
such as chromatin remodelling, tumour microenvironmental cues, 
and activation of the signalling pathways, also play pivotal roles in 
drug tolerance state (Figure 9.1). Recent studies are revealing the 
evidence of both intrinsic and adaptive or acquired mechanisms 
of resistance [17]. Most of the adaptive resistances are governed by 
non- genetic chromosomal and epigenetic changes (Figure 9.1).

The evolving studies are strongly correlating cancer cell plasticity 
with therapy resistance [7] . The cancer cells escape the conventional 
chemotherapy and targeted therapies by adapting EMT, dedifferen-
tiation, or signal specific modulations [18]. Cancer cells exhibiting 
CSCs or mesenchymal- like properties show enhanced resistance to 
conventional chemotherapeutic agents compared to more differen-
tiated or epithelial- like cancer cells [19]. Furthermore, increased 
stemness in cancer cells, post- treatment, could be due to adapta-
tion of non- CSCs to the CSC state in response to the therapeutic 
treatment stress. For example, temozolomide (TZM) treatment in 
glioblastoma resulted in expression of stemness markers, SOX2, 

OCT4, and Nestin [20]. Similarly, radiation therapy has also shown 
to increase stemness. Fractionized ionizing radiation induced loss 
of adhesion in fractions of human metastatic pancreatic cancer 
cells. The non- adherent cells exhibited the properties of SLCCs with 
active NOTCH signalling and stem cell markers, such as CD133, 
Oct- 4, Sox2, and Nanog expression [21]. Most often the therapy- 
tolerant states are characterized by slow proliferation, endowed with 
the property of quiescence, and are able to maintain the viability 
in therapeutic stress, where other cancer cells are killed [22]. The 
therapy- tolerant state may be a transient state that can be reverted 
after removal of the therapeutic pressure, but if the therapeutic stress 
continues, it will generate a more stable resistant state [23]. These 
observations are suggesting that drug resistance is a complex state 
of a heterogeneous cancer cell population. A number of studies have 
demonstrated that state transition is a random process, generating a 
high level of heterogeneity that is responsible for the therapy resist-
ance [24].

With the change in environment, cancer cells constantly adapt to 
the environmental hypoxic and low nutrient conditions by repro-
gramming their metabolism to support their rapid growth and sur-
vival. Thus, the phenomenon of ‘metabolic reprogramming’ can be 
one of the crucial mechanisms of cellular plasticity and adaptation 
[25]. Metabolic plasticity refers to the dynamic transition of the me-
tabolism of cancer cells in order to maintain its fitness to a hostile 
environment, more specifically to shift between distinct metabolic 
states [26]. From the very beginning, the metabolic reprogramming 
in cancer cells was mainly described as the ‘Warburg effect’, i.e. the 
use of glycolysis to produce lactate under a normoxic condition ra-
ther than going into the TCA cycle or oxidative phosphorylation 
(OXPHOS) [27]. Classical oncogenic drivers, such as KRAS and 
c- MYC, induce expressions of the glycolytic enzymes and also up-
take of glucose- by- glucose transporter up- regulation from the ex-
ternal matrix. KRAS can activate their downstream activator AKT/ 
mTOR axis, and mTOR alone can stimulate anabolic processes, 
and also under normoxic conditions, it can stimulate c- MYC and 
hypoxia- inducible factor 1α (HIF- 1α) expression [28]. Under hyp-
oxic condition, HIF- 1α is known to induce the glycolysis pathway 
by up- regulating different glucose transporters and also the ne-
cessary enzymes for the glycolysis. A recent study has found that 
the cancer cells modulate the tumour stroma, specifically cancer- 
associated fibroblasts (CAFs) to adopt the aerobic glycolysis, that 
can favour the cancer cells to take up secreted by- products such as 
lactate and pyruvate for energy production directly via mitochon-
drial OXPHOS, a phenomenon named ‘reverse Warburg effect’ [29]. 
Thus, cancer cells efficiently tune their energy production by differ-
ential uptake of the metabolic substrates as well as the uptake of en-
zymes related to metabolic activity. It has also been observed that the 
tumour cells can exist in an intermediated or hybrid type of meta-
bolic phenotype [30]. In 2019, Jia et al. constructed a mathematical 
model for analysing the temporal dynamics of the production and 
degradation of different genes as a measure of plasticity regulation 
and comparing them with metabolic pathway activity [31]. In vitro 
study with TNBC cell lines confirmed the presence of a hybrid meta-
bolic state with the metabolic pathway activities. Disrupting either 
pathway was not sufficient to eliminate those hybrid breast cancer 
cells [31]

Extensive metabolic plasticity is displayed by the SLCCs to main-
tain the self- renewal and chemotherapy resistance [32]. It has been 
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evident that the metabolic plasticity can provide insights into the 
CSC plasticity as the non- CSCs can gain stem- cell- like character-
istics by altering their metabolic state. For instance, WNT/ FGF3 
signalling in MCF7, breast cancer cell line, increases the mito-
chondrial biogenesis that has been associated with an increase in 
stem- cell- like property in differentiated populations of cells [33]. 
Similarly, increased expressions of Hexokinase 1, Hexokinase 2, 
and PDK1 have been shown to increase the SLCC population in 
lung and colon cancer [34]. Pancreatic CSCs maintain a distinct 
OXPHOS- dependent state, whereas the differentiated progenies 
are more glycolytic [35]. However, metformin- targeted inhibition 
of the mitochondrial mass by altering MYC/ PGC 1- alpha balance 
has shown depletion in the pancreatic- CSC progeny and eventually 
changed into an intermediate hybrid glycolysis/ OXPHOS state re-
sisting the metformin effects [36]. Gemcitabine- resistant pancreatic 
ductal adenocarcinoma (PDAC) CSCs largely rely on high glucose 
turnover; therefore, the use of 3- bromopyruvate as a glycolysis in-
hibitor enhances the proliferation of the cells by blocking stem 
cell features and self- renewal ability conferring sensitivity towards 
gemcitabine treatment [37]. Non- CSCs in basal- like breast cancer 
can reprogram their metabolic phenotype by promoter suppression 

of fructose bisphosphate- 1 by Snail- G9a- DNMT complex to acquire 
a less oxygen- dependent glycolytic state and a low- ROS producing 
state. This epigenetic reprogramming resulted in a transformation of 
luminal cells to a basal- cell- like phenotype (CD44 high/ CD24low/ 
EpCAM+ ) and induced EMT by E- cadherin silencing [38].

Based on the location of the cancer cells in the tumour, hypoxia 
or pH, the cells may exert different metabolic states. Oxygen gra-
dient plays a vital role in metabolic heterogeneity in the cancer 
cells close to the blood vessel and the cancer cells remaining in 
a hypoxic condition. In non- small- cell lung cancers (NSCLCs), 
the distant site makes the energy from glucose catabolism, but 
the blood vessel proximal areas utilize fatty acids, ketones, and 
lactate to produce energy [39]. A symbiotic relation is found be-
tween these two types of cells in a tumour. Lactate, made from the 
glycolytic cells under hypoxic conditions, fuels ATP production 
for the cells in OXPHOS metabolic state under normoxic con-
dition [40]. Overall, metabolic plasticity helps the cancer cells to 
gain adaptive advantages, state transition, and acquisition of drug 
resistance. Thus, in different types of stresses in the microenvir-
onment, cancer cells can survive by selecting a broad spectrum 
of metabolic flexibility due to high degree of intrinsic metabolic 

Figure 9.1. Phenotypic plasticity driven non- genetic heterogeneity in cancer cells. Intrinsic factors, such as metabolic, epigenetic, 
and transcriptional regulators, induce phenotypic plasticity of the cancer cells. Similarly, extrinsic regulators, such as mechanical stress, 
chemotherapeutic stress, and stromal factors, contribute to the emergence of diverse molecular states of cells via EMT, MET, differentiation, and de- 
differentiation in cancer cells.
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plasticity. Accumulated evidences suggest that metabolic flexi-
bility or the metabolic plasticity has been tightly regulated by 
multiple factors, but the underlying mechanism is insufficiently 
understood. This sector in cancer biology has gained more atten-
tion from the past decade, and efforts are underway to elucidate 
the least metabolically flexible stage of the cancer cells for better 
therapeutic opportunities.

Collectively, the pieces of evidence discussed above have 
strongly suggested that stemness in cancer cells is a transient state 
driven by the plasticity in cancerous cells. Adding to the com-
plexity, next we discuss the evidence of cellular plasticity in non- 
cancerous cells in the tumour microenvironment and its role in 
driving overall tumour heterogeneity. CAFs are the most abundant 
stromal cells in the tumour microenvironment. During the early 
stage of cancer progression, fibroblasts differentiate into more 
active myofibroblastic states [41]. Myofibroblasts are spindle- 
shaped cells characterized by stress fibre of alpha smooth muscle 
actin (αSMA) with contractile nature. CAFs are reported to be 
heterogeneous, suggesting inter- CAF heterogeneity among dif-
ferent patients. In pancreatic cancer, CAFs that reside in proximity 
of cancer cells, exhibiting higher expression of αSMA driven by 
TGFβ, are known as myofibroblastic CAFs (myCAFs). The CAFs 
reside distal to the cancer core, exhibit interleukin- 6 (IL- 6) expres-
sion, and are known as inflammatory CAFs (iCAF). myCAFs are 
characterized by their contractile property and matrix remodelling 
ability, whereas iCAFs showed an immunomodulatory phenotype. 
myCAFs possess higher expression of fibroblast- activated protein 
(FAP). In breast cancer, FAP+  CAFs are responsible for T- cell-    
mediated immunosuppression and poor prognosis [42]. Also, a 
subset of FAP positive CAFs, FAP+ ve/ PDPN+ ve CAFs, suppress 
effector T-  lymphocyte proliferation and induce immunosup-
pression, whereas FAP+ ve/ PDPN– ve CAFs fail to do so in breast 
cancer [43]. FAP+  CAFs play a crucial role in recruiting T lympho-
cytes and its subsequent differentiation into immunosuppressive 
CD4+ / CD25+ / FOXP3+  regulatory T cells. FAP+  myCAFs have 
higher TGFβ expression that is correlated with the infiltration of 
CTLA4+  regulatory T cells in breast cancer and responsible for 
immunotherapy failure in melanoma and NSCLC [44,45]. Costa 
et al. have identified four subpopulations (CAF S1– S4) of cancer- 
associated fibroblasts with differential tumour- promoting ability 
in breast cancer. CAF- S1 promotes an immunosuppressive micro-
environment, whereas CAF- S4 devoid of this function indicates 
functional intra- CAF heterogeneity [46]. Similarly, two different 
CAF subpopulations are reported to be present in oral cancer, 
named CAF- N and CAF- D. CAF- N and CAF- D have differential 
tumour- promoting and invasive properties [47]. We have reported 
the heterogeneity of oral tumour fibroblasts and that C2- type CAFs 
with high αSMA expression support the enrichment of oral SLCCs 
as compared to the C1- type CAFs with lower αSMA expression 
[48]. However, in colorectal cancer, the depletion of myCAFs lead 
to increased invasiveness, lymph node metastasis, and poor prog-
nosis in mouse models. Mechanistically, the depletion of αSMA 
positive CAFs was found to be responsible for reduced BMP4 se-
cretion and increased abundance of Lgr5+  CSCs [49]. The role of 
BMP4 in restraining stemness is also found to be associated with 
C1- type CAFs in oral cancer though these cells express lower 
levels of αSMA [48]. These findings are suggesting that the het-
erogeneity and plasticity of the CAFs might also be organ specific. 

CAF heterogeneity is also induced by matrix stiffness. Increased 
matrix stiffening promotes nuclear localization of YAP and its 
co- activator TAZ. YAP and TAZ, the effectors of Hippo pathway, 
act as a mechano- transducers that sense and convey mechanical 
stimuli to cell’s intrinsic transcriptional program for increased 
myofibroblastic differentiation [50].

Similar to the CAFs, macrophages also possess highly diverse   
molecular and phenotypic states in both the primary and metastatic 
tumours. Zhu et al. identified that in PDAC, the bone- marrow-  
 derived monocytes and yolk- sac- derived macrophages coexist and 
exert different functions. Bone- marrow- derived monocytes enhance 
antigen presentation while the macrophages had profibrotic prop-
erties that drive tumour progression. This indicates macrophage 
plasticity in the tumour microenvironment. Macrophages can be 
polarized to either M1-  or M2- type depending on the cues received. 
M1 macrophages release pro- inflammatory cytokines, such as inter-
leukins IL- 6, IL- 12, IL- 23, and TNF- α, and exert anti- tumorigenic 
activity by activating type- I T- cell responses [51]. On the contrary, 
M2 macrophages, also known as tumour- associated macrophage 
(TAM), activate type- II T- cell responses that have pro- tumorigenic 
activity. M2 macrophages have high IL- 10, IL- 4, and IL- 13 and low 
levels of IL- 23 [52]. But these classical markers are often expressed 
by a variety of macrophage subset such as M2 macrophage express 
M1 markers at a low level and vice versa [53]. Nitric oxide (NO) is 
a critical regulator of macrophage polarization. Depletion of IL- 4 
and IL- 13 leads to inhibition of NO and polarizes macrophage to 
M2 phenotype, whereas lipopolysaccharide and IL- 4 induce macro-
phage polarization into M1 phenotype by targeting Akt and mTOR 
pathways [54]. M2- type macrophages promote angiogenesis, and its 
involvement is further categorized into M2a and M2c phenotypes. 
Jetten et al. demonstrated that IL- 4 induces M2a in a fibroblast 
growth factor (FGF) and IL- 10 induces M2c phenotype placental 
growth factor in a signalling- dependent manner [55]. M2 macro-
phages thereby play a key role in neo- angiogenesis, metastasis, and 
are responsible for poor disease- specific survival, whereas high M1/ 
M2 ratio favoured disease outcome.

Neutrophils are also known for their involvement in pre- 
metastatic niche formation. Tumour- associated neutrophils 
(TANs) with receptor CXCR1 and CXCR2 expressions are attracted 
to tumour microenvironment where cancer cells as well as stromal 
cells, such as infiltrating immune cells, fibroblasts, and endothelial 
cells, produce their ligand CXCL1, CXCL2, CXCL5, CXCL6, and 
CXCL8 [56]. Like macrophages, the nomenclature N1 and N2 was 
given to neutrophils having two distinct phenotypic states with 
anti- tumorigenic and pro- tumorigenic effects. TGFβ induce polar-
ization of NK as evidenced by higher expression of ARG1, CCL17, 
and CXCL14 and low expression of CXCL10, CXCL13, and CCL6 
[57], whereas interferon- β (IFNβ) alone or a combination treat-
ment of IFNγ and GM- CSF could drive neutrophil polarization 
towards an antitumour state [58]. N2 TANs directly or indirectly 
induce tumour growth, dissemination of cancer cells by secreting 
ECM remodelling enzymes and other pro- angiogenic factors that 
promote tumour metastasis and angiogenesis at a distant site. In an 
induced sarcoma model by 3- MCA, TANs act as a hybrid cell type 
between N1 and N2 neutrophils [59].

As mentioned earlier, a number of recent studies revealed that 
tumor microenvironment (TME) is the crucial factor in induction 
or maintenance of various cellular states in cancerous cells. The 
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TME- released soluble factors have capability to initiate the CSC- 
like features, was first reported in brain tumours, where interaction 
with endothelial cells is pivotal in self- renewal and proliferation 
of cancer cells [60]. Nitric oxide production from the tumour 
endothelium has shown to activate NOTCH signalling to pro-
mote stemness of glioma cells [61]. CAFs secrete growth factors 
that induce WNT signalling to promote cancer cell stemness [62]. 
Tumour- associated macrophages also play a stemness- inducing 
role in breast and brain CSCs and drug resistance [63,64]. These 
reports imply the importance of TME in cancer cell plasticity 
and acquiring stem- cell- like properties and therapy resistance. 
Thus, targeting the plastic landscape of the tumour ecosystem has 
emerged as a key paradigm in patient survival. Directly inhibiting 
the plasticity by blocking the state switching and by reversal of the 
states in drug- induced condition can be the possible therapeutic 
measures.

Understanding of the molecular mechanisms underlying the 
cellular and molecular plasticity in cancer cells is being expanded. 
Therefore, the new therapeutic strategies along with pre- existing 
anticancer therapies may provide better clinical outcomes. EMT, 
being a crucial representative of cellular plasticity, is of a great 
therapeutic interest to regress the metastatic cancer in highly 
aggressive cases or to prevent the dissemination of the tumour. 
Reverting the mesenchymal state to adenylate cyclase/ PKA- 
axis- dependent epithelial state by cholera toxin and forskolin 
has shown improvements in the chemotherapy treatment [65]. 
Similarly, cell intrinsic mechanisms of plasticity- driven enrich-
ment of CSC from non- CSCs are influenced by multiple tran-
scription factors, such as the SOX gene family, and signalling 
pathways, such as NOTCH, WNT, or BMP signalling. Therefore, 
inhibiting these dominant drivers of stemness may provide poten-
tial therapeutic benefits. For instance, ionizing radiation induced 
a molecular switch in the breast cancer non- stem cells and gen-
erated NOTCH- dependent breast CSCs. The phenomenon was 
partially prevented by NOTCH inhibition [66]. Gamma- secretase 
inhibitors and the antibodies against the NOTCH receptor or 
ligand are clinically used as a potential therapeutic strategy 
against NOTCH up- regulated solid cancers (ClinicalTrials.gov 
Identifier: NCT01096355). Some epigenetic regulators such as 
EZH2 and REST are involved in transdifferentiation and show 
resistance to routine chemotherapy in lung and prostate cancer 
[67]. Androgen deprivation therapy has been successful in experi-
mental models of prostate cancer by targeting the lineage switch 
of luminal cells by inhibiting EZH2 using different EZH2 inhibi-
tors [68]. Metabolic reprogramming of the breast cancer cells in 
response to taxens conferred tolerance against anthracycline, and 
thus induced a CD44high phenotype. Inhibitor of glucose 6 phos-
phate dehydrogenase along with the aforementioned drugs im-
proved the survival in mouse models and reduced the viability 
of patient- derived tissue explants [69]. Arsenic trioxide in com-
bination with all trans- retinoic acid (ATRA) was found to in-
hibit the isomerase Pin1 [70], as well as ATRA in combination 
with gamma- secretase inhibitors was found to block NOTCH 
pathway [71], both resulted in suppression stemness and inhibit 
breast cancer growth. Targeting SLCCs with the FDA- approved 
antibiotic Salinomycin has provided promising evidence of con-
trolling cellular plasticity and better efficacy of chemotherapeutic 
agents [72].

Targeting TME may also be adapted as an alternative strategy 
to combat cellular plasticity in TME and its associated effect on 
cancer cells. Being the most abundant cell type in TME, CAFs 
are the most promising therapeutic target in different cancer 
types. AMD3100 targeting CXCL12- CXCR4 interaction (pre- 
clinical trial), NIS793 and ABBV151 (under phase I clinical trial) 
targeting pan TGFβ and GARP in combination with anti PD- L1 
therapy, reversed immunosuppression in breast, lung, colorectal, 
and pancreatic cancer. Ruxolitinib, JAK- STAT inhibitor (under 
phase II clinical trial), in combination with Capecitabine also 
showed anti- tumorigenic effect in metastatic pancreatic cancer 
[73]. Although therapeutic approaches targeting CCL2, CSF- 1 in 
TAM showed anti- tumour effects, TAM targeting leads to thera-
peutic failure and recurrence. Recent advances in cancer therapy 
suggested that the depletion of heterogeneous macrophage popu-
lation may not be beneficial; rather reprogramming of TAM 
from pro- tumorigenic to anti- tumorigenic M1 macrophages is a 
promising targeting strategy in cancer therapy. One study has re-
ported that the structural confirmation of the mannose receptor 
(CD- 206) expressed on M2 macrophage can be remodelled by 
RP- 182 that switches the macrophage phenotype into M1 types. 
RIP1 (receptor- interacting serine/ threonine protein kinase 1) is 
a checkpoint kinase particularly up- regulated in TAMs in PDAC. 
Inhibition of RIP1 by small molecule inhibitor can reprogram 
M2- type macrophage into an MHCIIhiTNFα+ IFNγ+  phenotype in 
a STAT1- dependent manner. RIP1 inhibition in M2 macrophage 
resulted in T helper cell differentiation and cytotoxic T- cell ac-
tivation leading to tumour immunity in mice and organotypic 
models of human PDAC [74]. Gamma isoform of phospho-
inositide 3- kinase (PI3Kγ) is a highly expressed molecule in 
TAMs. NCT02637531 (phase I clinical trial), a small molecule 
inhibitor targeting PI3Kγ, induces the switch of M2 macrophage 
phenotype into M1 phenotype [75] (Figure 9.2). These results 
have provided promising evidence of harnessing plasticity be-
tween dynamic cellular states to revert the phenotypes to a more 
stable and less aggressive state both in cancer cells and tumour 
stroma.

Cellular plasticity has emerged as one of the key hallmarks of 
cancer responsible for driving non- genetic heterogeneity and ag-
gressive features of cancer. Although the mechanisms governing 
cellular plasticity are still not fully understood, the molecular path-
ways related to development and tissue regeneration are mainly 
linked with this property. Evidence is accumulating where plasticity 
in cancer cells results in hybrid states of cells with more deleterious 
properties, such as stemness, metastasis, and drug tolerance, and 
therefore needs immediate attention for interventions. The intrinsic 
mechanisms related to the metabolic, epigenetic, or transcriptional 
states and the extrinsic factors contributed by TME both may also 
serve as potential targets. More importantly, plasticity is not only 
exhibited by neoplastic cells but also by the tumour- associated cells 
in TME, thus adding to the overall complexity. The interactions be-
tween diverse cells of TME and cancer cells can be highly dynamic 
and provide stochastic outcomes. Mathematical modelling and its 
validation with appropriate cellular models are needed to be devel-
oped as experimental tools to demonstrate the complex and ever- 
evolving plastic ecosystem in cancer. This will facilitate discoveries 
to translate as therapeutic possibilities against cellular plasticity in 
aggressive cancer.
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10.1. Introduction

It is now nearly 15 years since the first publication from The Cancer 
Genome Atlas consortium that reported a detailed molecular gen-
etic characterization of hundreds of primary glioblastoma tumour 
samples before going on to characterize transcriptomes and muta-
tional profiles from a wide variety of cancer types [1] . This effort 
represents the pinnacle of the molecular view of cancer, which is 
an attempt at providing a unified view of cancer progression, inde-
pendent of cancer type, through the lens of natural selection based 
on the accumulation of driver, passenger, and tumour suppressor 
mutations that impinge on key pathways in cancer cells.

However, some key observations of tumour biology, and in par-
ticular responses (or lack thereof) of tumours to therapies in the 
clinic, can be understood by studying the evolution of cancer cell 
phenotypes via changes in cellular phenotypes without acquiring 
mutations. The key features that differentiate evolution of cell states, 
or cell- state switching, from mutational accumulation are revers-
ibility among the states and the timescales over which these changes 
manifest. Once a cell accumulates a mutation at a genomic site, the 
probability of the mutation at that site reverting to the ancestral state 
of the parental cell is negligible. On the other hand, the phenotype of 
descendant cells is plastic and can switch back and forth. Phenotypic 
transitions can also be relatively rapid and can happen asynchron-
ously across a population in contrast to a clonal selection sweep that 
is initiated by individual cells. To build models of phenotypic state 
evolution that account for these possibilities, we draw upon a rich 
tradition and body of theoretical and experimental knowledge in 
embryonic development, bacterial physiology, and homeostasis in 
organ systems such as the haematopoietic system.

Cell- state transitions were initially studied in the context of devel-
oping systems. The idea of cells rolling down an epigenetic landscape 
in Conrad Waddington’s work [2]  is a dominant metaphor through 
which we understand how a single cell and a single genome can, 
through multiple rounds of proliferation, give rise to the cell types 

that constitute a multicellular adult with remarkable precision and 
tolerance to environmental fluctuations. Early theories of cell- fate 
specification understood cell phenotype and state evolution as a 
result of bifurcations of equilibrium states of gene regulatory net-
works. More recently, a deeper understanding of gene expression 
noise has led to more refined notions of gene expression macro-  and 
micro- heterogeneity. Here, a cell in a tissue exists in one of many 
possible distinct phenotypic states, but where noise may permit a 
cell to switch from one state to another. While such noisy transitions 
may be undesirable in many developmental contexts as they risk 
leading to body plan misspecification, they may promote survival in 
the face of fluctuating environments. In the context of cancer, noisy 
transitions can promote metastasis [3] and drug resistance [4].

The link between development and cancer has a storied history 
going back over 150 years (reviewed in [5] ), with the recent advent 
of single- cell RNA- sequencing (scRNA- seq) technologies showing 
that the multiple cell states present in a tumour bear a transcrip-
tional resemblance to both epithelial cell types in the tissue of origin 
of the tumour and the embryonic precursors of the tissue itself [6]. 
This idea lends itself to the metaphor of a tumour as a corruption 
of the Waddington landscape that represents its tissue of origin. 
Nonetheless, there are key differences between developing systems 
and tumours. There are asymmetries in cell- state switches during 
development which give rise to the notion of a cell- state hierarchy 
where state A that can give rise to state B, but not vice versa, is re-
ferred to as a stem- like state. While tumours are thought to possess 
similar hierarchies [7,8], much evidence suggests that such hier-
archies are likely not as rigidly maintained in tumours. Outside of 
development and cancer, cell- state switches are a crucial component 
of homeostasis and recovery from injury in organs such as the skin, 
liver, and pancreas [9– 11]. However, a key implication of links be-
tween development and cancer is that studies of cell- state switching 
during development hold great clinical relevance, especially when 
attempting to understand the emergence of tumour relapse and 
eventual drug resistance through non- genetic means.
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This chapter is organized into two parts. The first deals with 
mathematical formulations that have modelled these phenomena 
across diverse systems. The second deals with experimental studies 
of tumour initiation, progression, and drug resistance that can be 
understood through the lens of phenotypic evolution and cell- state 
switches. We then summarize the state of both our theoretical and 
experimental understanding of cell- state switching in cancer and 
speculate on future directions of research.

10.2. Cell- state transitions

Developing embryos manifestly require new cell types to emerge 
from the old ones. Waddington laid out a framework where a 
myriad of underlying molecules conspire together to accomplish 
these cell- state transitions [2,12]. This led to some early work on 
applying catastrophe theory as a way to conceptually understand 
cell- fate changes and morphogenesis [13]. Recent work shows 
that quantitative descriptions of data is now possible using such 
frameworks [14,15]. These papers represent a phenomenological 
approach that uses landscape models to explain cell fates and their 
transitions in response to external cues but does not specify spe-
cific genes nor does it rely on them. While it is liberating to not 
consider the thousands of underlying genes, it also leaves the mo-
lecular description that may allow us to engineer and alter cell fates 
for therapy.

ScRNA- seq of developing embryos is now making it possible 
to unpack these cell- fate transitions at the genetic level. Since the 
current techniques of sequencing are destructive, trajectories of in-
dividual cells cannot be tracked and thus necessitate new compu-
tational techniques and inference methods to map out trajectories 
from snapshot data [16,17]. These single- cell data techniques have 
been recently combined with lineage tracing and clonal analysis that 
has been another lens that has provided important insights into cell- 
fate dynamics through quantitative modelling [18]. The central idea 
is to define a ‘distance’ between cells based on their gene expression 
states and build a map of cellular trajectories as they switch fates.

The strength of landscape models lies in their low dimension-
ality and their ability to predict response of cell- fate changes under 
changing signalling cues that are often much fewer than the many 
genes that vary during a cell- fate change. Their predictive power 
comes from the nature of the data that is used to train them, which 
so far has been limited to in vitro systems. In contrast, single- cell ap-
proaches have opened up enquiry into the in vivo setting and provide 
a detailed view of the many hundreds of genes as they change with 
cell fates. The manifestly high dimensionality of the single- cell data 
makes predictions challenging and rather provides a description of 
cell- fate changes. The frontier lies in bridging this gap between the 
two approaches by building landscape- like predictive models from 
single- cell data with an eye towards molecular players that control 
fate changes.

10.2.1. Landscape models

Bifurcation or related catastrophe theory of dynamical systems has 
offered a natural framework to understand morphogenesis and cell- 
fate transitions. The central connection is the non- linear change in 
the state of the system with a small change in some parameter that 
biological phenomena such as cell- fate transitions exhibit. Other 

features, such as irreversibility and multi- stability, are also natural to 
dynamical systems near bifurcations.

A classic example from microbial physiology is that of nutrient 
choice. The expression of lac operon proteins in bacteria undergoes 
a saddle node bifurcation when cells shift from consuming glucose 
to lactose [19], leading to a mixed population of lactose consuming 
and non- consuming bacteria. Another contrasting example from 
microbes is that of competence, where cells transiently switch to a 
state that allows cells to take up exogenous DNA. Here, the dynamics 
is driven by an excitable dynamical system [20]. Now, similar dy-
namical systems thinking is being applied to microbial communities 
[21– 23], where non- linear interactions between different microbial 
species and strains can result in distinct ecological states, repre-
sented by abundance differences, under the same environmental 
conditions.

This work on microbes was driven by decades of work where the 
identities of the genes and their interactions were mapped, which 
allowed mechanistic dynamical models to be built and tested. Some 
of this has been replicated in the mammalian context [24,25], but a 
more geometric approach has recently been used. The geometry here 
refers to the constraints that low- dimensional models have to satisfy 
to embed multiple stable and unstable states that capture the dif-
ferent cellular fates seen in an experiment. The variables are abstract 
and not related to individual genes or molecules. The models, by 
construction, are lower dimensional given the low dimensionality of 
observations, i.e. the number of cell types and their transitions. For 
example, Sáez et al. [15] developed a model for cell- fate dynamics 
during gastrulation in mouse embryos using an in vitro system, 
where they can predict cell- fate changes in response to temporally 
changing input signalling cues. They find that a two- dimensional 
model can be inferred that can predict early cell- fate changes among 
the five cell types that they could capture in their in vitro experi-
ments. Notably, the two dimensions of the model have no connec-
tion to the underlying genes that change during these fate changes.

10.2.2. Trajectories in genetic space

Can such a geometric approach be extended to the genetic space? 
ScRNA- seq technology provides a snapshot RNA expression from 
an ensemble of cells. Since individual cells cannot be tracked as new 
cell types emerge, building cell- fate trajectories from ensemble data 
provides a way to discover the genetic underpinnings of cell- fate 
transitions.

The availability of single- cell data has led to a flood of compu-
tational methods to analyse these large data sets. While the early 
methods focused on finding new cell types [26], the current focus 
has shifted to the dynamics of cellular fates as they transition from 
one cell type to another. The mechanistic goal of these methods has 
been to find genes (or pathways) that drive cell- fate changes [27,28] 
but has also initiated deeper questions about underlying dynamics 
of cell- fate transitions. For example, is there a bias or memory in fate 
dynamics [29]? What is the nature of the landscape on which the 
cell- fate dynamics unfolds [17]?

Beyond global trajectories of cell fates, with the goal of building 
a more fine- grained understanding of cell- fate dynamics, there has 
been work to leverage local information that the single- cell data pro-
vides on local ‘velocity’ of individual cells. This has proven to be chal-
lenging [30,31], and attempts are now being made to build vector 
maps that may predict the fate choice of a cell given its transcriptome 
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[17,32]. How these vector maps connect to low- dimensional land-
scape models remains to be seen.

10.2.3. Lineage tracing and clonal dynamics

Another powerful tool used to understand cell- fate dynamics has 
been lineage tracing and clonal dynamics. This idea is old and can be 
traced back to early blood transplant studies and to the discovery of 
stem cells [33,34]. Over the past two decades, there has been a flurry 
of work on stem cell fates [35] and beyond. The central idea is to 
track the lineage of individual cells or the number of cells belonging 
to a given lineage, called the clone size, and the statistics that these 
clone sizes exhibit across many lineages then provide important 
clues about the underlying cell- fate dynamics.

An interesting example of such a use of clonal analysis is work by 
Shakiba et al. on challenging the central hypothesis of equipotency 
in the ability of cells to reprogram [36]. Cellular reprogramming was 
discovered by the seminal work of Takahashi and Yamanaka that 
showed that differentiated mouse and human fibroblasts could be 
reprogrammed into induced pluripotent stem cells, holding signifi-
cant promise for regenerative medicine [37,38]. However, under-
standing the factors and steps that underlie reprogramming, and 
being able to reliably model these outcomes, have broad implica-
tions in regenerative medicine.

Analyses of single cells undergoing reprogramming had sug-
gested that every somatic cell has the ability to reprogram and also 
provided some evidence for equipotency [39]. It had been further 
hypothesized that genetically identical cells may be equipotent in 
their ability to reprogram [40]. However, while population analyses 
provide the perception of a synchronous reprogramming schedule 
of a cell population, single- cell analyses provide insight into the step-
wise and asynchronous nature of clonal reprogramming. Shakiba 
et al. compared cell population outcomes and single- cell reprogram-
ming events and reported the existence of a subpopulation of ‘elite’ 
clones within a population of somatic cells [36].

A population of mouse embryonic fibroblasts were tagged with 
unique genetic barcodes to track their lineage after induction of 
reprogramming. Among the 10% of surviving clones after 30 days 
of reprogramming initiation, there was large variability across the 
clone sizes. Variability across clones is expected due to inherent 
stochasticity of birth and death. However, the observed clone size 
distribution was bimodal and allowed the detection of dominant 
clones that challenged the hypothesis of clonal equipotency, which 
would have yielded a unimodal clone size distribution if it were true.

The nature of the competition between clones— indirect (limited 
nutrition or space) or direct (between reprogramming clones) — re-
mains to be fully tested. The varying reprogramming potential of 
cells in the population versus single cells suggested that competitive 
interactions between the clones play a significant role in defining 
population dynamics. A more quantitative analysis of clone size dis-
tribution provided a more concrete quantification of the clonal se-
lection. To further determine when in time this selection operates, 
temporal analysis was performed of clone size dynamics. Although 
there were some prior differences in reprogramming potential, the 
elite clones largely emerged after the reprogramming protocol was 
initiated, i.e. the clones that were large by days 8– 14 demonstrated 
dominance at day 30. In contrast, clones that were large at the start of 
reprogramming (due to differences in barcoding) did not show any 
bias. This suggests an early stochastic transition, likely due to broader 

epigenetic heterogeneity among cells, that governs the reprogram-
ming fate of individual, or a group of interacting, fibroblasts.

Understanding the competitive ability of cell undergoing repro-
gramming will help (1) understand how these cells, when injected, 
may interact with endogenous cells in a patient, (2) determine the 
factors that would facilitate their survival to (3) devise methods by 
which to control cellular competition and (4) enable prediction of 
cell reprogramming outcomes in patients.

10.3. Reconciling cell states with the 
somatic mutation theory of cancer

The somatic mutation theory (SMT) view of cancer is typically the 
first paradigm that one encounters in a study of cancer biology. SMT 
posits that cancer arises from the presence of mutations in the epi-
thelial cells (or, more generally, a cell of origin) of a tissue. The accu-
mulation of these mutations is accompanied by the transformation 
of the tissue into a tumour via intermediate stages of pre- cancerous 
transformation. Each step of evolution involves Darwinian selection 
of cells bearing mutations best adapted to their environment [41]. 
The theory explains cancer epidemiology data such as the presence 
of germline mutations that increase cancer risk, the repeated occur-
rence of the same mutation across patient tumours of a given cancer 
type, and the increase in cancer risk with age [42,43].

However, there are key problems with the SMT paradigm [44,45] 
when studying both tumour initiation and tumour progression. 
Some of these issues largely arise from a malignant cell- intrinsic 
view of cancer where the microenvironment is treated as a passive 
bystander rather than an active participant in tumour progression 
and control. But of more relevance to this chapter is that the SMT 
presents a simplified one- to- one map between genotype and pheno-
type, where the presence of mutations implies that a cell must be 
malignant and the absence of mutations implies a normal cell. This 
is vastly at odds with the increasingly accepted view of the one- to- 
many nature of the genotype– phenotype map discussed above in the 
context of development and as evidenced by the inclusion of plasti-
city in the recent update to Hanahan and Weinberg’s ‘Hallmarks of 
Cancer’ series [46].

As a result, the SMT view alone fails to explain several key obser-
vations such as the fact that mutations can persist in histologically 
normal tissues without any evidence of cancer [47], [48], pre- 
malignant lesions can regress towards a low- grade lesion [49], there 
can be reversion of established tumours altogether despite the con-
tinued presence of oncogenic mutations [50], tumours with fewer 
driver mutations seemingly occur later in life than those that require 
more driver mutations [51], and the lack of metastatic driver mu-
tations despite extensive searches [52– 54]. Going beyond SMT, a 
cell- state- centric view of cancer not only helps understand these ob-
servations but points to future directions of mathematical modelling 
and cancer research to incorporate co- evolution between microen-
vironmental and epithelial cells that are key to tumour initiation and 
progression.

The pervasiveness of non- genetic transcriptional variation in 
healthy tissues provides a starting point to explain the above ob-
servations. Transitions between cell states are frequent during de-
velopment and during tissue homeostasis in adult humans, with 
differentiation and de- differentiation being common across various 
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organ tissues (Figure 10.1). Cell types can be considered as a col-
lection of attractor cell states [6] , where a cell transitions between 
states in response to gene expression and/ or microenvironmental 
changes [55]. Thus, mutations could either influence the rates of 
transitions between states or alter the stability of an attractor state 
[56,57]. In this schema, malignancy represents a distinct set of at-
tractor states where malignant transformation involves (a) a tran-
sition from normal to malignant attractor state via pre- malignant 
(benign) attractor states and (b) the maintenance of cells in a ma-
lignant attractor state, likely because its stability is increased by the 
accumulation of oncogenic mutations.

A key question about tumour initiation that arises in this frame-
work is whether certain attractor states representing a normal cell 
type have a higher probability of transitioning towards a (pre- ) ma-
lignant cell state than others. Experimentally, this is akin to asking, 
whether there exists a subpopulation of cells that is easier to trans-
form into a malignancy than other cells for any given tissue. Normal 
human mammary epithelial cells that express the CD44 protein 
are better able to initiate tumours than non- CD44 expressing cells, 
with cells switching between CD44 expressing and non- expressing 
states [56]. Differentiated melanocytes give rise to melanomas more 
easily than melanocytic stem cells [58], while multiple cell types in 
the brain, breast, and pancreas can give rise to tumours with clinical 
characteristics varying with the cell of origin [59– 61]. Carcinogens 
can induce cancer without introducing mutations [62,63], sug-
gesting that mutations may act on pre- existing phenotypic variation 
among epithelial cells. In a remarkable study, lung epithelial cells 
exposed to cigarette smoke were epigenetically primed for tumour 
initiation before they accumulated mutations [64]. ScRNA- seq 

studies allow a deeper analysis of cell- state variation present prior to 
malignancy. A re- analysis of scRNA- seq datasets from the pancreas 
found an epithelial subpopulation that was not clonally derived 
nor contained any oncogenic mutations but expressed several gene 
characteristics of pancreatic adenocarcinoma (PDAC) [65]. PDAC 
is driven by a G12D mutation in the KRAS protein, and KrasG12D- 
bearing mice contained a higher fraction of acinar ‘edge’ cells than 
Kraswt mice [65]. Thus, KrasG12D induction promotes transitions to-
wards the edge state possibly via both cell- autonomous and non- 
cell- autonomous factors. A time- course scRNA- seq study of lung 
cancer initiation through KrasG12D induction (and Trp53 deletion) 
in lung alveolar cells revealed the presence of a cell state termed the 
high plasticity cell state that expressed genes of multiple epithelial 
lineages and appeared to be a precursor to malignant transform-
ation [66]. These studies suggest not only that some cell states are 
potentially easier to undergo malignant transformation than others, 
but also that the pre- malignant cell state may be reached from mul-
tiple initial epithelial cell states. A major component missing in these 
studies, however, is the spatial component to variation in gene ex-
pression. For instance, zonation patterns influence epithelial gene 
expression in the liver [67], pancreatic cancers are more likely in the 
head of the pancreas than the tail [68], and it is unclear how much 
of the cell- state variation relevant to tumour initiation is driven by 
spatial factors across tissues.

10.3.1. The pre- malignant cell state

The transformation from a normal to a malignant cell goes through 
multiple stages of pre- malignancy [69] that can take years or even 
decades. Patients with pre- malignant lesions progress at widely 

Figure 10.1. Schematic of cell state transitions in organ development and homeostasis. Organ development proceeds through the proliferation 
of early embryonic progenitors (red) and differentiation into the parenchymal cell types (purple and blue) that will eventually make up the adult 
organ. The function of these parenchymal cells is supported by other stromal and immune populations. At any point during development and 
organ homeostasis, every cell of a given type can exist in one of many states. Interconversion between these states may occur both due to 
microenvironmental changes and noise- induced transitions. The hierarchy of cell types shown represents a sense of terminal differentiation during 
organ homeostasis. During wound repair and carcinogenesis, however, this hierarchy becomes less rigid and more plastic. This is supported by 
observations that cell states across many solid tumours resemble the embryonic counterparts of the tissue of origin of the tumour. Source: Figure 
created with BioRender.com
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different rates to malignancy, suggesting that microenvironmental 
factors play a key role in restraining pre- malignant lesions. For in-
stance, nearly a third of women in the ages of 40– 50 years had pre- 
malignant lesions in their breast [70]. In another study, the fraction 
of tissue donors with pre- malignant lesions in their thyroid was so 
large that lesions are now considered a normal feature of the ageing 
thyroid gland [71]. Pre- malignant lesions progress to malignancy at 
widely different rates and can often regress. Close to a third of pre- 
malignant lesions in the lung spontaneously regress to a lower grade 
[72], with regressing lesions tending to have a higher cytotoxic T- cell 
infiltration [73] and a higher mutation burden than progressing le-
sions. Regression of pre- malignancy need not require the immune 
system, however, as pre- malignant cells in the oesophagus and skin 
are outcompeted by wild- type epithelium cells without any involve-
ment from the adaptive immune system [74,75]. Nonetheless, ex-
cluding the adaptive immune system from the microenvironment 
seems an early step in tumour initiation in both lung [76] and colo-
rectal cancer [71], potentially allowing cells to sample many more 
malignant cell states without any selective pressure from the im-
mune system. Viewing pre- malignant cells as a distinct cell state al-
lows for the possibility of reversion towards a normal cell state (or 
a less aggressive pre- malignant cell state) under the influence of the 
microenvironment [77].

The extent to which pre- malignant cell states that are successful 
in achieving a transition to malignancy are retained in a progressing 
tumour is unclear [78]. There is considerable phenotypic hetero-
geneity in a primary or metastatic tumour that can be attributed 
to non- genetic/ genetic variation and cell- autonomous/ non- cell-    
autonomous factors. ScRNA- seq studies have shown that, across tu-
mour types, malignant cell transcriptional states resemble transcrip-
tional states seen in embryonic versions of the host tissue [79,80]. 
However, basic scRNA- seq protocols do not allow cell lineages to be 
tracked without additional barcoding of tumour cells which makes 
it impossible to determine whether malignant cells in one state can 
switch to another one. Lineage- barcoding approaches have estab-
lished such lineage switches to be the case in glioblastoma, pan-
creatic adenocarcinoma, and breast cancer mouse models [81]. 
Interconnection between the views of the tumour as a collection of 
cell states versus a collection of genetic sub- clones may be resolved 
by considering that mutations may alter the stability of existing cell 
states or alter the rates of transitions between them [82].

10.3.2. The metastatic state

Metastasis accounts for most cancer deaths and is a common occur-
rence across many cancer types [83]. There are two dominant para-
digms for metastatic progression in cancer— serial progression and 
parallel progression [84]. The serial progression paradigm posits 
that metastasis is an event that occurs late during primary tumour 
growth, while in parallel progression metastatic seeding occurs 
early in tumour evolution. Parallel progression posits that metas-
tasis occurs early, and the metastatic tumour progresses in parallel 
to the primary tumour. In terms of cell states, the differences be-
tween paradigms seemingly occur from the question of (1) whether 
tumour cell states required for survival in metastatic environments 
are achieved early or late in tumour progression and (2) the extent to 
which further mutations drive the acquisition of metastatic compe-
tent cell states within the primary tumour. The search for mutations 
that drive a metastatic phenotype, i.e. mutations that are enriched 

in metastatic tumours but not primary tumours, has not been suc-
cessful [85,86] although chromosomal- scale losses and gains have 
been noted between primary and metastatic tumours [87]. This 
likely reflects the differences between microenvironments across 
organ sites, where different transcriptomic states and adaptations are 
required by metastatic cells to survive in different organs. Through 
whole- exome sequencing of paired primary and metastatic tumours 
from the same patient, studies find support for both parallel and se-
rial progression models [85], with germline variation potentially 
influencing the rate of metastatic spread. A similar study carried out 
on a larger cohort of lung, breast, and colorectal cancers [88] sug-
gested that parallel progression was far more common in lung and 
colorectal cancer samples than in breast.

These observations suggest that transcriptionally, metastatic 
competence may be generated relatively earlier during primary tu-
mour evolution than has been traditionally understood. In a mouse 
tail- vein injection experiment, cell lines with high transcriptional 
variation generated metastases far more efficiently than those with 
low variation [83]. While this differs from natural patient courses of 
metastasis, a study of human pancreatic cancer patients and mouse 
models [89,90] found circulating pancreatic cells even before a pri-
mary tumour could be clinically detected. It is unknown as to how 
efficient these cells are in actually generating a metastatic tumour, 
but their early appearance suggests that a metastasis- competent cell 
state may be acquired far earlier than once assumed.

A few studies currently address similarities of cell states found in 
paired primary and metastatic tumours, and whether they can be 
mapped to different embryonic cell states. A scRNA- seq study of 
lung adenocarcinoma metastases [91] reveals markers of embryonic 
lung developmental states in metastatic biopsies though this study 
does not comment on whether such states were already present in the 
primary tumour or represent an adaptation to its metastatic micro-
environment. A study where pancreatic cancer cell lineages could 
be traced in vivo in mice during metastatic colonization from xeno-
grafts [92] maps epithelial-to-mesenchymal transition (EMT) signa-
tures onto metastatic cells but does not compare metastatic cells to 
developmental pancreatic cell states. A similar lineage- tracing study 
of a lung adenocarcinoma xenograft [93] generated multiple metas-
tases but the metastatic cell transcriptomes were not mapped onto 
lung development.

The intriguing observation that normal epithelial cells that lack 
mutations grow into organoids when implanted in lymph nodes [94] 
suggests that certain combinations of organ sites and epithelial cell 
states allow for metastatic spread more easily than others. Tumour 
cells in the pre- malignant state can last years, and the accompanying 
transcriptional and/ or microenvironmental changes may promote the 
early acquisition of a heritable metastatic cell state early during pri-
mary tumour progression in some patients. Thus, a cell- state view of 
cancer progression that considers transcriptional variation across cells 
would suggest that parallel versus serial progression paradigm could 
be a false dichotomy. Fitting a cell- state model of tumour progression 
to clinical data calls for a deep collaboration between experimenters, 
data scientists, and systems biologists. Such a model- fitting exercise 
would potentially require a set of markers that can reliably classify 
cell states in scRNA- seq data, mathematical models that can compute 
rates of transitions between cell states based on the mutational com-
position of a cell, and clinical follow- ups of patients to try and estimate 
rates of metastatic spread and disease burden growth.
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10.4. Tumour heterogeneity and 
identifying the tumour persister state

Various mechanisms of therapeutic resistance and/ or relapse have 
been identified in a range of cancers that were found to be driven by a 
subpopulation of cells within the tumour. Extensive studies revealed 
genetic mechanisms as the driving force of therapeutic resistance in 
some tumours [95]. Alternatively, tumour cells can stochastically ac-
quire therapeutic resistance through genetic mutations in response 
to treatment, determined by the Darwinian clonal evolution of tu-
mour cells (Figure 10.2). The subsequent development of targeted 
therapies resulted in these once untreatable cancers to be treatable. 
A seminal example of this is the treatment of Her2 overexpressing 
breast cancer patients with Trastuzumab, a monoclonal antibody 
targeting Her2 [96]. However, not all therapeutic resistance can be 
solely explained by genetic mutations, highlighting how non- genetic 
mechanisms of drug resistance present a key obstacle for successful 
therapeutic outcomes [97].

The accumulating evidence of cancer cell heterogeneity within a 
tumour mass has been strongly tied to non- genetic mechanisms of 
drug resistance [98,99]. With the explosion of single- cell sequen-
cing and the identification of extensive intratumoral heterogeneity 
(ITH), phenotypic and genetic ITH is being increasingly appreci-
ated as a determining factor of therapeutic failure and tumour re-
lapse [100]. Many studies have identified a subpopulation of cancer 

stem cells as contributing to ITH and being responsible for thera-
peutic evasion and tumour progression [101]. Patient- derived tu-
mour cells were barcoded, injected into mice to generate xenografts, 
and subjected to standard- of- care therapeutic response studies 
in vivo [102– 104]. However, tumours that regrow upon treatment 
cessation exhibited no change in barcode complexity indicating no 
genetic subpopulation enrichment that facilitated the tumour resist-
ance [102– 104]. Others have uncovered additional reversible non- 
genetic mechanisms of therapeutic response (such as epigenetic) as 
the driving force of relapse in heterogeneous tumours [99,101].

Seminal studies by Sharma et al. identified a subpopulation of 
cells in cancer cell lines that transiently acquired and relinquished 
the drug- resistant phenotype by individual cells within the cancer 
cell population in response to targeted therapy [98]. These find-
ings exemplify the dynamic regulation of phenotypic heterogen-
eity and cell states, and that cancer cell populations can exhibit 
reversible tolerance to drugs to persist in stressful environments. 
This subpopulation was termed as drug- tolerant persisters (DTPs) 
and launched the field of tumour cells in the persister state. DTPs 
have since been recognized as significant players in the field of non- 
genetic tumour heterogeneity and have been identified across a wide 
range of tumours in response to therapy [98,99,101,103,105,106]. In 
cancer, DTPs represent a quiescent or slow- cycling reversible state 
where the tumour initially responds to treatment but then regrows 
upon treatment cessation, often referred to as drug holiday, while 

Figure 10.2. Schematic representation of tumour cell population dynamics in response to treatment. Tumours are made up of a heterogeneous 
population of cells, including cancer stem cells (purple) and their progeny (stem cells— pink; differentiated cells— yellow, green, and blue). Transitions 
between these cell states often resemble state transitions observed during embryonic development of the tissue of origin of the tumour. When 
cancer cells are exposed to therapy, some cells in the tumour may have pre- existing mutations that render drug resistance and tumour growth while 
on treatment. Alternatively, the number of viable cells may start to decline as the population of sensitive cells (grey) undergo apoptosis (cell death), 
and some cells survive drug treatment due to the transition to a drug- tolerant persister state (stochastic equipotency). Upon stopping treatment, 
these drug- tolerant persisters drive tumour regrowth and tumour relapse. While in the persister state, some cells may acquire irreversible genetic 
mutations (blue and yellow cells with *) rendering these cells resistant to therapy. These cells can drive drug resistance state and tumour growth on 
treatment. Cells may additionally acquire the epithelial- to- mesenchymal (EMT) state, facilitating metastasis (blue cells). Source: Figure created with 
BioRender.com
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maintaining sensitivity to retreatment, indicative of a reversible 
‘drug- tolerant’ cancer cell state [107]. DTPs represent a novel thera-
peutic vulnerability for strategic intervention prior to the develop-
ment of irreversible genetic mutation- driven drug resistance.

The ‘persister’ concept originates from the field of microbiology. 
While the treatment of bacterial infections with antibiotics is known 
to reduce the bacterial burden, it is well established that in some in-
stances the treatment fails to eliminate refractory bacteria [108,109]. 
In response to therapeutic stress, bacterial persisters are described 
as phenotypic variants that transiently tolerate tremendous amounts 
of antibiotics yet remain genetically sensitive to the treatment 
[108,110– 112]. Studying and understanding bacterial biology and 
pathophysiology has provided an unparalleled insight into the 
workings of more complex systems such as mammalian cells. Akin 
to bacterial persisters, the ability of DTPs to tolerate chemotherapy 
cannot be explained by genetic mutations [107].

10.4.1. DTPs recapitulate evolutionary 
conserved embryonic survival strategy 
of diapause

Having gained significant traction since their first identification by 
Sharma et al., persisters have been extensively modelled in response 
to various targeted therapies and chemotherapies to determine their 
drivers and characteristics.

Since DTPs represent a non- genetic reversible state that cancer 
cells enter to survive the harsh environment created by chemo-
therapy, like bacterial species surviving antibiotic treatment, many 
groups have explored the hypothesis of whether tumours are hi-
jacking an evolutionarily conserved survival strategy. Torpor, estiv-
ation, and diapause are among the few/ handful conserved survival 
strategies that organisms employ to survive hostile environments 
that are conserved across the animal kingdom. Torpor and estiv-
ation enable animals to survive environments of extreme cold and 
heat, respectively. Diapause is a physiological reproductive survival 
strategy utilized across the animal kingdom, including some mam-
mals, to survive stressful environments. Diapause is defined as a 
reversible state of suspended embryonic development triggered by 
unfavourable environmental conditions including nutrient depriv-
ation [113,114].

Interestingly, a few groups have uncovered that the DTPs in 
various tumour models recapitulate the evolutionary conserved 
mechanism of diapause to survive the environmental stress associate 
with chemotherapy exposure [102,103,105,115,116]. Comparative 
transcriptomic analysis of vehicle- treated tumours, tumours in the 
DTP state, and chemotherapy- treated regrowth tumours to pub-
lished gene expression data of in vivo diapause embryos found that 
DTPs shared significant similarities with this model [103,105,117– 
119]. These similarities were further corroborated by analyses of ex-
pression signatures of specific signalling pathways associated with 
embryonic diapause, such as down- regulation of Myc and mTORc1, 
and crucial cellular growth processes (cell cycle, translation, and 
RNA processing) [103,105,115].

10.4.2. Modelling the persister state

Many studies have employed the use of barcoding technology and 
single- cell sequencing to assess tumour population dynamics to il-
lustrate how tumours respond to therapeutic insult. To probe the 
clonal dynamics of the tumour DTP state in vivo and/ or in vitro, a 

barcoding strategy was adapted to track individual cells within tu-
mours [102,105,120]. Comparative analysis of barcode abundance 
at various stages of the tumour’s therapeutic response identified no 
significant alteration in barcode complexity [102– 105], indicating 
there was no selection of a pre- existing cell subpopulation that gave 
rise to DTPs. Mathematical modelling of the distribution of clone 
sizes (measured using barcode abundance) further identified that 
tumour cells possess an equipotent capacity to enter the persister 
state [103].

Interestingly, neither bacterial persisters, in response to antibiotic 
treatment, nor embryonic cells, entering diapause in response to nu-
trient deprivation, exhibit enrichment of a cellular subpopulation in 
response to stress [119]. Rather, every cell reversibly enters the state, 
and once the environmental insult resolves, the bacterial persisters 
or embryonic cells resume normal development. These results fur-
ther strengthened the argument that DTPs were employing an evo-
lutionary conserved survival cell state to survive chemotherapy.

10.4.3. Modelling mutation rates in persisters

The ability of cancer cells to survive treatment while remaining sen-
sitive to drug may potentially enable DTP cells to evolve under se-
lective therapeutic pressure to acquire resistance- conferring genetic 
mutations [121]. In response to therapeutic exposure, cells undergo 
DNA damage and impairment of DNA repair pathways [122– 124], 
leading to error- prone DNA replication. Given the difficulty in lin-
eage tracking of heterogenous tumour cells while measuring mu-
tational processes by DNA sequencing [123], a complementary 
strategy, the ‘fluctuation test’, was developed by Luria and Delbrück 
to characterize the onset of resistance in bacterial populations [125]. 
This assay exploited multiple replicates of clonal populations to by-
pass lineage- tracking issues and provided a strategy to estimate mu-
tation rates.

The fluctuation test was modified to deduce the acquisition of 
drug resistance in tumours [126– 129], to estimate the mutation rate 
of cancer cells in basal conditions, and to understand the evolution 
of pre- existing resistant cells before treatment [130]. However, it was 
not designed to quantify mutation rates in DTPs during treatment. 
Russo et al. developed a novel approach to measure the mutation 
rate in the presence of anti- cancer drugs, known as the mammalian- 
cell- Lauria– Delbrück (MC- LD) model, referring to a stochastic 
birth– death branching process describing the growth of resistant 
cells before and during drug treatment [116].

Russo et al. present a general quantitative method to characterize 
the transition of cancer cells to the persister state and to measure 
their population dynamics during the course of therapeutic treat-
ment. Using a two- step fluctuation test, they quantify phenotypic 
mutation rates of colorectal cancer cells with the ability to distin-
guish between pre- existing resistant clones and persister- derived 
resistant clones, facilitating the quantification of spontaneous and 
drug- induced mutation rates.

Analyses from the MC- LD model identified that (1) resistant 
clones that become visible within the first 4 weeks of treatment rep-
resent pre- existing resistant cells consisting of cells with spontaneous 
mutations that emerged during the initial tumour growth phase, 
(2) resistant clones that emerge more than 4 weeks of treatment are 
not likely to originate from pre- existing resistant cells, and (3) re-
sistant colonies that emerged more than 10 weeks after drug treat-
ment in persister- containing wells may have developed mutations 
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that confer therapeutic resistance [116]. Interestingly, cancer cells in 
the persister state exhibited an increased mutation rate (7– 50 fold) 
in the presence of therapies that were lethal for most of the parental 
population without any effect of clonal bias. In the case of the CRC 
tumours assessed, molecular profiling of persister- derived resistant 
clones revealed acquisition of single nucleotide variants (SNVs) or 
copy number aberrations (CNAs) in the RAS- MEK pathway genes 
that are known drivers of resistance to anti- EGFR/ anti- BRAF ther-
apies [116].

10.5. Conclusions and future directions

In this chapter, we have explored the use of mathematical models 
to investigate the heterogeneity of cell states during cancer progres-
sion. While the genetic view of cancer has been instrumental in 
understanding tumour initiation and the development of targeted 
therapies, models of gene regulation and embryonic development 
have provided key insights into the ability of a given genotype to 
yield diverse cellular phenotypes. Our review of the landscape of 
mathematical modelling approaches used to study cell states in de-
veloping systems has revealed that many of these approaches have 
also been successfully applied to the study of cancer and has yielded 
many breakthroughs.

The synthesis of computational and experimental work has pro-
duced many fruitful directions for future research. One important 
area of focus should be the development of new mathematical 
models that can capture the complex interplay between genetic, 
non- genetic, and environmental factors that contribute to the het-
erogeneity of cancer cell states. Furthermore, as our understanding 
of the complexity of cancer increases, models that can capture the 
multi- scale nature of cancer will need to be developed, from the 
molecular level up to the tissue and organ levels. For one, the role 
of environmental factors in cancer progression and heterogeneity 
is being increasingly recognized, and future models would need to 
account for the effects of the tumour microenvironment and other 
external factors.

Another promising area of research should be the application of 
single- cell sequencing technologies and other high- throughput ex-
perimental techniques to further investigate the molecular basis of 
cell- state transitions during cancer progression. With the increasing 
availability of high- throughput multi- omic data, we may see more 
efforts to integrate these data into mathematical models to gain a 
more comprehensive understanding of the molecular mechanisms 
underlying cancer cell- state transitions.

Ultimately, the goal in this field is to develop new therapeutic 
strategies that can target the heterogeneous cell states that contribute 
to cancer progression, therapeutic response, cancer relapse, and re-
sistance to therapy. Continued collaboration between computa-
tional and experimental researchers will be key to making progress 
in our understanding of the heterogeneity of cancer cell states and 
the development of new therapeutic strategies that can target these 
states more effectively. With the increasing availability of patient- 
specific data, more efforts should be made to develop personalized 
models of cancer that can predict disease progression and response 
to therapy for individual patients. This is of particular relevance as 
the FDA will no longer require animal tests of drug candidates prior 
to clinical trials, thus driving the need for better computational and 

in vitro models that better mimic clinical cancer phenotypes. The 
field of mathematical modelling of phenotypic heterogeneity and 
cell- state transitions in cancer is poised for exponential growth and 
innovation, with many exciting developments in the years to come.
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Decoding drug resistance at a single- cell 
level using systems- level approaches
Benedict Anchang and Loukia G. Karacosta

11.1.  Introduction

Despite many advances in cancer research and drug development, 
the fact remains that across almost all types of cancers, drug resist-
ance inevitably develops leading to cancer progression, metastasis, 
and ultimately death [1] . A plethora of drug resistance mechanisms 
have been reported in chemotherapy, targeted therapy, and im-
munotherapy settings, and although we have deep molecular under-
standing on the development of drug resistance, we have yet to find 
ways of predicting and/ or counteracting it in clinically impactful 
ways. It seems that no matter what new avenues of therapy or tar-
geted markers researchers bring to the clinic, cancer cells find ways 
to outsmart and evade our efforts.

To complicate matters, within any given heterogeneous tumour, 
there can exist multiple ways of resisting therapy. For years, drug 
resistance was thought to be driven by phenomena well described in 
the microbiology fields, whereby pre- existing resistant clones (usu-
ally driven by a genetic mutation) are ‘selected’ via therapy, giving 
them the opportunity to grow and become the new dominant clone 
of resistant cells [2] . However, studies have shown that in many cases 
cells can exhibit non- genetic plasticity, often driven by epigenetic 
mechanisms through which they can transiently resist to any given 
drug and survive [2– 4]. These two types of resistance (and their sub-
categories) are not mutually exclusive and can be employed at the 
same time by different cancer cells of a tumour depending on their 
surrounding microenvironment, drug treatment, or may take place 
at different time points during therapy.

Tumour heterogeneity, rarity of resistant cell populations, and the 
dynamics of emergent cell behaviours during therapy bring forth the 
importance of using single- cell approaches to help decode drug re-
sistance. Single- cell - omics (which include the study of genomics, 
transcriptomics, proteomics, metabolomics, or a combination of 
these) have revolutionized the way we study and understand drug 
resistance. Specifically, we now have the tools and computational 
power to perform a variety of tasks such as (1) the in- depth char-
acterization of heterogeneous drug- resistant populations with 
clustering algorithms [5] , (2) the dynamic interrogation of pheno-
typic state transitions [6], (3) the prediction of resistance and/ or 

promising drug combinations with deep learning [7], and (4) the 
optimization of drug combinations and therapy [8,9]. However, it 
is important to note that while single- cell analysis helps us simplify 
and delineate the complexity of drug resistance down to individual 
cells, cancer systems approaches help us put the informational 
pieces back together, towards understanding drug resistance at a 
systems level, within the ecosystem of a tumour and by extension of 
the patient [10].

In this chapter, we briefly discuss various mechanisms of drug 
resistance identified in cancer biology, and how single- cell analysis 
and computational approaches have helped gain a better under-
standing of them. Furthermore, we highlight how systems biology 
approaches can be utilized not only for delineating drug resistance, 
but, most importantly, how we can leverage them to translate scien-
tific findings to the clinic and get closer to implementing precision 
oncology for cancer patients.

11.2. Mechanisms of drug resistance 
identified in cancer biology

11.2.1. Genetic drug resistance

For many years, the prevailing narrative has been that drug resist-
ance in cancer is driven by mutations through which cells genetically 
inherit the ability to grow in the presence of high drug concentra-
tions. Consequently, these pre- existing mutated cells become the 
main drivers of tumour progression by virtue of being selected (and 
expanded) during therapy [2,11] (Figure 11.1A). This Darwinian 
mode of drug resistance is well represented in instances where a 
point mutation alters a specific drug target, by affecting, for instance, 
the drug- specific binding site. One such example is the multitude 
of mutations that have been identified in tyrosine receptor kinases 
like the epidermal growth factor receptor (EGFR) [12]. However, the 
observation of extremely diverse cellular phenotypes alongside their 
frequency and their relatively fast appearance following therapy 
cannot be explained by mutational/ genetic underpinnings alone 
[13] as some genetic studies have suggested [14]. The fact that drug 
therapy itself induces therapy resistance and that resistance can be 
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reversible implies that non- genetic mechanisms of phenotypic plas-
ticity also underlie the emergence of drug resistance.

11.2.2. Non- genetic drug resistance and phenotypic   
plasticity: drug- tolerant and persister cancer cells

Studies have shown that drug treatments can not only ‘select’ 
pre- existing resistant clones but also actively induce epigenetic 

reprogramming and phenotypic plasticity in cancer cells [4] , which 
also explains the presence of reversible drug- tolerant cancer cells 
[3]. Tolerance is described as the ability of cells to survive transient 
exposures to high drug concentrations, and as opposed to resist-
ance, it is not thought to be always inherited [15]. This brings forth 
the notion of a Lamarckian scheme of drug resistance (which is 
not necessarily mutually exclusive with the Darwinian scheme), 

Figure 11.1. Mechanisms of drug resistance identified in cancer biology. (A) Genetic drug resistance schematic. Resistance emerges because of a 
pre- existing, rare cancer cell of a tumour with a specific drug- resistance- conferring mutation. This mutated cancer cell is ‘selected’ by drug therapy 
and subsequently expands to a new tumour mass via the classical Darwinian scheme of selection. (B) Non- genetic drug resistance schematic. 
Resistance develops due to the existence or induction of cellular phenotypes and/ or states (e.g. persister, tolerant, and EMT cancer cells) within the 
same clonal population of cells in the absence of a resistance conferring mutation on a drug resistance effector gene (e.g., EGFR that is a drug target 
for many cancer types). Phenotypic states can be plastic in nature or further selected for (Lamarckian scheme) depending on how transcriptionally 
stable they are. In certain cases, depending on how stable a new state is, with time, new genetic mutations may appear, giving rise to distinct 
genetically stable cancer cell clones. Cell phenotypes can be the direct result of drug treatment (drug- induced) or stochastic epigenetic rewiring, 
which enables cancer cells to access heterogeneous, alternative transcriptional/ epigenetic states (Waddington landscape). These can be dynamic 
in nature and confer new drug resistance traits to cancer cells. (C) An example of genetic and non- genetic mechanisms working in synergy and 
resulting in drug resistance development. A mutation on an epigenetic modifier and not specifically on a drug resistance effector gene may induce 
epigenetic changes and chromatin modifications that subsequently alter the landscape of phenotypic states available to cancer cells to leverage 
and resist to therapy. See more details in the main text.

   

 

  

  

 



CHAPTER 11 Decoding drug resistance at a single-cell level 107

where acquired traits can be inherited and further selected for 
[13,16,17]. The Lamarckian scheme is feasible due to the existence 
of alternative, heterogeneous, stable transcriptional states that can 
produce aggressive phenotypes that can be passed on to multiple 
cancer cell generations. This has been demonstrated by a number of 
transcriptomic single- cell studies in recent years, highlighting the 
importance of leveraging single- cell systems biology approaches 
for studying drug resistance [6,18,19]. Furthermore, stochasticity 
also plays an important role in the development of drug resistance. 
Stochastic rewiring of various transcriptional regulatory networks 
can consequently activate alternate/ latent pathways in response to 
drug perturbations, and this involves dynamic, epigenetic chro-
matin modifications [2]. Similar mechanisms take place during de-
velopmental processes in mammalian cells, further substantiating 
the existence of a repertoire of non- genetic ‘choices’ cancer cells 
have at their disposal to best survive drug- induced stress signals 
[20]. Stochastic epigenetic rewiring is also thought to be the mech-
anism that gives rise to persister cells. Persistence is defined as the 
ability of a subpopulation of cells within a clonal population to sur-
vive exposure to high drug concentrations; in this case, the majority 
of the population is rapidly eradicated, yet the rare, persister cells 
persist for long periods of time, offering a tumour one more trick 
under its sleeve to survive drug therapy and relapse at a later time 
[15]. Drug- tolerant and persister cells are in general plastic in na-
ture and depending on the conditions may reverse (e.g. during drug 
withdrawal) or be further selected for (Lamarckian scheme). Finally, 
given that drug persister cells can be viable for extended periods of 
time, they may in turn acquire new mutations and give rise to genet-
ically, stable resistant cancer cells. These cells can be further selected 
for with the traditional Darwinian scheme, highlighting the com-
plexity of drug resistance in terms of the temporal dynamics and 
heterogeneity of the tumour system. (Figure 11.1B).

11.2.3. Synergy between genetic and    
non- genetic mechanisms of drug resistance

Although there have been numerous studies that have shown that 
genetic and non- genetic mechanisms are independently important 
for the development of drug resistance in cancer, one could envisage 
a scenario where both coexist in a synergistic manner. It is now easy 
to visualize how one genotype can map into an entire landscape of 
phenotypic states, some more stable than others (epigenetic land-
scape of Waddington [21]). Even though being the result of a single 
genome, the epigenetic landscape offers a plethora of decisions 
for a cancer cell to make, whether this is due to stochastic events 
or environmental cues (like exposure to drugs) [13,16,21], effect-
ively explaining the phenomena such as plasticity and reversibility 
of phenotypic states (Figure 11.1B). Consequently, a resistance-
conferring mutation may not be related to an actual effector gene/
target (like EGFR), but can affect cell state transition dynamics in-
stead [16]. Such a scenario is realized through many examples, one 
of them being the association of resistance to targeted therapies 
against EGFR with epithelial– mesenchymal transition (EMT) phe-
nomena [22], and the other a commonly mutated epigenetic modi-
fiers that can further distort the phenotypic landscape of cancer 
cells [23] (Figure 11.1C). There are many ways in which a specific 
phenotypic state can confer resistance. It is possible that a state may 
be defined by altered protein expression of a drug target, a drug ef-
flux pump, or stemness. For example, a specific state of the EMT 

spectrum that was defined with single- cell mass cytometry (i.e. 
CyTOF) in lung cancer cells was characterized by depleted levels of 
pEGFR which would in theory confer resistance to tyrosine kinase 
inhibitor therapy (in the absence of a EGFR- conferring mutation) 
[24]. All other dynamic EMT states that were identified had varying 
levels of pEGFR, highlighting the importance of also understanding 
the dynamics of these processes.

11.3. How the advances in single- cell 
technologies can help us further decode 
cancer resistance

Drug resistance whether it is driven via genetic or non- genetic 
forces can be manifested in a variety of phenomena described in 
tumour biology: reversible therapy- induced senescence [25], quies-
cence [26], dormancy [27], cancer stemness, and EMT [28] to name 
a few. These phenomena share some characteristics: (1) they can 
all be induced by therapy and by the surrounding tumour micro-
environment [29], (2) they are usually rare in occurrence, (3) they 
are plastic in nature, and (4) they are in general poorly described at 
the single- cell level. These common features necessitate the use of 
single- cell technologies and computational approaches for studying 
drug resistance. Although single- cell studies have been successful in 
identifying types of resistance, tackling tumour heterogeneity, and 
identifying rare drug- resistant populations [4,6,30] single- cell ap-
proaches (which are admittedly rapidly evolving) have yet to achieve 
important strides in predicting and counteracting drug resistance 
especially in a clinically impactful manner. Next, we summarize 
an array of single- cell technologies that are available to cancer re-
searchers and how to use computational approaches to best realize 
what these types of analyses can offer towards decoding drug 
resistance.

11.4. The era of high- throughput    
single- cell technologies

A very broad way of describing the major classes of high- throughput 
single- cell technologies available to cancer biologists is breaking 
them down to (1) imaging- based techniques (the ‘original’ way of 
performing single- cell analysis) with the benefit of retaining spatial 
information (e.g. merFISH for spatial transcriptomics and imaging 
mass cytometry (IMC) for spatial proteomics [31]); (2) techniques 
that are based on flow and/ or mass cytometry techniques where 
one can profile and analyse single cells towards their protein pro-
files by utilizing target- specific antibodies [32]; and (3) sequencing 
techniques that allow the quantification of genomes, epigenomes, 
and transcriptomes at the single- cell level [33]. These technologies 
have seen exponential growth and marked advancements the last 
decade alone, towards their multiparametric natures and high- 
dimensionality data output.

Another way of classifying single- cell technologies is by using the 
biological output (see review by Chen and Teichmann for more details 
[34]): single- cell (sc)- genomics (e.g. scDNA- seq), sc- transcriptomics 
(e.g. scRNA- seq and Split- seq), sc- epigenomics (e.g. scATAC- seq 
and scChIP- seq through which one can study chromatin modifica-
tions and these include sc- methylomic technologies), sc- proteomics 

   

 

   

 

   

 

 

 



Cancer Systems Biology108

(e.g. flow cytometry and mass cytometry), and single- cell metabol-
omics via mass spectrometry approaches. In addition, there are now 
technological platforms that provide parallel quantification of more 
than one of these outputs: genomics/ transcriptomics (G&T- seq 
[35]), transcriptomics/ epigenomics (SNARE- seq and SHARE- seq 
[36,37]), and transcriptomics/ subset of protein epitopes (CITE- seq 
and REAP- seq [38]).

Some of these technologies have been successfully used in drug 
resistance studies. For example, scRNA- seq and scATAC- seq have 
been implemented for studying retinoic acid resistance in leukaemia 
[39]. scChIP- seq was utilized for delineating chromatin states and 
drug resistance in breast cancer [40]. Single- cell multiplexed im-
aging approaches have only recently begun to be utilized for 
studying drug resistance at a spatial level. CITE- seq was used to lon-
gitudinally track leukaemic and immune cells populations during 
ibrutinib treatment and at relapse [41]. For instance, Bouzekri et al. 
used IMC to perform spatial proteomic profiling on drug- treated 
cells [42]. Spatial proteomics are increasingly becoming a point of 
focus, given that the response of cancer cells to treatment can also be 
affected by the surrounding microenvironment and spatial arrange-
ments among various cell types. Finally, lineage tracing methodolo-
gies [43] can now be effortlessly paired with single- cell technologies, 
and this provides the opportunity to study the dynamics of emergent 
drug- resistant phenotypes.

Additional examples of these technologies and the downstream 
computational analysis that have been implemented for drug resist-
ance studies are described in the following sections and in Table 11.1. 
It is important to note that we have not discussed in detail the 
standard computational workflow that typically follows single- cell 
experiments, which includes dimensionality reduction and visual-
ization tools. For a more detailed description of these, see review by 
Todorov and Sayes [33].

11.5. Computational methods to study 
and overcome drug resistance at the 
single- cell level

Single- cell studies that are utilized to model or overcome drug resist-
ance make use of three major computational types of analyses: clus-
tering, network- structure learning (including trajectory modelling), 
and predictive modelling that typically involves machine learning 
approaches. In the following sections, we present a brief description 
of clustering, trajectory, and predictive modelling approaches with 
associated computational algorithms that have been/ can be applied 
to high- throughput single- cell technologies to (1) characterize het-
erogeneous drug- resistant populations, (2) study dynamic pheno-
typic state transitions and trajectories, (3) predict resistance and 
promising drug combinations, and (4) optimize drug combinations 
that selectively kill cancer cells while simultaneously limiting toxic 
effects (by sparing normal, non- malignant cells).

11.5.1. Clustering single- cell data 
for identifying therapy- resistant cell 
populations and states

Computational methods based on clustering single- cell - omic data, 
such as scRNA- seq and CyTOF data, have been used to distinguish 
drug- tolerant states and select effective drugs and drug combinations 

to target resistant cell subpopulations [44]. The goal of clustering 
is to divide data points into a finite number of groups such that 
data points (usually high dimensional) in the same group are more 
similar to those in other groups (Figure 11.2). The result of a clus-
tering algorithm can be unique for each data point (hard clustering) 
or probabilistic (soft clustering). Clustering algorithms make use of 
‘similarity’ metric to measure how close points are to each other in 
space. This metric can be determined using distances (k- means clus-
tering [45] and hierarchical clustering [46]), distributions (mixtures 
[47]), or network connectivity (graphical clustering [48]). For most 
of these methods, the number of clusters need to be predefined. For 
example, the k- means algorithm (Figure 11.2A) uses the distance 
between each cell and a centroid to assign k =  3 clusters. The agglom-
erative hierarchical clustering (Figure 11.2B) produces a five- level 
hierarchical tree called a dendrogram, which can be cut to generate 
four distinct clusters. Although several clustering methods have 
been developed for single- cell analysis, determining the unknown 
number of clusters remain a major challenge [49]. Network models 
try to overcome this problem by modelling data points as a con-
tinuous relationship with pairwise nodes representing interactions 
or similarities between biological entities. These approaches aim to 
preserve the cluster relatedness of the data. Clustering of these net-
work models is derived manually (SPADE [46]) using an objective 
function (PAGA [48]) or a model- based strategy (CCAST [50]). At 
the same time, it is important to remember that understanding the 
single- cell data from a biological perspective can also help decide 
the optimal number of clusters; combining biology knowledge with 
well- informed computational tools promises to produce results that 
better represent what happens in the tumour microenvironment 
during treatment.

11.5.2. Network- structure learning and 
trajectory analysis of therapy- resistant states

Given that drug resistance is often confounded by time, tem-
poral single- cell - omic analyses have been applied to study re-
sistant cell state dynamics during tumour progression and therapy. 
Interrogating state transitions between therapy- resistant cellular 
states can be critical towards predicting what new resistant and po-
tentially targetable state may appear upon treatment with any given 
drug. Learning an unknown cellular network structure over time 
can be challenging for single- cell analysis. For example, cellular 
differentiation is typically modelled using pseudotime trajectory, 
in which cells are ordered by progression instead of time. These 
models combine data reduction with clustering, and the trajectory 
is usually inferred on the reduced space (Figure 11.3). For example, 
a pseudotime trajectory model, like monocle for scRNA- seq ana-
lysis, first reduces the number of genes using independent com-
ponent analysis [51]. It next connects all cells using a minimum 
spanning tree and then uses the longest connected path in that tree 
to form a pseudotime trajectory. Pseudotime models make use of 
prior knowledge to drive the developmental trajectory that can be 
biased. Temporary trajectory models, such as DSFMix [52], CStreet 
[53], and Tempora [54], order cellular progression deterministic-
ally by observed discrete time points. However, these models are 
not optimal for predictive modelling of new data points. Markov- 
based methods, such as Waddington- OT [55] and TRACER [24], 
can model cell growth and state transition rates and statistically 
compare time- dependent trajectories, respectively. Quantifying 
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Table 11.1. Examples of drug resistance studies utilizing single- cell technologies and computational approaches for identifying drug 
resistant states, interrogating trajectories, predicting therapy resistance and optimizing therapy. Respective reference numbers are 
indicated in parentheses.

Single- cell 
Platform

Omic Output Cancer Type Drug(s) Objective(s) Computational Approach(es) References

scChIP- seq & 
scRNA- seq

Epigenomics & 
Transcriptomics

Breast Cancer Chemotherapy 
(Cabecitabine, 
Tamoxifen)

Identification of 
heterogeneous chromatin 
states related to 
chemotherapy resistance

Hierarchical and consensus 
clustering

Grosselin et al., 
2019 [40]

SCATAC- seq & 
scRNA- seq

Epigenomics & 
Transcriptomics

Leukemia Retinoic Acid (RA) Identification/ charaterization 
of RA resistant cells, Trajectory 
analysis and scRNA- seq/ 
scATACseq Integration

Seurat clustering, based on 
PCA, UMAP.
Pseudotime analysis with Single- 
cell Trajectories Reconstruction, 
Exploration And Mapping 
(STREAM algorithm)

Poplineau et al., 
2020 [39]

scRNA- seq Transcriptomics Non- small Cell 
Lung Cancer 
(NSCLC)

Erlotinib Identification of drug tolerant 
states and cell subpopulations

Seurat clustering based on t- SNE, 
UMAP, RNA velocity and GSEA 
method

Aissa et al., 2021 
[44]

scRNA- seq Transcriptomics Acute Myeloid 
Leukemia 
(AML)

Multiple 
(approved and 
investigational)

Prediction of optimal drug 
combinations towards synergy, 
efficacy, and toxicity

Pathway analysis, XGBoost and 
Gene set variation analysis (GSVA)

Ianevski et al., 
2021 [67]

scRNA- seq Transcriptomics Breast Cancer Dexamethasone Identification of 
heterogeneous populations 
of cells towards response to 
glucorticoids

Seurat clustering based on t- SNE 
and UMAP

Hoffman et al., 
2020 [65]

ScRNA- seq 
& single cell 
imaging 
cytometry 
(for viability 
readout)

Transcriptomics Ovarian 
Cancer

Multiple Prediction of drug response Patient specific drug- target 
interaction networks

He et al., 2021 
[66]

ScRNA- seq & 
live imaging

Transcriptomics Breast Cancer Endocrine therapy Identification of pre- adapted 
therapy resistant cells 
and multistep phenotypic 
adaptations to therapy

Hierarchical clustering, random 
forests, copy number variation 
analysis, Seurat clustering, Single- 
cell gene regulatory network 
inference

Hong et al., 
2019 [64]

SCRNA- seq & 
lineage tracing

Transcriptomics 
& genomics

Glioblastoma Receptor 
Tyrosine Kinase 
(RTK) inhibitors, 
(Dasatinib)

Identification of genetic 
and epigenetic mechanisms 
of resistance and persister 
phenotypes

t- SNE visualization, GSEA method Eyler et al., 
2020 [30]

CYTOF (single- 
cell mass 
cytometry)

Proteomics Acute 
Lymphoblastic 
Leukemia (ALL)

Dasatinib, 
BEZ235, 
Tofacitinib

Optimization of patient 
specific drug combinations

Clustering, Bayesian network, 
Drug- target network with 
DRUGNEM algorithm

Anchang et al., 
2018 [8] 

CYTOF Proteomics Various cancer 
cell lines

TNFa- related 
apoptosis- 
Inducing ligand 
(TRAIL)

Identifying TRAIL resistance 
signaling states and 
interrogating trajectory of 
acquired resistance to TRAIL

VISNE and pseudatime analysis 
with Wanderlust algorithm

Baskar et al., 
2019 [63]

CYTOF Proteomics NSCLC TGFβ* Identifying spectrum of EMT 
states and interrogating EMT 
state transition states reflective 
of tumor progression and 
therapy resistant features

Clustering with CCAST algorithm, 
mapping EMT states with 
PHENOSTAMP (Neural network) 
at a personalized level, trajectory 
analysis with TRACER algorithm

Karacosta et al., 
2019 [24, 74]

CITE- seq Transcriptomics 
& Proteomics

Chronic 
Lymphocytic 
Leukemia (CLL)

Ibrutinib Identifying heterogeneous 
leukemic B cell populations 
and other immune populations 
during treatment

UMAP, Geneset enrichment with 
Single- cell signature explorer

Cadot et al., 
2020 [41]

Imaging Mass 
Cytometry 
(IMC)

Single- cell 
spatial 
proteomics

Breast Cancer Multiple Profiling responses in drug 
treated cells

Spatial distribution mapping, 
dimensionality reduction, 
unsupervised and hierarchical 
clustering

Bouzekri et al., 
2019 [42]

Single- cell 
Metabolomics

Metabolomics Chronic 
Myeloid 
Leukemia 
(CML)

Chemotherapy Prediction of drug resistant 
phenotypes

Machine learning: Random forest, 
logistic regression and neural 
networks

Liu et al., 2019 
[58]
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state transition rates offers the ability to interrogate reversibility 
among states, whereas pseudotime models provide a predeter-
mined single trajectory of sequential states with no real input on 
the plasticity that often drives drug resistance phenomena. Finally, 
mechanistically driven ordinary- differentiation- equation- based 
models like RNA velocity can be used to predict the future state of 
individual cells on a timescale of hours driven by transcriptional 
kinetics [56].

11.5.3. Deep learning/ neural networks 
for predictive modelling

With increase in computational power, deep learning or genera-
tive models based on artificial neural networks (ANNs) have also 
been used in single- cell analysis for predictive modelling. These net-
work models are characterized by input, hidden, and output layers 

of nodes or neurons [57]. Figure 11.4A represents a simple feed-
forward neural network with a single hidden layer. Feedforward 
neural- network- driven approaches like PHENOtypic STAte MaP 
(PHENOSTAMP) [24] have been used to predict dynamic pheno-
typic (EMT) states of lung cancer cells using CyTOF training data or 
to predict drug resistance using mass spectrometry single- cell data 
[58]. Most popular ANNs for single- cell analysis are autoencoders 
[59], where the input and output layers are of the same dimension 
(Figure 11.4B). This is made possible with the help of encoder and 
decoder functions connected to the hidden layer. They have been 
used as a deep learning tool for low- dimensional structures for syn-
thetic CyTOF data [59] and scRNA- seq data [60]. The clustering and 
predictive models highlighted above can be tailored towards identi-
fying biomarkers, characterizing drug resistance states but are not 
informative on how to control or regulate them.

Figure 11.3. A schematic overview of trajectory modelling. Given a single- cell expression data, these models typically combine data reduction 
with clustering and the trajectory model is applied on the reduced data space.

Figure 11.2. A brief overview of the (A) k- means and (B) hierarchical clustering respectively of six cells distributed in 2D space.
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11.5.4. Integrating network analysis and 
machine learning approaches for predicting 
and optimizing drug combinations

We now focus on recent computational methods that have the po-
tential to select effective drugs to target both sensitive and resistant 
cell subpopulations for a given patient, accounting for both the het-
erogeneity of malignant cells and the possible toxic effects on non- 
malignant cells, thereby offering a unique opportunity to optimize 
therapy towards both efficacy and toxicity.

Several tools based on high- throughput genomic and proteomic 
screens derived from molecular bulk assays have been proposed 
for combination therapy that leverages the idea that an individual 
tumour’s biology is dominated by a single regulatory network under 
the control of a limited number of master regulators [61,62]. They 
make use of network analysis encoding protein– protein interactions, 
dynamic pathway simulations, and reduced network motifs to iden-
tify putative mechanisms of synergistic and antagonistic drug– drug 
and gene– drug interactions to overcome resistance. These ap-
proaches do not account for tumour heterogeneity as highlighted by 
numerous CyTOF and scRNA- seq in vitro studies that have revealed 

striking cell- to- cell variability to single and/ or combinations of drugs 
[63– 65]. This complexity challenges the current field of combination 
therapy to target cell interactions within the tumour microenviron-
ment. To address this challenge, network- guided identification of 
selective combinatorial therapies in cancer has been developed to 
tailor personalized therapeutic regimens that consider both the mo-
lecular heterogeneity of cancer cells and the possible nonselective 
toxic effects of the drug combinations. For example, He et al. imple-
mented a two- phase machine- learning- based platform to identify 
safe and effective combinatorial treatments that selectively inhibit 
cancer- related dysfunctions or resistance mechanisms in individual 
patients [66]. They used a comprehensive drug– target interaction 
network to improve both combination efficacy and tolerability to-
gether with genomic and molecular aberrations to construct patient- 
specific co- vulnerability networks. Another Bayesian- model- based 
algorithm like DRUGNEM [8]  optimizes combination therapy for 
an individual patient by (1) identifying the subpopulations that 
make up the tumour and may respond differently to treatment, 
(2) reconstructing a drug- nested- effects network model that inte-
grates the drug effects across all subpopulations, and (3) systematic-
ally scoring and ranking potential drug combinations that maximize 

Figure 11.4. Examples of neural networks. (A) Feedforward neural network with a single hidden layer. (B) Autoencoder showing the same data 
input and output dimensions.
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the desired effects in both sensitive and non- sensitive populations 
of cells with the minimum number of drugs. DRUGNEM was ap-
plied using CyTOF data to individualize therapy for a cohort of 30 
paediatric acute lymphoblastic leukaemia (ALL) patients. Ianevski 
et al. used gradient boosting machine learning approach (XGBoost) 
and gene set variation analysis to prioritize patient- specific drug 
combinations by accounting for synergy, efficacy, and toxicity by 
combining scRNA- seq with ex vivo single- agent viability assays in 
patient- derived primary cells [67]. Specifically, they predicted which 
drug pair will produce the highest cell killing effect and then selected 
among the top predictions those with a lower likelihood of toxic ef-
fects in four leukaemia patients.

The above studies demonstrate the complexity involved in over-
coming drug resistance networks within the tumour microenvir-
onment as we increase the number of drugs. Computational tools 
focused on optimizing drug combinations while accounting for 
drug resistance heterogeneity are inherently complex. They combine 
machine learning, network modelling, and optimization of several 
objective functions. To make things even more complicated, there 
is a need to expand these computational frameworks to account for 
multi- omic data integration, higher- order synergistic interactions 
beyond pairwise interactions as well as temporally staggered treat-
ments, which are known to affect in vivo drug efficacy.

11.6. Systems biology approaches 
and data integration for decoding 
drug resistance

There is no doubt that we are now experiencing the golden era of 
single- cell multi- omic technologies and advanced computational 
tools in cancer research. Researchers today have an abundance of 
state- of- the- art technologies at their disposal for decoding drug 
resistance mechanisms. The challenge however lies in the task of 
putting the ‘single- cell’ pieces back together towards achieving a 
holistic view of drug resistance in the tumour and by extension, the 
patient system. This is where systems biology approaches are critical. 
Systems biology is a multidisciplinary field that is uniquely suited 
to study complex- systems- wide behaviours (like drug resistance), 
by applying computational and mathematical tools specifically de-
veloped for analysing high- dimensional data generated by well- 
designed experiments and publicly available datasets [68]. To best 
delineate and model drug resistance as a behaviour of the system, 
one key step is to integrate the various - omic molecular layers and 
scales (e.g. transcriptomic, epigenomic, proteomic, and spatial). 
This has become increasingly important as more and more tech-
nologies offer the capability of quantifying more than one output. 
Achieving integration however can be quite challenging as different 
layers of information often require vastly different analytical ap-
proaches [53]. Nevertheless, computational frameworks have been 
developed to harmonize multimodal - omic data. Methods, such as 
Linked Inference of Genomic Experimental Relationships (LIGER) 
[69] and Jointly Semi- orthogonal Nonnegative Matrix Factorization 
(JSNMF) [70], have been used to integrate transcriptomic and 
epigenomic data profiled from the same cell. Bi- CCA allows for com-
binations of any two single- cell modalities [71]. Finally, there is an 
increased interest in integrating multimodal - omic data with single- 
cell multiplexed imaging platforms, and this offers the capability of 

identifying cell types, their architectural patterns in tissue, and at 
the same time interrogating their functional traits in the context of 
their - omic expression profiles [72]. For example, DBiT- seq offers 
simultaneous interrogation of transcriptomic, proteomic, and spa-
tial data [73].

11.7. Concluding remarks: decoding 
drug resistance at a personalized level

For summary, we provide Table 11.1 with examples of studies in 
which single- cell technologies and computational approaches were 
developed to better understand and treat drug resistance across 
various cancer models. We highlight the specific technologies and 
analytical tools utilized and whether the study was focused on iden-
tifying resistant populations/ states with clustering, interrogating 
trajectories, predicting therapy response/ optimizing therapy, or a 
combination of these.

The plethora of single- cell technologies and the computational 
power available to researchers today have greatly advanced our 
understanding on drug resistance in cancer. What is clearly missing 
however from the field is a more focused effort towards decoding 
drug resistance at a personalized level. In this chapter, we primarily 
discussed approaches to interrogate drug resistance within a hetero-
geneous tumour. Yet, it is well known that cancers are vastly different 
from patient to patient. One way to approach this important issue 
is by utilizing high- dimensional single- cell - omic data and machine 
learning algorithms to construct reference maps of therapy resistance 
states observed in vitro and in clinical specimens per cancer type. 
These reference maps can then be used to assess therapy response and 
drug resistance in longitudinal clinical specimens and tailor treat-
ment at a personalized level [24,74]. Constructing well- informed 
and clinically applicable reference maps requires performing trans-
lational studies that combine and integrate data from top- down (e.g. 
analysis of patient intact tissue pre-  and post- therapy with spatial 
multiplexed imaging) and bottom- up approaches (functional, in vitro 
drug treatments and single- cell analysis on patient- derived cells and/ 
or organoids) [75]. This once again highlights the notion of studying 
drug resistance at multiple levels of the system to better understand its 
development and come up with ways to counteract it.

With all the advances in multi- omics, artificial intelligence, and 
systems biology approaches we are experiencing today, we are 
uniquely positioned to begin implementing precision oncology 
when it comes to predicting and preventing drug resistance. As 
single- cell technologies and complex computational methods con-
tinue to rapidly advance, it is up to cancer researchers to harness the 
multidisciplinary nature of systems biology to decode drug resist-
ance identified in one cell and patient at a time.
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Computational methods to infer lineage 
decision- making in cancer using    
single- cell data
Manu Setty

12.1.  Introduction

Lineage decisions are a hallmark of the differentiation process, 
where multi- potent stem cells give rise to the full complement of 
functionally distinct cell types through a series of cell divisions and 
lineage decisions to establish and maintain tissue homeostasis. Cells 
are specified to differentiate to particular lineages following a lineage 
decision while simultaneously losing the potential to differentiate to 
other sister lineages. Recent studies have highlighted the role of lin-
eage decision- making process in cancers where fate- committed cells 
might acquire stem- like properties due to somatic mutations and 
other perturbations leading to a differentiation process that has gone 
awry. Single- cell measurement technologies and computational 
methods have enabled a high- resolution investigation of lineage de-
cisions in biological systems spanning development to cancer.

Classically, lineage decision- making process has been viewed as 
a discrete process with a series of bifurcations between cell states, 
where state transitions are punctuated by extensive changes in ex-
pression patterns of hundreds of genes. The notion of discrete cell 
states has also been broadly used in disease such as cancer, where 
individual cancers have been classified to a discrete number of sub-
types based on their transcriptome profiles. However, these ideas 
largely stemmed from bulk gene expression profiling, measurement 
technologies that are not equipped to study the lineage decision- 
making process at a high resolution.

Advances in single- cell RNA- seq (scRNA- seq) technologies can 
generate transcriptome profiles of individual cells for thousands of 
cells that have challenged the notion of discrete state transitions and 
subtypes and have posited that cell- state transitions underlying vir-
tually all biological systems spanning development to disease are 
continuous in nature [1,2]. While initial single- cell studies suffered 
from lack of throughput [3] , recent advances have led to routine gen-
eration of large- scale datasets of tens of thousands of cells. Droplet 
microfluidics [4,5] was the transformative technology that enabled 
the profiling of thousands of cells in a single experiment— single cells 

are encapsulated in oil droplets along with unique cell barcodes and 
lysis reagents. Cells are lysed within the droplets, and the transcripts 
of each cell are tagged with the unique cell barcodes contained in the 
oil droplet. The droplets are then broken, library preparation done 
in bulk, and the transcriptome and cell barcodes are both recovered 
by high- throughput sequencing. Split- pool technologies [6] have in-
creased the throughput by another order of magnitude— barcodes 
are incorporated into cells in 96- well plates, where each cell contains 
a unique barcode. Cells from all wells are pooled and then randomly 
redistributed into another barcode contains 96- well plate leading to 
the incorporation of a second barcode. This process is repeated sev-
eral times to ensure that each cell is tagged with a unique combin-
ation of barcodes.

Consortia such as Human Cell Atlas [7] , Human Tumor Atlas 
Network [8], Tabula Muris [9], and others have leveraged these 
technological advances to generate datasets containing millions of 
cells, providing unprecedent scale and resolution to investigate bio-
logical systems. A consistent observation across these datasets is that 
the phenotypic space spanned by single cells is continuous in nature. 
With a simplifying assumption of each cell representing a unique 
state, studies have observed that state transitions are gradual and 
continuous— while the number of genes that change between state 
transitions can be in tens or hundreds in part due to coordinate gene 
regulation, the extent of change is incremental unlike the changes 
over orders of magnitudes observed with bulk data. The continuous 
nature of cell- state transitions and the resolution of single- cell data 
has spurred the development of a large number of computational 
trajectory detection algorithms where the goal is to place the single 
cells in an order representing their progression and also describe 
the lineage decision process along the progression [10]. Current 
approaches for trajectory detection have invariably been devel-
oped to study the ordered process such as healthy differentiation 
and development, regeneration, wound healing, and directed pro-
gramming. Nonetheless, these approaches have been successfully 
applied to describe critical cancer- related processes, such as tumour 
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microenvironment immune cell trajectories [11], metastatic trans-
formation [12], and response to drugs [13].

Lineage plasticity has emerged as a key theme across several dif-
ferent cancers [14]. Differentiated cells demonstrate plasticity by ac-
quiring properties of progenitor cells through de- differentiation or 
trans- differentiate to alternative lineages, both as a result of somatic 
mutations and associated perturbations. The applicability of current 
algorithms that describe lineage decision- making to emergence and 
progression of highly plastic populations is currently an area of in-
vestigation with many efforts underway to develop computational 
methods that leverage multi- modal single- cell data to describe tra-
jectories in cancer. This chapter describes the state- of- the- art tra-
jectory detection algorithms and their successful application in the 
context of cancer and concludes with a discussion of efforts to model 
lineage plasticity.

12.2. Trajectory detection algorithms

Trajectory detection or trajectory inference algorithms are arguably 
the most studied computational concept with single- cell data. These 
algorithms provide rich, interpretable views of the data from which 
hypotheses can be generated for downstream experimental tests and 
validation. The input to trajectory detection is a single- cell dataset 
and outputs broadly are an ordering of cells, representing their pro-
gression and information about the lineage decision- making process 
(Figure 12.1). While there are a large number of algorithms avail-
able, each with their own assumptions and scenarios in which they 
are applicable, the following assumptions are generally required for 
the application of any algorithm: (1) the dataset measures cells that 
are a part of dynamic biological system; (2) the dataset of interest 
comprises cells in a continuum, i.e. the application of trajectory de-
tection to a dataset of distinct cell types is not meaningful; (3) there 
are no missing states in the system including low- frequency tran-
sient populations; and (4) virtually all algorithms assume that the 
flow of information along a trajectory is unidirectional, i.e. cells 
cannot retrace their path in the reverse order of progression. Most 
of these assumptions are satisfied in a healthy differentiation and 
development, but assumption (4) might not be valid in cancers due 
the extensive observations of lineage plasticity. Further, a number of 
algorithms require prior biological information to specify the start 

of the trajectories, but recent approaches can automatically detect 
the start and terminal states in the system.

Trajectory detection algorithms can be broadly grouped into 
three classes: (1) graph- based approaches that use nearest neighbour 
graphs, (2) RNA- velocity- based approaches that take advantage of 
detection of spliced and unspliced transcripts in scRNA- seq to infer 
lineage dynamics using splicing dynamics from a population of cells, 
and (3) approaches that leverage scRNA- seq datasets measured over 
multiple time points or time- series datasets.

12.2.1. Graph- based trajectory 
detection algorithms

The first algorithms for trajectory detection, Monocle (1) and 
Wanderlust (2), were both inspired by concepts from the field of 
manifold learning. In manifold learning, the goal is to identify the 
true underlying low- dimensional representation of a dataset when 
the observations are made in high- dimensional space. This is dir-
ectly applicable to biological systems since the phenotypic states 
of the biological system are likely to occupy a substantially lower- 
dimensional space even though the data is measured in thousands 
of dimensions representing genes. This is a result of (1) covarying 
patterns of genes due to tight regulatory mechanisms and (2) the fact 
that not all genes are expressed in all cell types. Manifold learning 
also assumes that the observed high- dimensional data is locally 
Euclidean and thus nearest neighbour graphs are a widely used 
approach to describe the underlying manifold. The idea behind 
nearest neighbour graphs is simple: each data point is connected 
to its k- nearest data points where the number of neighbours, k, is a 
user- defined parameter. Distances between data points that are not 
neighbours are measured as steps through the graph rather than dir-
ectly measuring distances in the observed dimensions. Graph tra-
versals can accurately recover distances of points along the manifold 
provided that the data and graph construction is not noisy.

Monocle (1) and Wanderlust (2) both use nearest neighbour 
graphs for trajectory detection. As the first set of algorithms de-
signed for this purpose, they tackled the problem of inferring pro-
gression of cells along a single trajectory without branches. Thus, 
the problem effectively derives a one- dimensional representation of 
cells, in which the order represents progression of differentiation. 
Single- cell data is noisy and sparse due to dropouts [15], and as a 
result the construction of nearest neighbour graphs directly using 

Figure 12.1. Trajectory detection algorithms. Trajectory detection algorithms using single- cell RNA- seq profiles as input (A) to derive a pseudo- 
temporal ordering of cell representing their progression (B) and lineage decisions either as discrete bifurcations (C) or probabilistic cell- fate 
choice (D).
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the normalized data is highly unreliable. Therefore, most single- cell 
algorithms use a lower- dimensional representation such as PCA 
or ICA as a first step. Nearest neighbour graphs are constructed in 
the reduced dimensional space, following which Wanderlust uses 
shortest path distances and Monocle uses minimum spanning tree 
algorithms from a specified start cell to infer the one- dimensional 
pseudo- temporal ordering. Despite reduced noise in reduced di-
mensional space, the graphs still contain spurious edges, termed 
short circuits, that connect unrelated cells leading to loss of accuracy 
in estimating distances between distant cells. Wanderlust uses land-
mark points— cells sampled across the manifold— and Monocle uses 
P– Q graphs to improve the robustness. These algorithms pioneered 
the idea of trajectory detection from single- cell data, but they have 
not been extensively used to study cancer.

While the approaches used in Monocle and Wanderlust were 
powerful in relatively simple trajectories, the increasing complexity 
of data meant that the nearest neighbour graphs on their own were 
not sufficiently robust to define trajectories and infer branching or 
lineage decisions. The use of diffusion maps [16] to describe single- 
cell phenotypic spaces was a major catalyst in substantially increasing 
the robustness of trajectory detection algorithms. Diffusion maps 
can be viewed as a non- linear version of PCA and have proven to 
be highly effective for single- cell data after their introduction in the 
Wishbone [17] and diffusion pseudo- time (DPT) [18] algorithms. 
Diffusion maps also start with nearest neighbour graphs and use the 
adjacency matrix representation. The distances in the adjacency ma-
trix are transformed into similarities using density- aware Gaussian 
kernels [19]. Following row normalization of the similarity matrix, 
each entry in the matrix (i, j) now represents the probability of cell in 
row i transitioning to column j in one step. It has been demonstrated 
that the Euclidean distance between any two cells in this represen-
tation is equivalent to measuring distances between considering 
all possible random walks through the graph [16], thus providing 
a highly reliable metric distance between individual cells. Further, 
the top eigenvectors of this matrix, termed diffusion maps, are suf-
ficiently representative of the information in the full adjacency ma-
trix. Both Wishbone and DPT leverage diffusion maps to provide 
robust pseudo- temporal orders and developed heuristics based on 
triangular inequalities to identify lineage decision- making points 
in single- cell datasets. Diffusion maps have had a profound impact 
on single- cell biology and have been extensively used to describe 
phenotypic process in cancers [12,20].

Graph abstraction is another widely approach to reduce the im-
pact of noise over longer distances on a nearest neighbour graph. 
Two approaches PAGA [21] and Slingshot [22] use graph abstrac-
tion for inferring trajectories and lineage decisions. The first step 
in both approaches is to cluster the data to identify closely related 
groups of cells. PAGA than constructs an abstract graph connecting 
the clusters by enumerating the edges between cells that belong to 
different clusters. Slingshot uses the clusters as input to construct a 
minimum spanning tree to identify lineage decisions and then fits 
a principal curve through each lineage trajectory to infer pseudo- 
temporal ordering. Both approaches model the biological system as 
the classical tree or graph structure with discrete bifurcating steps to 
represent lineage decision- making events.

Single- cell datasets of increasing complexity challenged this clas-
sical bifurcating steps for lineage decision- making events, and ob-
servations across multiple biological systems led to the hypothesis 

that the lineage decision- making events are probabilistic in nature 
given the lack of discrete branch points where a cell fate was de-
cided [23,24]. Palantir [24] was the first algorithm to model lineage 
decision- making processes as probabilistic events and presented 
an approach to model single- cell trajectories as a Markov chain. 
Palantir first used diffusion maps and shortest path distances from a 
specified start cell in the diffusion space to infer a pseudo- temporal 
ordering of cells. The pseudo- temporal order was used to derive a 
heuristic that transformed the undirected nearest neighbour graph 
to a directed graph such that for each cell the weight of edges going 
forward in pseudo- temporal order was greater than the backward 
edges, consistent with the unidirectional flow of trajectories. The 
directed graph was row normalized to infer a transition matrix or a 
Markov chain where the entries in the matrix represent transitions 
between cells representing states. Palantir uses the stationary distri-
bution of the Markov chain to automatically determine the terminal 
states of the system. The Markov chain is then transformed into an 
absorbing Markov chain by removing all the outgoing edges from 
the terminal states, which means analytical solutions can be used to 
compute the probability of each state reaching the terminal states. 
Thus, the lineage decision- making process is described probabilis-
tically rather than as discrete bifurcating steps. Further, the branch 
probabilities for each cell represent a multinomial distribution, and 
the uncertainty in this distribution can be estimated using entropy, 
which Palantir nominates to represent the differentiation potential 
of the cell. Palantir has since been used to successfully describe tra-
jectories in healthy differentiation [24], embryonic development 
[25,26], immune cell trajectories in tumour microenvironments 
[11], and metastatic transformation from mouse models of tumour 
[12] and primary patient samples [27]. The probabilistic view of lin-
eage decision- making has since been experimentally validated using 
CRISPR- based lineage tracing in a variety of biological systems 
[28,29]. Some of the other approaches to model probabilistic fate 
choices include FateID [30], VIA [31], and Grandprix [32].

12.2.2. Lineage dynamics from    
splicing dynamics

Computational approaches to infer RNA velocity have had a pro-
found impact on inferring dynamics from single- cell data [33]. RNA 
velocity is a high- dimensional vector that represents the time de-
rivative of gene expression state. scRNA- seq data represents static 
measurements of transcriptional states. Motivated by the fact that 
both spliced and unspliced transcripts can be detected from scRNA- 
seq data, it was proposed that the RNA velocity and hence dynamics 
of the biological system can be inferred by modelling the splicing 
dynamics of individual genes [33]. Specifically, the transcription 
of each gene is modelled as differential equations that describe the 
evolution of unspliced and spliced counts over time. The unspliced 
counts are modelled as a function of transcriptional and splicing 
rates, whereas the spliced counts are modelled as a function of spli-
cing and degradation rates. With the assumption that the spectrum 
of splicing dynamics for each gene is represented across the cells 
along with assumptions of time- independent transcriptional and 
degradation rates and constant splicing rates, a complete solution 
to rate equation was derived to infer gene- specific transcription 
and degradation rates [33]. The inferred rates are used to predict 
the expected state of a cell given its current transcriptional state. 
The concatenation of these predictions across all genes represents 
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the RNA velocity vector of the cell. These vectors are projected onto 
uniform manifold approximation and projections (UMAPs) to visu-
alize the dynamics of the system. The key advantage of RNA vel-
ocity approaches is that the amount of prior biological knowledge 
is minimal— specifically, unlike almost all previous approaches, the 
start and terminal states are no longer necessary parameters and 
thus can be utilized to de novo identify stem- like cell populations. 
While the initial efforts to infer RNA velocity made a number of sim-
plifying assumptions and provided only a qualitative description of 
dynamics, improvements since have led to RNA velocity becoming 
one of the most powerful tools for inferring trajectories and lineage 
decision dynamics.

scVelo [34] directly addressed two key limitations of the initial 
approach to infer RNA velocity from single- cell data: (i) the full dy-
namics of individuals are captured in the scRNA- seq dataset and 
(ii) all genes have a shared and constant splicing rate. scVelo intro-
duces a latent time variable that describes the progression of a cell 
by sharing information with all genes and solves the full gene- wise 
transcriptional dynamics inferring transcriptional, splicing, and 
degradation rates for each gene using an expectation– maximization 
procedure. The transcriptional dynamics are inferred given a latent 
time, and the latent time is inferred using the rates in the previous 
iteration. The full dynamical model presented in scVelo substan-
tially improves the accuracy of the cell- state dynamics in a wide 
variety of biological systems spanning embryonic development 
[35], differentiation [34], and cancer [36]. The latent time inferred 
by scVelo represents progression equivalent to pseudo- time in-
ferred by graph- based approaches, but the description of the lineage 
decision- making process is qualitative. As a solution, scVelo can be 
used in conjunction with PAGA to derive an abstracted view of lin-
eage decisions.

While RNA velocity approaches leverage biological information 
to infer dynamics, graph- based approaches are extremely effective in 
providing a quantitative description of the lineage decision- making 
process. Inspired by Palantir and scVelo, CellRank [37] models the 
best of both worlds using RNA velocity estimates and graph- based 
manifold learning to infer pseudo- time orders of trajectories, lin-
eage probabilities, and differentiation potential, while robustly and 
automatically inferring the start and terminal states of the system. 
Starting with the nearest neighbour graph, CellRank weights the 
edge of each cell as the cosine similarity between the RNA velocity of 
the cell and the transcriptional change necessary to transition to the 
neighbour. Therefore, if the neighbourhood transition is consistent 
with the RNA velocity, the edge weight will be high whereas contra-
dictory directions will result in lower edge weights. This weighting 
scheme naturally directs the nearest neighbour graph to be con-
sistent with the dynamics inferred using RNA velocity. CellRank 
then uses clustering approaches to automatically determine the ter-
minal states. The edges are then reversed, and a similar procedure 
is utilized to determine the start states. The same graph is then 
transformed to a Markov chain to infer the pseudo- time, branch 
probabilities, and differentiation potential in a manner similar to 
Palantir. CellRank has been demonstrated to be highly effective in 
inferring dynamics of systems where the start of trajectories has not 
well studied such as regeneration [37]. CellRank has also been em-
ployed to infer stem- like or start populations in mouse models of 
tumour [38] and to model the dynamics of disease progression from 
single- cell profiles of primary tumours [39].

Despite the enormous impact, there are a number of limitations 
of RNA velocity estimations that preclude the approach from gen-
eralizing to all datasets— time- dependent transcriptional kinetics 
and lineage- specific dynamics are two of the factors where current 
approaches fail to accurately infer RNA velocities [40]. scVelo pro-
vide diagnostic tools for practitioners to identify whether RNA vel-
ocity estimates on their datasets are reliable. Efforts are underway 
to address these limitations through computational modelling ap-
proaches and through the use of additional data modalities such as 
single- cell epigenomic data.

12.2.3. Lineage decisions in time- series    
datasets

With the increasing cost- effectiveness of single- cell technologies, 
time- series experiments, where the system is studied across multiple 
time points, has become feasible. Time- series scRNA- seq datasets 
have generated to study a variety of biological systems including 
embryonic development [6,25,41], in vitro directed reprogramming 
[42], mouse models of tumour [43], and in vitro metastatic trans-
formation of cancer cell lines [44]. Based on the resolution of the 
measured time points, the differences between cells is often a mix of 
technical batch effects and true biological signal. As a result, the ap-
plication of typically used batch correction techniques can remove 
true biological signal [25]. Purpose- built tools such as Harmony- TS 
[25] can be utilized to connect single- cell disconnected time- series 
datasets. Harmony- TS augments the nearest neighbour graph with 
mutually nearest neighbours between cells of successive time points 
to harmonize time points. The harmonized representation serves as 
input to graph- based trajectory detection algorithms.

Waddington- OT is a computational algorithm designed to model 
trajectories using time- series datasets [42]. Waddington- OT uses 
principles from optimal transport to map cells from each time point 
to their successive time points. Conversation of mass between time 
points is a key requirement for the correct application of optimal 
transport, and Waddington- OT presents extensive work to ac-
count for the growth and apoptosis of cells within each time point. 
Waddington- OT can be used to infer pseudo- temporal trajectories 
and probabilities quantifying lineage decisions from single- cell 
time- series data. Waddington- OT has been successfully used to 
dynamics of in vitro reprogramming [42], regeneration [45], and 
emergence of high- plasticity cell states in mouse tumour models 
[46]. Recently, optimal transport has also been used to infer network 
flow models to chart embryonic development collected at successive 
developmental stages [47].

12.2.4. Multi- modal single- cell datasets

Technologies that can profile multiple modalities per cell simultan-
eously for thousands of cells are rapidly emerging. These include 
CITE- seq to measure transcriptomes and proteins [48], paired 
RNA– ATAC to measure transcriptome and open chromatin [49], 
CUT&TAG- pro to measure transcriptome and histone modifi-
cations [50], and MulTI- TAG [51] to measure multiple histone 
modifications per cell among others. A number of computational 
approaches have been developed to learn a joint representation of 
cells using different modalities such as weighted nearest neighbour 
graph [52] and MOFA+  [53]. These approaches can better describe 
the phenotypic space of cells by leveraging both modalities and have 
demonstrated the differential effectiveness of defining cell states in 
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diverse contexts. The joint representation from multi- modal data 
can be used as input for trajectory detection algorithms.

MIRA is a recent algorithm developed for inferring trajectories 
and regulatory drivers of lineage decisions using paired RNA and 
ATAC data [54]. MIRA uses topic models to infer a low- dimensional 
representation for RNA and ATAC modalities separately. The two 
representations are then concatenated and serve as input for the 
computation of diffusion maps and trajectory detection using 
Palantir. In addition to leveraging multiple modalities, these ap-
proaches also provide an opportunity to explore the differential im-
pact of modalities on lineage decisions. Modelling lineage decisions 
using multi- modal datasets is an active area of research with several 
efforts underway to build mechanistic models of the differentiation 
process and the dysregulation of such mechanisms in disease.

In addition to the above outlined approaches, trajectory detection 
algorithms have also been developed using hidden Markov models 
[55], Bayesian latent variable models [56], and attractor state models 
[57]. Saelens et al. [58] have developed a framework to compre-
hensively benchmark different trajectory detection algorithms by 
devising a number of metrics and biological scenarios. Each algo-
rithm is developed with their own set of assumptions and nuances 
in which they can be applied to. A careful reading of the assumptions 
laid out by the algorithm is strongly recommended for practitioners 
to ensure accurate interpretation of the signal in the data.

12.3. Visualization and downstream applications

UMAPs are the most widely single- cell visualization technique due 
to their broad applicability to single- cell datasets [59,60]. Results of 
trajectory detection, such as pseudo- temporal ordering, dynamics 
from RNA velocity, branch probabilities, and differentiation po-
tential, are visualized using UMAPs. Force- directed layouts have 
emerged as a powerful alternative to UMAPs for visualizing datasets 
with trajectories and lineage decisions [61]. Force- directed lay-
outs better preserve the geometry of the data and thus can better 
highlight the low- frequency transitory populations that are often a 
characteristic of single- cell data. Tools such as STREAM provide im-
plementations for visualizing linear, branching trajectories and cell 
densities along them [62]. Results of trajectory detection algorithms 

that generate lineage probabilities can also be visualized using cir-
cular projection plots to summarize the lineage decision- making 
process [63].

Visualizing of gene expression trends is a powerful technique to 
interpret the results of trajectories and develop hypothesis (Figure 

12.2). Generalized additive models provide robust and efficient es-
timate of gene expression dynamics along pseudo- temporal orders 
by fitting cubic splines [24,64]. Tools support the visualization of 
individual genes along multiple lineages simultaneously, which 
can be effective for understanding key players in lineage decisions 
or comparative visualization of multiple genes for a particular lin-
eage. Dynamics of multiple genes along a lineage can also be visual-
ized using heat maps to generate a comprehensive view of up-  and 
down- regulation of genes as they shape trajectories [24]. Further, 
gene expression trends can be clustered using tools, such as Leiden 
or PhenoGraph, to identify coregulated genes with similar dynamic 
patterns. Clustering of gene trends are particularly effective for iden-
tifying the successive waves of gene expression dynamics that shape 
lineage decisions. Tools, such as Gene Set Enrichment Analysis [65] 
or Gene Ontology analysis [66], can be applied for each cluster of 
gene to infer biological meaning and interpretation.

Tools, such as switchDE [67] and tradeSeq [68], have been devel-
oped to identify differential expressed genes and genes with differen-
tial dynamics between different lineages. These tools can be effective 
in identifying the subset of genes that correlate most with the lineage 
decision- making process. Approaches have also been developed to 
align trajectories with application to in vivo– in vitro trajectories or 
trajectories between related cells of different species [69].

In the case of trajectories using multi- modal datasets, a com-
parison of dynamics of the same set of genes across different modal-
ities has led to critical insights into both differentiation and disease. 
For example, a comparison of gene expression dynamics and dy-
namics of gene scores derived using ATAC modality has demon-
strated the widespread use of open- chromatin priming during 
lineage decisions [49]. While these approaches are still in their in-
fancy, the sparsity of scATAC- seq data presents a major challenge 
to model the dynamics of enhancers as they drive lineage decisions. 
Efforts to summarize single- cell ATAC- seq data into tightly related 
groups of cells called metacells hold promise of inferring and model-
ling open- chromatin dynamics as they drive lineage decisions [70].

Figure 12.2. Visualization of gene expression trends. (A) Expression dynamics of a given gene can be simultaneously visualized for multiple 
lineages. (B) Dynamics of multiple genes can be visualized for a lineage. (C) Similar to (B), visualized as a heatmap.
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12.4. Lineage plasticity in cancer

Lineage plasticity has emerged as one of the predominant drives of 
cancer progression and transformation [14]. Terminally differen-
tiated cells gain plasticity either by trans- differentiating different 
lineages or de- dedifferentiate to acquire stem- like properties as a 
result of somatic alterations and other factors. Single- cell studies 
have demonstrated the role of lineage plasticity where cancer tran-
scriptome profiles show patterns related to multiple differentiated 
cell types or change in the dominant cell- type signal in lung cancer 
[46,71,72], breast cancer [73], prostate cancer [12], and glioblastoma 
[74]. Snapshot single- cell profiles of patient samples do not robustly 
capture the dynamics of emergence and progression of the plastic 
populations. Therefore, trajectory detection algorithms should only 
be applied after a careful consideration of the algorithm assump-
tions and behaviour of the biological system under consideration. 
Time- series measurements of genetically engineered mouse models, 
organoid models, and even profiles of the same patient over multiple 
time points are more amenable to the investigation of cancer lineage 
decisions through trajectory detection algorithms.

12.5.  Conclusions

The study of lineage decisions using trajectory detection algorithms 
has been one of the lasting impacts of advances in single- cell meas-
urements technologies. While enormous progress has been made 
in characterizing lineage decision- making in development and dif-
ferentiation, tools to characterize lineage decisions and plasticity in 
cancer are under active development. Technological advances, such 
as lineage tracing [75] and multi- modal measurements, are poised 
to provide deep insights into lineage plasticity in cancer and are 
likely to eventually lead to tools and metrics to characterize plasti-
city from snapshot single- cell measurements of cancer.
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Analyzing cancer cell- state transition 
dynamics through live- cell imaging    
and high- dimensional single- cell    
trajectory analyses
Jianhua Xing and Weikang Wang

13.1. Hierarchy structure and plasticity 
of cancer cell population

Heterogeneity of tumour cell is one of the major obstacles in clin-
ical cancer treatment. Increasing accumulative pieces of evidence 
have revealed that there is subpopulation of cancer stem- like 
cells (CSCs) in tumour that accounts for recurrence after surgery, 
chemotherapy, and radiotherapy [1] . CSCs share similarity with 
normal stem cells, having the ability of self- renewal and differ-
entiation into non- stem cancer cells (NSCCs). Comparing with 
other cancer cells, CSCs are more resistant to therapy and more 
aggressive. The concept of CSCs revises our knowledge on cancer 
cell populations. Previously, researchers used stochastic models or 
clonal evolution models to describe the dynamics of cancer cell 
population under treatment. These models assume cancer cells 
as genetic and phenotypic homogeneous, while intrinsic or ex-
trinsic factors influence different cancer cell dynamics randomly. 
In the CSC model, cancer cell population are hierarchically organ-
ized and CSCs are the drivers of tumour growth and progression. 
Furthermore, it is reported that CSCs have higher mobility and 
ability of metastasis [2,3]. The key role of CSCs in tumour devel-
opment indicates that a complete cure of cancer requires elimin-
ation of the CSCs, leading to new strategies suggested in cancer 
therapy [4,5].

However, several subsequent studies challenged the mechanism 
of unidirectional conversion from CSCs to NSCCs. Instead, both ex-
periment and theoretical model analyses demonstrate existence of a 
dynamic equilibrium between CSCs and NSCCs, and the transitions 
are bidirectional [6,7]. This bidirectional inter- conversions between 
NSCCs and CSCs, and more generally the phenotypic plasticity of 
cancer cells, cast doubts on the efficacy of focusing on eradicating 
CSCs alone (Figure 13.1A).

One of the major mechanisms of cell phenotypic plasticity is the 
epithelial– mesenchymal transition (EMT). EMT is a process that 
epithelial cells acquire mesenchymal characteristics while losing 
epithelial features. This process is associated with the invasive prop-
erties of CSCs [8] . Through EMT, transcriptional factors including 
Snail, Slug, Twist, Zeb1, and Zeb2 are activated, marker proteins like 
E- cadherin are down- regulated and N- cadherin and vimentin are 
up- regulated. EMT can be induced by a plethora of signals such as 
TGF- β and Wnt [9– 12]. During EMT, the cell morphology switches 
from a cobbler- stone like shape to a spindle- like shape, accompanied 
with decreased expression of E- cadherin and increased expres-
sion of N- cadherin that reduce the strength of attachment between 
neighbouring cells as well as that between cells and extra- cellular 
matrix (ECM) [10,13], which endow the cell with higher motility 
(Figure 13.1B).

EMT is not a simple binary process but a complex transition pro-
cess that goes through different intermediate states [4,12,14]. The 
intermediate states, i.e. partial EMT (p- EMT) state, also play im-
portant roles in cancer migration and metastasis (Figure 13.1B). 
It is reported that cells that locate on the leading edge of primary 
tumours show characteristics of p- EMT [15]. The existence of inter-
mediate states implicates a complex spectrum of EMT [9,10].

13.2. Mathematical formulation of    
cell- state transition dynamics

Mathematically, one uses an array of variables, denoted as X, to spe-
cify cell states. Then, different cell types occupy distinct regions in a 
multi- dimensional phase space defined by X, and cell- state transi-
tions including EMT follow continuous paths that connect the two 
regions (Figure 13.1C) [16].
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Generically, the single- cell dynamics can be described with a 
group of Langevin equation as follows:

d

dt

X
F X= ( ) +, ,λ ξ

where X is the above- defined multi- dimensional state vector of a 
cell, F is in general a non- linear vector function representing the 
interactions or regulation between different components, and ξ is a 
Gaussian noise term [17]. The control parameters λ  specifies extra- 
cellular environmental factors or some hidden variables not expli-
citly specified by X. That is, the underlying regulation relationship 
between genes may vary when the control parameters change.

The existence of the hidden variables may complicate analyses of 
systems dynamics from the observed data. Consider the potential 
system in Figure 13.2A as an example. This is a bistable system coupled 
to a hidden process. The hidden process represents a control param-
eter like epigenetic modification for a cellular system, which here we 
assume that it has a dynamics much slower than the mean transition 
time between the two potential wells, i.e. the time between observing 
two consecutive transition events for a population of particles origin-
ally residing in the left well and jumping to the right well. Then, we 
can assume that the value of the hidden slow variable does not change 
during the transition process. If one can trace individual transition tra-
jectories over time, these trajectories show stepping dynamics charac-
teristic for the bistable system, while the transition positions and the 
basins vary among different trajectories (Figure 13.2B). On the other 
hand, when only snapshot data of a population of particles, i.e. the state 
distribution functions at various time points, is available, information 
about the temporal correlation of individual cell trajectories is missing, 
and one cannot deduce the underlying two- state dynamics [18].

13.3. Exploration of cancer state 
transition with - omic methods

Representing single- cell state X is one of the key tasks in studying 
cancer cell- state transitions. In practice, the classification of CSCs 

and NSCCs has been based on the certain combinations of surface 
markers, such as CD24, CD44, and CD166 [1] . Similarly, most ex-
perimental studies on EMT use a small number of TFs and proteins 
to classify different EMT phenotypes. However, cell- state transi-
tion usually involves global reprogramming of the profiles at the 
transcriptomic, proteomic, and epigenomic levels. Using a small 
set of markers sometime leads to inconclusive or spurious cell- state 
identification. In year 2015, two lineage- tracing studies shook the 
EMT field by claiming that EMT does not contribute to tumour 
metastasis [19,20]. However, subsequent studies demonstrate the 
role of p- EMT on tumour invasion and metastasis, which these two 
studies missed since they drew their conclusions based on markers 
for later stage EMT [21]. This debate in the field is an example on the 
importance of specifying cell phenotypes unambiguously, for which 
a small number of markers may not be sufficient.

In recent years, the development of single- cell RNA- sequencing 
techniques has made it possible to study the dynamics of cell pheno-
type transition in a genome- wide gene expression space. It is now 
widely used in studying different cell phenotype transition processes 
such as development and reprogramming. Since the single- cell RNA- 
sequencing (scRNA- seq) data only provides snapshot distributions 
of single- cell transcriptomic state, various computational methods 
have been developed to infer the dynamics from the data. One of the 
main methods is the pseudo- time method (Figure 13.2C) [22– 25]. 
With this method, each cell is assigned a pseudo- time value based 
on the similarity of its expression to the predetermined initial and 
final states, so the cells are time- ordered in the transition processes 
under study [22,24,26– 32]. The pseudo- time methods have been 
used to infer the transition trajectories or paths in a cell phenotypic 
transition process and study cancer cell heterogeneity and plasticity 
[33– 38].

A number of studies have been reported on using high- 
throughput single- cell genomics approaches to analyse the EMT 
process. Pastushenko et al. used scRNA- seq to compare the expres-
sion profile of epithelial Epcam+  and mesenchymal- like Epcam− tu-
mour cells. They identified the intermediate transition states during 
EMT in vivo [39]. Cook and co- worker performed scRNA- seq on 

Figure 13.1. Transition between cancer cell state is closely associated with EMT. (A) The bidirectional inter- conversion between CSCs and NSCCs. 
(B) Illustration of EMT with intermediate partial EMT states. During EMT, cells dissociate with each other and cell morphology varies significantly. 
(C) Continuum transition path between epithelial and mesenchymal states.
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different cancer cell lines treated with TGF- β1, EGF, and TNF for 
different durations. They found that the EMT dynamics of one cell 
line under different stimuli was more consistent than that of dif-
ferent cell lines treated with the same stimulus. More importantly, 
the global expression profiles of cells undergoing EMT are context 
specific [34], indicating that cells respond to a stimulus with activa-
tion of the EMT program and a number of other cellular programs. 
McFaline- Figueroa et al. compared the scRNA- seq profile of inner 
and outer cell of colonies of MCF10A cells and found that EMT can 
take place spontaneously due to spatial location even in the absence 
of TGF- β [35]. Karacosta et al. analysed multi- dimensional prote-
omic data with TGF- β- treated lung cancer cell lines using an ana-
lysis beyond the pseudo- time method. They divided the cell- state 
space into discrete regions and modelled transitions among these 
states as Markovian processes. They found that EMT and the re-
verse mesenchymal- to- epithelial transition (MET) follow different 
paths in the expression space of marker genes [40], as expected for 
a system out of thermodynamic equilibrium. All these studies ad-
vanced our understanding on EMT and MET, especially the mo-
lecular signatures associated with the transitions.

However, analyses based on single- cell state distributions alone 
have fundamental limits of inferring dynamics from fixed- cell data 
[18,30]. Different dynamics can give rise to the same stationary dis-
tribution. For instance, oscillations in cell dynamics do not alter the 

stationary distributions in phase space [30], which cannot be in-
ferred with the pseudo- time method. Mathematically, the governing 
equation of a stochastic dynamical system can be decomposed into a 
curl- free part and a divergent- free part, and the stationary distribu-
tion is only determined by the curl- free part [41]. While time- series 
data of the nonstationary distributions can provide additional in-
formation, existence of the slow hidden variables discussed above 
further contributes to heterogeneous single- cell dynamics that 
complicates the choice of modelling frameworks for analysing the 
data. To address this limitation of snapshot data, one direction is 
to include additional dynamical information derived from the data, 
specifically RNA velocities derived from scRNA- seq data (Figure 

13.2D) [42]. Qiu et al. developed a computational procedure to learn 
cellular dynamics from single- cell expression and RNA velocities 
data [43]. Another direction is to measure single- cell dynamics dir-
ectly through live- cell imaging, as discussed in the following section.

13.4. Studying cancer cell- state 
transition with live- cell imaging

With live- cell imaging, one can directly trace single- cell dynamics 
over time. There are two major technical challenges for extracting 
information from imaging data. One is single- cell segmentation. 

Figure 13.2. Studying cancer cell- state transition dynamics with snapshot data. (A) Example bistable system coupled with a hidden slow variable. 
Reproduced with permission from [18]. (B) Single- cell trajectory can reveal the dynamics missed by distribution data. Reproduced with permission 
from [18]. (C) Illustration of pseudo- time analysis on single- cell RNA- sequencing data. Each dot represents a single cell, and colour represents the 
inferred pseudo- time order value (from blue to red). Axes represent embedding coordinates. (D) Illustration of RNA velocity analysis on single- cell 
RNA- sequencing data. Each dot represents a single cell (colour represents cell type). Arrow represents cell velocity.
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The development of machine learning, especially deep neural net-
works, makes it possible to perform segmentation on a large batch 
of imaging data [44– 47]. Another one is the limitation of acquiring 
high- dimensional features from images. While a number of algo-
rithms in image processing enable people to extract information 
from fixed- cell images [48,49], live- cell imaging has its unique con-
straints. Traditional live- cell imaging is limited by the maximum 
number of channels (which is usually five) available for a fluores-
cence microscope. Photo- toxicity brought by fluorescence micros-
copy also constrains the duration and frequency of live- cell imaging, 
especially when performing multiple channels of fluorescence im-
aging. Fluorescence labelling also affects cell physiology and cellular 
responses. These limits significantly reduce the application of time 
lapse imaging on studying single- cell dynamics [50].

Large cell morphological changes typically accompany cell pheno-
type conversions like EMT [51]. Morphology features have already 
been widely used in drug selection [52,53] and cell phenotyping, 
such as quantifying the progress of EMT [54– 56]. Wu et al demon-
strated that the morphology state of single cell can be used to predict 
the tumorigenic and metastatic potentials in mouse breast cancer 
[57]. However, these analyses are based on fixed- cell imaging data 
and suffer the same limitation as discussed above.

Recently, collective morphology features emerged as a choice alter-
native to fluorescence- based measurement of gene expression levels 
in live- cell imaging. Morphology features provide a convenient co-
ordinate system for describing cell phenotype transition. Moreover, 
it is easy to obtain high- dimension morphological features through 
label- free imaging that is minimally intrusive and imposes minimal 
damage to cells. Advance of the field is further catalyzed by recent 
development of computational approaches of high- quality single- 
cell segmentation of images for extracting morphology information. 
Traditional segmentation methods such as watershed and active 
contour are sensitive to slight variation of imaging condition and 
are only applicable to simple images. Also, it is time- consuming to 
segment single cells manually. Developments of machine learning, 
especially deep convolution neural networks, have improved single- 
cell segmentation quality and efficiency significantly [44,45,47].

Several studies have attempted to characterize single- cell morpho- 
dynamics through live- cell imaging. Gordonov et al. demonstrated that 
analysis on time series of live single- cell morphology with the hidden 
Markov model can reveal the heterogeneous dynamics that cannot 
be captured by fixed- cell imaging, and the morphology dynamics 
can improve the drug classification or selection accuracy [58]. This 
result is consistent with the analysis of the example system shown in 
Figure 13.2A, i.e. only time- series modelling can capture the under-
lying heterogeneous dynamics controlled by hidden variables. Chang 
et al. explored transition dynamics of mouse embryonic fibroblasts in 
cytomorphological state space. Through mapping the effective land-
scape of cell population in this morphology state space, they found the 
uneven occupation of isogenic cells in the state space, and cell behaviour 
can be predicted by the reconstructed effective energy landscape [59].

Wang et al. further developed a platform for integrative analyses 
of live- cell imaging data in the formalism of dynamical systems and 
applied it on single- cell phenotype transition [18]. They first develop 
a single- cell segmentation method based on deep convolutional 
neural networks which combines with the traditional watershed 
method [47]. This method provides improved single- cell segmen-
tation accuracy comparing with other methods, which is critical for 

the single- cell tracking. The platform utilized the active shape model 
to represent single- cell shape [60]. Some ad hoc shape features, such 
as area and major axis length, were widely used in different research 
studies. A problem is that the amount of information  extracted from 
the original images with these features cannot be controlled sys-
tematically, and it is difficult to reconstruct the original shape with 
them. Pincus and co- worker compared different shape- representing 
methods based on three criteria including faithfulness of recording 
the original morphology, ability of capturing major biological vari-
ations, and interpretability of representation [60]. Comparing with 
other methods like Fourier and Zernike, active shape model to-
gether with principal component analysis performs better in pro-
cessing different types of data [60]. With the active shape model, 
single- cell morphology is represented as a state vector with hun-
dreds of dimensions.

Wang et al. then applied this platform on TGF- β- induced EMT of 
A549 lung cancer cells with endogenous vimentin, an intermediate 
filament protein often used as a mesenchymal marker [18], fused 
with red fluorescent proteins (Figure 13.3A). Cell morphological 
features were acquired through the differential interference con-
trast channel, which does not require an additional fluorescence 
labelling. Therefore, only one fluorescent channel was used for 
imaging vimentins, which reduced the photo- toxicity to cells and 
made it possible for long- term live imaging. Through representing 
single- cell state in the multi- dimensional composite feature space 
including morphology and vimentin texture features, they acquired 
single- cell trajectories from live- cell imaging data (Figure 13.3B). 
In the cell morphology state space quantified by the active shape 
model, the variation mode along the coordinate of the first principal 
component captures the major variation of cell morphology during 
EMT that cells stretch into spindle- like shape characteristics of mes-
enchymal cells. Noting that the subcellular organization of organelle 
or proteins reflects cell state and cell type [48], they quantified the 
vimentin texture features with Haralick features [61]. Haralick fea-
tures are widely used for image profiling in drug screening, pheno-
type discovery, and classification. They found that the distributions 
of some Haralick features show significant shifts during EMT.

It has been noted that cell- state transition and chemical reaction 
share a lot of similarity [62]. In chemical reaction, the term ‘transi-
tion state’ refers to a short- lived intermediate or the bottleneck of the 
transition dynamics. In a cell- state transition process, intermediate 
states such as p-EMT states also exist. Wang et al. showed that tools 
and concepts developed in chemical rate theories, such as transition 
path theories, can be utilized to analyse single live- cell trajectories in 
cell- state transition, as discussed below.

After TGF- β treatment for two days, the cell population relaxes 
from an initial stationary distribution corresponding to the epithe-
lial cell type into a new one in the composite feature space. To under-
stand the dynamics of EMT quantitively, one needs to define the 
epithelial and mesenchymal states explicitly in the cell- state space. 
They used a combination of the Gaussian mixture model and label 
spreading function to define the epithelial state, mesenchymal state, 
and the intermediate region in the cell- state space. With this def-
inition, one can classify the recorded single- cell trajectories as an 
ensemble of reactive trajectories that started from the epithelial re-
gion and ended in the mesenchymal region with the experimental 
duration, and as an ensemble of nonreactive trajectories that did not 
undergo or finish EMT to reach the mesenchymal region.
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Next, they focused on the ensemble of reactive trajectories under-
going EMT for transition path analyses. Using the dynamics time 
warping (DTW), they quantified the similarity between different 
EMT trajectories. In general, DTW is a method that calculates an 
optimal match between two given sequences. Comparing with an 
Euclidean distance, DTW can capture the key dynamic feature 
similarities of two trajectories while neglecting their differences in 
length and speed. They found that EMT trajectories can be clustered 
into two categories. One is the vimentin varies first, and the other 
is morphology and vimentin vary concertedly. The results indicate 
that EMT can proceed through two parallel paths.

Reaction coordinate (RC) is a one- dimensional (1D) collective 
variable describing the progression along a continuous reaction 
path defined in the state space [63– 65]. In chemical reaction the-
ories, one way to define the RC is based on sampled transition path 
ensemble according to the transition path theory. Similarly, Wang 

et al. generalized an algorithm originally developed in chemical rate 
theories to reconstruct the two RCs from the measured ensemble of 
reactive trajectories. With RCs, they separated the state space into 
different Voronoi cells that can quantify the progression of a single- 
cell trajectory (Figure 13.3C) [66]. By confining the analysing dy-
namics of single cell along each RC, the EMT process becomes a 1D 
convection– diffusion process as

ds

dt
F s= ( ) + ξ.

For a 1D system even without detailed balance, one can define a 
quasi- scalar potential ϕ. The time derivative of s is determined by 
the quasi- scalar potential,

ds

dt

d

ds
= − +

ϕ
ξ.

Figure 13.3. Studying cancer cell- state transition dynamics through live- cell imaging. (A) Selected images of an EMT single- cell trajectory at different time 
points. Reproduced with permission from [18]. (B) Different types of single- cell trajectories in the composite feature space of morphology and vimentin 
texture feature. Colour represents time. Reproduced with permission from [18]. (C) Reaction coordinates of different transition paths in EMT of A549 lung 
cancer cell induced by TGF- β. (D) Reconstructed quasi- potential along the reaction coordinates of different paths. Reproduced with permission from [66].
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As all the single- cell velocities along the RC are directly measured, 
the derivative of ϕ with respect to s is obtained by averaging each 
Voronoi grid:

d

ds

ds

dt i gridth

ϕ
= −

 

By integrating 
d

ds

ϕ
, the quasi- potential along the RC can be obtained 

(Figure 13.3D) as

ϕ ϕ
ϕ

s s
d

ds
ds

s

s

( ) = ( ) + ∫0
0

.

They also compare the reconstructed potentials of different concen-
tration of TGF- β. In the potential curves of 4 ng/ ml concentration, 
there is a part that is close to a plateau that is like the remnant of the 
original epithelial attractor. By using a lower concentration of 1 ng/ 
ml of TGF- β, the two paths are nearly kept unchanged. However, 
the ratio between the numbers of reactive trajectories following the 
two paths changes. The pseudo- potential for the path with vimentin 
varying first has a plateau flatter than that of cells treated with 4 ng/ 
ml of TGF- β. On the contrary, the pseudo- potential of concerted 
variation path does not show such flattening (Figure13. 3D).

To explain the different paths in live- cell imaging experiment 
result, Wang et al. also proposed a minimal model based on the 

effective interaction between morphology and vimentin. The meta-
phorical landscapes in Figure 13.4 provide an intuitive picture 
of how EMT takes place. Under the control condition, two basins 
that correspond to epithelial and mesenchymal states are separated 
by a higher barrier, while the former is stabler. After TGF-β treat-
ment, the epithelial state becomes less and less stable (Figure 13.4A) 
[18]. Mathematically one can describe the change through bifur-
cation analyses versus a control parameter, here the concentration 
of TGF-β. Pitchfork bifurcation and saddle- node bifurcation are 
two important theoretical mechanisms of critical state transitions 
in cell- state transitions. Through reconstructing quasi- potentials 
along RCs of different paths, Wang and co- workers suggested a 
plausible saddle- node bifurcation mechanism of TGF- β- induced 
EMT. Mathematically, multiple paths may originate from destabil-
ization of a multi- dimensional epithelial attractor through colliding 
with multiple saddle points sequentially, which can be understood 
from the metaphorically landscapes in Fig. 13.4B. With no or low 
TGF- β, the system resides in the epithelial attractor. Adding TGF- 
β leads to elevation of the epithelial attractor, and approaching the 
epithelial attractor and the saddle point connects the epithelial and 
mesenchymal attractors. The epithelial attractor approaches and 
collides first with a saddle point to form a barrierless path (con-
certed variation) to the mesenchymal attractor. Under 1 ng/ ml 
TGF- β concentration, some barrier still exists along vimentin- first 

Figure 13.4. Metaphorical landscapes for intuitive understanding of EMT. (A) The effect of TGF-β treatment can be viewed as changing the relative 
depth of two attractors corresponding to the E and M states. Reproduced with permission from [18]. (B) Contour map view of the sequential change 
of metaphorical landscapes under TGF-β treatment with different doses. Reproduced with permission from [66].
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path. It disappears with a continuous increase in the TGF- β con-
centration (Figure 13.4B). This process recapitulates the process of 
saddle- node bifurcation. Further studies are needed to unravel the 
molecular nature of the two paths.

13.5.  Perspectives

To understand development, Waddington suggested a metaphor of 
a ball sliding downhill along a landscape characterized with valleys 
and ridges. Recently, some attempts have been made to use different 
methods to reconstruct the Waddington landscape quantitively [67– 
69]. For example, Kang and co- worker proposed a network model 
that incorporates the interaction of metabolism and EMT- related 
genes and proteins [68]. They analysed the transition paths of EMT 
and MET and quantified the 2D landscape of this system. Font- Clos 
et al. proposed a Boolean state model including 72 nodes. By de-
fining a pseudo- Hamiltonian value, they reconstruct the energy 
landscape of EMT. They found that the intermediate states that sep-
arating epithelial and mesenchymal states have higher Hamiltonian 
value and are unstable upon external perturbation [70]. In the field 
of scRNA- seq, different methods are also developed to define the 
landscape of cell- state transition [28,69]. As mentioned above, the 
usage of these methods is constrained by the fundamental limits of 
snapshot data.

While ‘energy’ landscapes provide intuitive pictures, one should 
be aware that cells function out of thermodynamic equilibrium, 
and the scalar potential functions only provide partial picture of the 
cellular dynamics. Only the reconstruction of dynamics on 1D co-
ordinates allows one to follow the procedure of Wang et al. to de-
fine a quasi- potential. The term of energy landscape should be used 
carefully. For nonequilibrium dynamics with more dimensions, the 
non- gradient force should be taken into consideration [71]. With 
improved data quality and more sampling, one may reconstruct the 
vector field that governs the cell- state transition directly.

A method of genome- wide vector field reconstruction called dy-
namo has been developed in the gene expression state space [43]. 
The dynamo formalism of Qiu et al. is based on another method 
called RNA velocity for inferring transition dynamics from single- 
cell RNA- seq data [42]. Different from the pseudo- time method, 
RNA velocity utilizes the quantity of spliced and un- spliced RNA 
[42], or directly measured mRNA turnover dynamics, to estimate 
the velocity of gene pression. The RNA- velocity method can be used 
to predict the cell state in next several hours [42,43,72]. Therefore, 
this method can be used to infer the dynamics missed by the pseudo- 
time analysis. Dynamo further uses the discrete single- cell expres-
sion states and RNA velocities as input to reconstruct a continuous 
vector field that describes gene regulation relations. Since the RNA 
velocity suffers from some limitations such that the choice of model 
and parameters affect the velocity inference, the vector field recon-
structed from dynamo also inherits such limitations.

A promising future direction is to combine both live- cell imaging 
and - omic methods, and exploit the strengths of both methods [73]. 
A key step is to establish a mapping between a cell state in the com-
posite cell feature space and its correspondence in the expression 
state space. For such mapping, the dimensionality of single- cell 
features extracted from live- cell imaging should be increased for 
improved cell- state resolution. Since the number of fluorescence 

channel is limited, label- free techniques with deep learning also en-
able one to extract more features from high- resolution transmitted 
light images. Developments of 3D imaging techniques like hologram 
microscope may further increase the resolution and information of 
transmitted light images.

Further developments of live- cell imaging and single- cell gen-
omics techniques will provide tools for studying heterogenous 
dynamics, cancer state transition, and cancer treatment [74,75]. 
The abnormal growth of tumour is one of the major causes of its 
lethality. Specifically, it has been reported that cell- state transition 
in development is closely associated with cell cycle. In the field 
of cancer state transition, the population balance between CSCs 
and NSCCs indicates that their transitions are coupled with cell 
cycle. It is of great biomedical significances to study the regula-
tion mechanism that couples the two cellular processes, aiming to 
redirect the CSC– NSCC transition for more effective biomedical 
interventions.
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Emerging single- cell technologies and 
concepts to trace cancer progression and 
drug resistance
Syeda Subia Ahmed, Danielle Pi*, Nicholas Bodkin*, Vito W. Rebecca, and    
Yogesh Goyal#

14.1.  Introduction

Recent technological advancements have enabled the measurement 
of multiscale characteristics of cancer cells at an unprecedented 
resolution and throughput. In particular, single- cell sequencing 
techniques have revealed extensive diversity in tumours, often 
within the same tumour in a given patient. Unsurprisingly, con-
siderable efforts have been devoted to profiling tumour cells in a 
variety of cancer contexts, such as therapy resistance and metas-
tasis. Typically, such datasets are static in that they only provide 
disjointed and descriptive snapshots of the process of interest, e.g. 
separate samples used for measuring molecular signatures before 
and after drug resistance (Figure 14.1). Thus, the eventual pheno-
types (e.g. cells after becoming resistant or metastatic) are not ne-
cessarily predictive of the initial states that drives the very process 
and vice versa. Inferring state- fate lineage/ clonal relationships is 
further complicated by mounting evidence suggesting that a com-
plex milieu of genetic and non- genetic factors (both intrinsic and 
extrinsic) can drive cancer cell- fate decisions and evolution, e.g. 
to metastasize or become resistant [1] . Hence, the lack of longitu-
dinal capabilities precludes us from establishing direct and causal 
connections between driver cell states and their fate outcomes. 
Addressing this problem can lead to novel and effective therapeutic 
opportunities in cancer.

Throughout the text, we conceptualize processes and open ques-
tions in terms of cell states and fate outcomes. We define a ‘state’ 
as a set of observations that characterize a cell instantaneously 
where a cell can transition along one or multiple continuums of 
characteristics. We define ‘fate’ as the state in which a cell tran-
sitions in response to stimuli (e.g. drug exposure). A detailed 
description of cell ‘state’, ‘fate’, and related terms in the context 
of cancer are provided in a recent review [2] . In this chapter, we 

cover various experimental (sequencing and imaging) and com-
putational methodologies developed to infer or directly measure 
longitudinal relationships between cell states and fate outcomes. 
The technological and conceptual paradigms discussed here are 
broadly applicable to a variety of cancer contexts, e.g. initiation, 
evolution, metastasis, and therapy resistance. We highlight key in-
sights gained from such frameworks within these contexts. Lastly, 
we comment on the computational and technological gaps that 
can be addressed for delineating clonal state- fate relationships in 
cancer moving forward.

14.2. Sequencing- based synthetic 
lineage tracers

Tracing clones by synthetically introducing a foreign sequenceable 
‘mark’ or ‘tag’ in the DNA of a cell has a rich history (Figure 14.2) 
[3] . Some of the first studies took advantage of randomly integrated 
retroviral sequences for tracking uniquely ‘marked’ haematopoi-
etic stem cell lineages using Southern blots in irradiated adult mice 
[4– 6]. Follow- up studies focused on increasing the diversity of the 
retroviral libraries [7], including CHAPOL, which climbed to a 
complexity of more than ten million [8]. Tracing cellular clones with 
sequencing- based DNA tags became particularly popular in the past 
two decades, in large part owing to rapid advances in next- generation 
sequencing and genetic engineering technologies. Consequently, 
the interest and accessibility of studying clonal haematopoiesis 
paved the way for developing high- throughput sequencing- based 
lineage- tracing approaches [9– 12]. For instance, some studies de-
veloped lineage trees of early embryonic development by lever-
aging genome editing technologies, such as the recently discovered 
CRISPR/ Cas9, to accumulate combinatorial diversity of sequences 
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Figure 14.1. A schematic depicting the need to establish a quantitative and direct 
connection between state and fate of cancer cells.

Figure 14.2. Timeline of the development of sequencing- based barcodes and their applications.
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resulting in information- rich heritable ‘barcodes’, such as GESTALT 
[13– 16]. In cancer, the transduction of lentiviral libraries consisting 
of static pseudorandom DNA sequences was one of the earliest ap-
proaches implemented in the context of tracing therapy resistance 
and metastasis [17– 19]. For example, CloneTracer made an im-
portant discovery that pre- existing rare subsets of cells could drive 
resistance as opposed to the acquisition of de novo functional muta-
tions during drug treatment [17]. Another study used CRISPR/ Cas9 
mutable barcodes to trace clonal dynamics in cancer cells exposed 
to epidermal growth factor receptor (EGFR) inhibitors [20] and 
compared the nature of responses between lung and breast cancer. 
While these frameworks pioneered a new wave of high- throughput 
lineage tracing and provided valuable insights into developmental 
and cancer biology, they lacked the ability to provide direct single- 
cell - omic resolution due to the technological limitations of profiling 
single cells at the time.

The development of single- cell RNA- sequencing technologies ini-
tiated a renewed interest in building DNA- barcode lineage tracers 
that could be coupled with transcriptomic information in single 
cells [21,22]. As a consequence, several new combined single- cell 
lineage- tracing and transcriptional profiling frameworks have been 
developed and implemented in a variety of cancer models [23– 
32] as well as in other contexts [25,33– 45]. Such frameworks have 
highlighted the contribution of single- cell differences in a variety 
of cancer contexts, including drug resistance [23,25,26,29,31,46], 
metastasis [25,47,48], and tumour evolution [24,26,49]. Some other 
recent approaches have turned to naturally occurring somatic muta-
tions in mitochondrial DNA to capture clonal relationships between 
transcriptomes of single cells [50– 53]. Collectively, these method-
ologies have enabled us to gain key conceptual insights into cancer, 
particularly in the context of tracing drug resistance trajectories. As 
an example, the Obenauf group developed CaTCH [28], a unique 
CRISPRa- induced barcode expression system, to understand how 
melanoma clones behave in response to the application of unrelated 
therapies. They found that clones resistant to targeted therapies were 
also cross- resistant to immunotherapies [46]. Although this study 
did not perform the reverse experiment (i.e. immunotherapy as 
first- line), it stresses the importance of choosing the right order of 
exposure to unrelated therapies in cancer patients.

In addition, these newer lineage- tracing systems, reported by 
our groups and others, are well suited for quantifying the time-
scales and characteristics of non- genetic plasticity, especially as a 
driver of drug resistance and metastasis across cancers [30,31,54– 
62]. Indeed, lineage- tracing studies using ‘twin’ or ‘replica’ experi-
mental designs enabled our group and others to profile the rare cell 
states that underlie this plasticity and connect them to their even-
tual resistant fates [26,27,31,63]. In another example, a modified 
form of GESTALT [13] was used to simultaneously incorporate 
both static and mutable barcodes in single cells, identifying a con-
tinuum of epithelial- to- mesenchymal transition (EMT) states that 
underlie metastasis initiated by rare cells in pancreatic cancer [25]. 
Additionally, another lineage- tracing study in lung cancer identi-
fied heritable gene expression states driving metastasis rates and 
sites [47]. Although single- cell lineage- tracing systems have gener-
ated significant interest, they can be technically complex and pre-
sent computational challenges, as outlined below in Section 14.4. 
Developing clear barcode design guidelines and robust analysis 
pipelines will be pivotal in overcoming these challenges, leading to 

a wider and more democratic adoption in basic and clinical cancer 
studies moving forward.

14.3. Imaging- based synthetic    
lineage- tracing approaches

Imaging- based lineage- tracing methods date back to the early 20th 
century, when dyes were used to label amphibian embryos [3,64]. 
The 1990s marked the beginning of a new era in lineage tracing with 
the introduction of genetic markers, such as the green fluorescent 
protein (GFP) from the jellyfish Aequorea victoria [65,66]. Recent 
advances in quantitative microscopy, the creation of a spectrally 
separated suite of photostable fluorescent variants, and the estab-
lishment of associated high- throughput analysis now offer comple-
mentary approaches to follow the fates of cancer cell clones in cell 
culture and animal models. In cell culture, many studies have util-
ized time- lapse imaging dynamics of single or dual colour fluores-
cent tags to perform fate tracing of single cancer cell clones under 
selective pressures [67– 69]. In fact, such studies were instrumental 
in establishing that heritable non- genetic differences between single 
cancer cells in culture alone can drive resistance, such as resistance to 
apoptosis upon exposure to TRAIL (tumour necrosis factor (TNF)- 
related apoptosis- inducing ligand) [67]. However, these approaches 
were unable to uniquely tag clonal populations. More recent studies 
use a sophisticated combination of fluorescent colours, sequencing 
technologies, and intracellular localizations to infer clonal dynamics 
in cancer cells in culture [70,71].

In animal models, early studies used whole- body single colour 
fluorescent animals to trace the origin of tumour cells through chi-
merism. For example, by generating chimeras between constitu-
tively active MEK1 animals and GFP- expressing animals that lacked 
the MEK1 transgene, a study showed that epidermal tumours were 
polyclonal in origin and that tumour cells could induce oncogenic 
potential in an otherwise genetically normal cell [72]. While chi-
merism is a powerful tool, the ability to restrict fluorescent expres-
sion to specific cell types greatly expanded the power of lineage 
tracing and allowed for identification and visualization in a mosaic 
system. By combining fluorescent reporters with the Cre/ lox recom-
bination system, cell tracing could be temporally and spatially in-
duced in cells and tissues of interest. The Cre/ lox system has since 
been refined to enable higher resolution lineage tracing through 
synthetic constructs such as Brainbow. Brainbow constructs have 
three possible Cre- based excisions, and labelled cells stochastically 
express one or more of three fluorescent proteins [73]. This system 
has since been widely adapted in cancer studies. As an example, a 
study on colon cancer repurposed the Brainbow system (and aptly 
renamed it to Crainbow) to fluorescently barcode somatic muta-
tions and directly visualize and compare clonal expansion and onco-
genic spread in adult and infant systems [74]. In another study, the 
Brainbow system was used to visualize keratinocyte clones (dubbed 
‘Skinbow’), where researchers showed that the cell of origin of basal 
cell carcinomas appear more frequently near hair follicles on UV- 
irradiated skin [75]. Further modifications in the initial Brainbow 
designs, such as simultaneous tagging of nuclear, cytoplasmic, and 
membranous compartments, have offered enhanced resolution 
and more robust capabilities in tracking clonal expansions [76]. 
Initially developed to visualize stem cell dynamics in intestinal 
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crypt homeostasis, the ‘confetti’ system has subsequently been used 
to identify drivers of intestinal adenomas [77] and to trace biased 
clonal expansion of KRAS mutant intestinal crypts leading to colo-
rectal cancer [78]. Confetti systems have also been implemented to 
study metastasis in various cancers, including pancreatic [79] and 
breast [80,81] cancers. These studies have elucidated quantitative 
connections between stages of cancer progression, initiation of me-
tastasis, clonal expansions at metastatic sites, and plasticity mech-
anisms (such as EMT signatures) underlying metastatic clones. 
Moreover, a recent study on cancer drug resistance leveraging such 
confetti systems has demonstrated that chemotherapy specifically 
targets slow- dividing clones rather than fast- diving ones, which has 
important clinical implications [82]. Although Brainbow and its de-
rivatives were originally developed as transgenic mouse lines, the 
tool has been adapted to be used with adeno- associated viral vec-
tors, thus expanding the method to other systems and species [83]. 
Similarly, lineage- tracing imaging systems specific to a signalling 
pathway have also been developed to investigate signalling- specific 
trajectories. For example, a TGF- β- dependent system uncovered the 
non- genetic heterogeneity that reduced the efficacy of anti- cancer 
therapies and caused resistance in squamous cell carcinoma [84].

Additionally, it is possible to couple lineage- tracing systems with 
other genetic manipulations to simultaneously induce perturbation 
(e.g. gene knockout) and fluorescent labelling in the same cells, such 
as in the frameworks LeGO and MADM. With mouse models, the 
MADM framework has been used to reveal a number of insights, 
such as the tumour cell of origin in glioma and a comparative ana-
lysis of tumour progression between pancreatic and lung cancers, 
among others [85– 88]. Similarly, the LeGO system [89] revealed 
clonal dynamics and heterogeneity underlying metastasis and drug 
resistance in multiple cancers, including breast cancer [90,91], 
neuroblastoma [92], glioma [93], and osteosarcoma [94]. Lastly, 
some other studies have combined visual and DNA barcoding sys-
tems for lineage tracing in cancer, for instance, in head and neck 
squamous cell carcinoma [95] and leukaemia [96]. As molecular 
sequencing and computational tracking capabilities increase, visual 
tracers can be integrated with those modalities (Figure 14.3) to pro-
vide richer state- fate trajectories within single cells in 2D/ 3D cell 
culture and animal systems.

14.4. Computational and theoretical 
lineage- tracing approaches

Some of the earliest computational efforts geared towards building 
longitudinal relationships between single cells relied on ‘inferring’ 
the time or clonal dimension from snapshots of single- cell sequen-
cing data [97]. One such tool is Monocle [98,99], which orders 
features of single cells along a pseudo- time by leveraging a cell’s 
asynchronous progression in a specific process, such as differenti-
ation or EMT transitions. Monocle pseudo- time analysis has been 
widely used in a variety of cancer contexts. For example, a recent 
study used Monocle 3, the most recent stable version [100] as of 
2023, to reveal a ‘pseudoEMT’ trajectory underlying metastasis 
in pancreatic cancer [25]. In another example, a recent study has 
used Monocle 3 to identify pseudo- time co- regulated gene expres-
sion trajectories during the treatment of a non- small- cell lung car-
cinoma cancer cell line with EGFR inhibitor erlotinib [101]. Yet 

another computational approach that uses static datasets to infer 
temporal dynamics is RNA velocity [102], which uses intronic and 
exonic reads from single- cell RNA- seq data to infer temporal tra-
jectories. Similar to Monocle, RNA velocity and other frameworks 
[103– 105] have been implemented to infer temporal paths of ini-
tiation, evolution, and drug resistance in multiple cancer systems 
[106– 109]. Other mathematical studies have elucidated theoret-
ical limits on inferences of lineage dynamics from static single- cell 
datasets [110,111]. Collectively, such inference algorithms have 
helped circumvent the issue of working with static and disjointed 
datasets to reconstruct state- fate trajectories in cancer. At the same 
time, more recent studies have highlighted limitations, underlying 
assumptions, and potential drawbacks of such inference algorithms 
and have urged caution when using them [112,113].

Some of the shortcomings of inference algorithms are readily 
addressed by direct measurements with the lineage- tracing experi-
mental systems discussed above. However, the application of single- 
cell lineage- tracing approaches (particularly sequencing- based) in 
cancer is still nascent. The experimental designs and computational 
pipelines are technically complex and remain lab- specific, and the 
resulting datasets are prone to misinterpretation. Recognizing this 
challenge, recent computational studies have attempted to formalize 
the analysis of integrated single- cell profiling and lineage barcoding 
datasets [114– 118]. Such approaches have extracted additional in-
formation by robustly identifying transition or hybrid cell states 
and potential drivers of drug- resistant fates, not otherwise possible 
from analysing single- cell sequencing datasets alone. For instance, 
singletCode, a computational framework leveraging barcoding 
datasets to identify ground truth singlets within single- cell RNA 

Figure 14.3. A synergistic interplay between various experimental 
(imaging-  and sequencing- based) and computational (mathematical 
models and artificial intelligence) methodologies is considered critical 
to elucidate state- fate relationships in a variety of cancer contexts and 
develop effective therapeutic strategies.
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sequencing datasets, can discriminate between true hybrid cell 
states and artefacts resulting from coalesced cells during the imple-
mentation of microfluidics- based profiling technologies [117].

Single- cell- identifying information native to a cell, such as genetic 
variations in nuclear or mitochondrial DNA, which are also used to 
establish the sequence of cellular events and lineage relationships in 
single cells, has been largely driven by bioinformatic and statistical 
advances [119– 121]. Some other recent computational tools, such as 
gene expression memory- based lineage inference (GEMLI), leverage 
heritable gene expression patterns to infer lineage relationships. 
Collectively, such frameworks, while still in the early stages, will be 
critical for extending longitudinal tracking of fate outcomes— from 
cell culture and animal models (which are more amenable to syn-
thetic tracers) to patient tumour samples collected before and after 
anti- cancer treatments.

Furthermore, the high- throughput imaging- based studies dis-
cussed above come with the inherent challenge of reliably seg-
menting and tracking a large numbers of cells. Conventional 
intensity- based and recent machine- learning- based algorithms 
are critical for reliably segmenting cells in images from time- lapse 
microscopy [122,123]. The accompanying challenge is to connect 
single cells from a series of segmented images. Particularly, to make 
any meaningful measurements in cancer drug resistance studies, 
the tracking of thousands or more cancer cells simultaneously is 
needed since only a rare subset escapes the treatment. Accordingly, 
computational algorithms, such as the Viterbi algorithm applied 
to time- lapse movies of cancer cells [124,125], have helped reveal 
important aspects of single- cell biology related to cancer drug re-
sistance, such as the rapid adaptation in rare ‘escapee’ melanoma 
cells exposed to the targeted therapy drug dabrafenib [69]. Another 
effort used a combination of recent deep- learning approaches and 
analytical tools to reconstruct lineage phylogenies from imaging- 
based lineage tracers in intact growing tissues, revealing the control 
principles of growth dynamics from static snapshots [126]. As newer 
technological advances focus on integrating multiple profiling mo-
dalities in cancer cells, such as combining imaging with sequencing 
data, computational approaches (e.g. [127]) will be key to decoup-
ling technical noise from biological signals driving state- fate rela-
tionships in cancer.

At the patient level, another set of frameworks has resulted from 
advances in artificial intelligence (AI), particularly for predicting 
anti- cancer therapy treatment outcomes, such as the development 
of resistance. In fact, some AI- based algorithms developed in a 
research setting have made it to the clinic, such as a 70- gene sig-
nature developed 20 years ago to predict treatment responses for 
early- stage breast cancer [128]. Having said that, much remains to 
be done for such algorithms to be robust and reliable in their pre-
dictions for patient outcomes. Moving forward, such algorithms are 
also becoming increasingly sophisticated and are shifting focus to 
evaluate the potential additive, antagonistic, and synergistic effects 
of combination therapies, as well as integrating multimodal patient 
data [129].

14.5. Concluding remarks

Building quantitative and causal relationships between a cell’s state 
and its eventual fate— be it to become cancerous, drug resistant, or to 

metastasize to distant organs— promises to provide hypotheses for 
novel treatment strategies. Consider that certain treatment- specific 
rare cell states are more likely to survive and become resistant. In 
this case, capturing and profiling these rare cell states that drive 
clinically relevant behaviours can therefore reveal new therapeutic 
targets, as opposed to conventional approaches that target the devel-
oped behaviour itself. To this end, experimental and computational 
technological innovations (Figure 14.3), such as developing in situ 
techniques to spatially probe clonality directly in patient tumour 
samples or measure cell– cell communications between clones, will 
be central to achieving these goals.
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Navigating protein dynamics: Bridging   
the gap with deep learning and  
machine intelligence
Supriyo Bhattacharya

15.1.  Introduction

Proteins, specialized polymers constituting the core of cellular ma-
chinery, perform diverse functions ranging from gene transcription 
to enzymatic reactions and signalling. The intricate structure of a 
protein, shaped by its amino acid sequence, chemical environment, 
and post- translational modifications (PSMs), is a major determinant 
of cellular function. Under physiological conditions, many proteins 
fold into stable structures termed the native state, while others per-
sist in partially or fully disordered states. Due to the thermal effect, 
all proteins exhibit structural variations that range from subtle fluc-
tuations around the native state (rigid proteins) to collective domain 
motions (partially flexible proteins) and large- scale structural vari-
ations (fully flexible disordered proteins). The distribution of struc-
tures or conformations that proteins adopt constitutes the structural 
ensemble, and the temporal trajectories associated with the ex-
change among these conformations constitute protein dynamics.

Natural variation in protein structure is biologically relevant in 
many cellular processes, including enzyme function, interaction 
with partner proteins, muscle contraction, and actin cytoskeleton 
formation, to name a few. The timescale of transition between pro-
tein conformations also has an important impact on cellular func-
tion. For example, such transition timings influence the kinetics of 
enzymatic processes (e.g. phosphorylation and dephosphorylation 
cycles) [1]  and the binding and unbinding of partner proteins and 
transcription factors [2], thus regulating the timescales of key cel-
lular events such as cell- state transitions. Dysregulation of protein 
dynamics through mutations or large- scale sequence alterations has 
been linked to disease phenotypes, including cancer and neurode-
generative ailments [3].

Over the past several decades, a diverse array of in silico methods 
has emerged to mechanistically link protein dynamical character-
istics with physicochemical properties (e.g. amino acid sequence 
and PSM) and the extrinsic environment (e.g. temperature, pH, 
binding of small molecule ligands, and partner proteins). Molecular 

dynamics (MD), a primary approach, simulate protein dynamics at 
the atomistic resolution by modelling the protein as a collection of 
atoms, surrounded by ions and solvent molecules. Forces among 
these atoms are modelled using analytical functions of distance and 
chemical properties (force fields [4] ), and the resulting motions are 
modelled using classical mechanics (Newton’s laws of motion) [5]. 
The spatiotemporal trajectory of the entire system is then obtained 
by integrating a set of coupled differential equations over time. MD 
is a physics- based interpretable method that simulates protein dy-
namics in its physiological environment while providing key mech-
anistic insights into the temporal evolution of protein trajectories, 
such as the role of specific inter- residue contacts.

Despite the strengths of MD, key challenges in scalability and 
simulating longer timescales persist [6] . Computational time scales 
with the square of the number of atoms and the integration time step 
in MD, typically in the femtosecond (10– 15 s) range, faces limitations 
when exploring biologically relevant timescales extending to milli-
seconds or even seconds [5]. Proteins experience thermal motions 
ranging from high- frequency vibrations to slower domain move-
ments (Figure 15.1). The integration timestep in MD is therefore 
constrained by the highest frequency vibrational modes. Given the 
current computational resources available to the community, MD- 
based methods can explore protein dynamics typically up to sev-
eral microseconds and, for smaller proteins, milliseconds [7]. Thus, 
there exists a substantial gap between timescales explored by MD 
and biologically relevant timescales, necessitating novel methods.

Addressing these challenges, machine learning methods come 
into play, aiming to extract key features and their intricate correl-
ations from existing data. Generative AI, a subset of deep learning 
(DL) or artificial intelligence (AI), efficiently creates data resembling 
training datasets based on learned features [8] . Given their ability 
to comprehend complex co- dependencies, generative AI methods 
have found applications in diverse domains, including image and 
voice synthesis, speech recognition, and bioinformatic data imput-
ation [9– 12]. Transformer and recurrent neural- network- based 
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approaches, adept at discerning hidden patterns within sequences, 
offer promise in predicting temporal data, including those derived 
from MD trajectories.

While the application of AI in protein dynamics is still emer-
ging, notable progress is evident from the increasing number of 
publications in this field. This chapter seeks to provide a con-
cise overview of the synergies between AI and protein dynamics, 
shedding light on the potential of these innovative methodolo-
gies in advancing our understanding of cellular processes at the 
molecular level. Notably, a few excellent, detailed reviews on this 
subject already exist, and the reader is strongly encouraged to 
consult them for further information [13,14]. Given the rapidly 
evolving nature of DL, we discuss the main challenges associated 
with classical MD methods and how AI can be used to address 
them. We augment these discussions with a few chosen examples, 
focusing on the latest literature in a non- technical manner, ap-
pealing to a broader audience.

15.2. Classical approaches for improving 
MD- based conformational sampling

While, in theory, conventional MD is capable of reproducing real-
istic kinetics of protein systems, in reality, it is faced with serious 
challenges limiting its applicability to large macromolecular struc-
tures. In a thermodynamic ensemble (distribution of all possible 
configurations of a system under a given thermodynamic con-
dition), each state is associated with an energy value, contributed 
by the interactions among its components. The probability that 
the system exists in a given state at a constant temperature follows 
the Boltzmann distribution, scaling inverse exponentially with en-
ergy [15]. Due to numerous interatomic/ solvent interactions and a 
crowded cellular environment, energies associated with protein con-
formations tend to be highly variable, leading to a ‘rugged’ energy 
landscape with local wells separated by barriers [16] (Figure 15.1).   

During MD, the average timescale of escaping from a local well 
scales exponentially with the barrier height (the energy difference 
between the highest and lowest points within the well) (Figure 15.1). 
This leads to frequent scenarios where an MD simulation will get 
‘stuck’ in a metastable state and not sample the rest of the conform-
ational space, leading to incorrect statistics [17]. Enhanced sampling 
methods address these issues by combining MD simulations with 
clever statistical schemes [18]. These methods can be categorized 
into two broad classes: (1) trajectory ensemble based and (2) biased 
energy landscape based.

In trajectory ensemble- based methods, multiple MD trajec-
tories are generated for the same system by varying parameters 
such as temperature or random seed (adaptive seeding). Utilizing 
cluster computing to conduct parallel MD simulations enables ef-
ficient exploration of a broader conformational space, surpassing 
the capabilities of a single extended simulation. Replica exchange 
and weighted ensemble methods fall into this category. In replica 
exchange methods, parallel independent (replica) simulations are 
run by varying parameters such as temperature (temperature replica 
exchange) or force field (Hamiltonian replica exchange), with fre-
quent exchange of these parameters among the trajectories. These 
exchanges facilitate low- temperature replicas to overcome energy 
barriers, improving the overall efficiency of exploring the conform-
ational landscape [19]. The weighted ensemble method generates 
multiple MD trajectories of the same system and weights these tra-
jectories based on their progress towards a desired conformational 
state (e.g. the folded state of a protein). Trajectories with higher 
weights that sample the desirable part of the energy landscape are 
replicated, while those that sample non- desirable conformations 
are terminated. Weights of the trajectories are readjusted at every 
step to preserve the statistics of the conformational ensemble. In 
cases where an energy barrier (rare event) separates the desired state 
from the starting state, weighted ensemble methods can increase the 
probability of the system to sample rare events and overcome energy 
barriers [20,21].

Figure 15.1. Schematic representing the two- dimensional projection of a multidimensional protein free energy landscape showing local minima 
and maxima representing metastable states and energy barriers, respectively. The probability p of transitioning into a neighbouring metastable state 

scales as the inverse exponential of barrier height ΔE p exp
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Biased energy landscape- based methods seek to increase the 
efficiency of sampling the energy landscape within a single tra-
jectory by introducing bias in the intermolecular forces. The bias 
can be targeted towards reaching a desired state (e.g. steered MD 
[22]) or enhance the sampling along a reaction coordinate (RC; 
one- dimensional parameter that best describes the desired con-
formational change over time) defined using a few chosen collective 
variables (CVs; low- dimensional functions of molecular coordin-
ates that capture key aspects of coordinated protein movements) by 
discouraging the system from sampling already explored states (e.g. 
metadynamics [23]). Non- targeted bias is also possible, such as in 
the case of accelerated MD, where the force bias is introduced to ar-
tificially lower energy barriers separating local wells [24]. This facili-
tates a wider coverage of the conformational space at the expense of 
sampling many irrelevant conformations. Proper reweighing of the 
trajectories must be performed post- simulation to recover accurate 
statistics, and this can be quite challenging, especially for larger sys-
tems [25].

Despite proven success in many cases, enhanced sampling MD 
methods are not without their challenges. Replica exchange methods 
can be computationally expensive, due to the need to simulate many 
replicas in parallel, often ranging in the hundreds. This requires 
large computing clusters with fast information exchange among the 
processors. The efficiency of weighted ensemble methods relies on 
optimized binning along the RCs and appropriate pruning and mer-
ging strategies for low-  and high- weight trajectories [21]. Biased en-
ergy landscape methods, such as metadynamics, are sensitive to the 
choice of relevant CVs [26]. To address some of these challenges, 
hybrid methods have been suggested that combine multiple en-
hanced sampling strategies to harness the added advantages of each 
method, e.g. replica exchange with collective- variable tempering 
(metadynamics) [27]. Although effective in small systems, these 
methods suffer in efficiency while sampling larger systems, such as 
multi- protein complexes. The performance of current MD- based 
approaches is limited by the integration timestep (1– 4 fs), which is 
determined by the highest frequency motions in the system, namely 
the bond vibrations. Therefore, new innovative methods are needed 
to predict the time evolution of molecular systems that circumvent 
sequential integration along the time axis using small timesteps. In 
recent decades, advancement in AI using DL has provided such an 
opportunity.

15.3. Overview of deep learning

AI is a field of computer algorithms whose goal is to perform com-
plex tasks that require human intelligence but in a scaled- up auto-
mated manner that surpasses human capacity. To learn how to 
perform specific tasks, AI systems require large volumes of training 
data. DL is a subfield within AI that employs multiple layers of 
artificial neural networks (ANNs) to learn complex patterns and 
interdependencies within training datasets [28]. DL has found wide-
spread applications in fields, such as image and speech recognition 
and natural language processing.

The architecture of ANNs is inspired by the organization of 
neurons within biological brains [29]. ANNs are computational 
models consisting of layers of interconnected nodes (neurons), each 
with its own parameters, i.e. weights and biases (these parameters 

are optimized during the training process using existing data). The 
input data is transmitted across the ANN layers via the interconnec-
tions while undergoing mathematical transformations at each node 
according to pre- defined (typically non- linear) activation functions. 
Each layer learns to extract features from the data, and the subse-
quent layers learn to combine these features to make increasingly 
abstract representations. The output from DL is a set of predictions 
based on the input data.

During prediction or classification, DL methods capture the intri-
cate variability within input data, often characterized by numerous 
dimensions, by distilling them into a concise set of key features. 
These features are then utilized to forecast outcomes. Thanks to 
their hierarchical architecture and use of non- linear functions, 
DL approaches bring increased flexibility to predictive modelling 
compared to conventional approaches of dimensionality reduction 
such as principal component analysis or matrix factorization (using 
linear functions) that are typically employed in analysing MD data. 
Moreover, the key features learned through DL can be leveraged 
to generate new data (generative AI), preserving the statistical re-
lationships and patterns found in the training dataset. Generative 
AI has demonstrated its capability for generating authentic content 
such as artificial human faces, voices, and written text. Notably, it ex-
hibits potential in constructing extended timescale MD trajectories 
based on existing simulation data, a topic we will delve into shortly. 
However, prior to that discussion, let’s briefly explore the DL meth-
odologies frequently applied within the MD domain.

15.3.1. Autoencoders and VAEs

Autoencoders are constructed using two ANNs, an encoder and 
a decoder [30]. The encoder ANN processes the input data to 
express it in terms of a limited number of features (information 
bottleneck), also known as latent variables. The decoder ANN then 
uses the latent variables to reconstruct the input data as accurately 
as possible. Running the input data through an information bottle-
neck forces the autoencoder to learn the fundamental features that 
contribute to the diversity and codependence within the input data 
and reject statistical noise [31]. Variational autoencoders (VAEs) 
retain the autoencoder architecture while incorporating vari-
ational inference for training purposes [32]. Instead of directly 
optimizing the model parameters, it optimizes a lower bound on 
the likelihood of the data while constraining the latent variables 
to follow a parametric statistical function such as the Gaussian 
distribution. This introduces a probabilistic element to the latent 
space, where each point in the latent space corresponds to a prob-
ability distribution rather than a single point. By sampling in the 
latent variable space and processing through the decoder ANN, 
new data can be generated that retains the statistical dependencies 
and patterns found in the input data. For example, VAEs can be 
trained using MD data to represent and explore protein conform-
ational landscapes in the latent variable space. By doing so, cer-
tain problems associated with conventional MD (e.g. difficulty in 
overcoming energy barriers) can be potentially resolved. Protein 
conformations generated by VAE, applied in the conventional way, 
do not incorporate any temporal relationship among the conform-
ations (there are specialized autoencoders that can learn temporal 
relationships; see time- lagged VAE [33] later in the discussion). 
However, certain generative AI methods, such as transformers, can 
learn temporal sequences as discussed later.

 

 

   

 

  

 

 

   

 

 



Cancer Systems Biology148

15.3.2. Generative adversarial network

Generative adversarial networks (GANs) are generative AI frame-
works comprised of two neural networks, the generator and the 
discriminator [34]. The generator creates new data similar to the 
training data, while the discriminator tries to determine whether 
the generated data is real (from the training dataset) or fake (gener-
ated). Both the generator and the discriminator are refined through 
adversarial training such that, ultimately, the data produced by the 
generator becomes indistinguishable from real data. GANs have 
been successfully applied in generating realistic content, such as im-
ages, text, music, and speech. Trained using MD- derived ensembles, 
GANs have the potential to generate realistic protein structures.

15.3.3.  Transformers

Transformers are DL methods used in learning sequential data such 
as written language and temporal variations [35]. Transformers use 
a mechanism called self- attention that assigns certain parts of the 
input sequence (e.g. certain words in a sentence) higher weights (at-
tention scores) than others based on their importance in predicting 
future sequences. In addition, transformers analyse different lengths 
of input sequences in parallel (multi- head attention), deriving mul-
tiple weights for the same word and capturing both short-  and long- 
range context- dependent relevance. By pooling weights obtained 
from multi- head attention mechanisms, transformers can efficiently 
learn the association and contextual relevance of each word in a sen-
tence, even when those associations are only apparent within long 
stretches of input sequences. Although the previous description used 
written language as an example, the data used by transformers need 
not only be sequences of words but they can also be, e.g., sequences 
of protein conformations observed in a MD trajectory. Transformers 
can learn the relationships among the conformations that follow the 
temporal sequence and predict future time trajectories [36]. Besides 
temporal data, transformers have also been used to learn amino acid 
sequence– structure relationships to predict a single protein structure 
(e.g. AlphaFold2 [37]) or structural ensembles (e.g. idpGAN [38]), 
when trained using MD data from multiple proteins.

15.4. Deep learning in MD

In recent years, machine learning and especially DL have been 
applied to various aspects of MD- driven exploration of protein 
conformations, ranging from quantum- mechanical force- field 
calculation [39], transition path [40,41] and rare event sampling 
(e.g. in conjunction with quantum computing [42]), developing 
coarse- grain force fields [43], to generating MD trajectories [44] 
and improving the efficiency of enhanced sampling algorithms [45]. 
There are still many challenges in applying DL methods to MD. In 
brief, some of the major tasks involved in implementing DL in the 
MD field are as follows:

 (1) Transforming chemical and 3D molecular coordinates into 
machine- learnable features.

 (2) Encoding kinetic relationships using spatiotemporal features 
from MD trajectories.

 (3) Forecasting future system states based on learned past trends 
using available (sometimes limited) MD data.

Each of these steps involves many adjustable parameters that need 
to be determined using system knowledge or through optimization 
operations. The model parameters and, in some cases, the choice 
of the model itself (e.g. the ANN topology and feature engineering 
approach) could depend on the specific protein system under study.

15.4.1. Encoding of machine- learnable 
features from 3D molecular coordinates

The fundamental information obtained from MD simulations is the 
three- dimensional (Cartesian) coordinates of protein and solvent 
atoms for a finite number of temporal snapshots. While Cartesian 
coordinates are generally not deemed as an optimal input format 
for DL [33], exceptions exist [38,41,46]. Instead, spatial relationships 
among protein atoms (e.g. interatomic distances and angles among 
atom triplets) and internal coordinates (dihedral angles formed by 
four consecutive protein atoms) derived from Cartesian coordin-
ates proved to be more suitable for training DL models since such 
descriptions are invariant to centre- of- mass rotation and transla-
tion [47,48]. For example, interatomic distance matrices derived 
from multiple MD frames can be converted into images for training 
generative AI models based on convolutional neural networks 
(CNNs) [49] (Figure 15.2A). Alternatively, the protein can be mod-
elled as a graph topology (individual protein atoms as nodes and 
bonds as graph edges) and used in training graph neural networks 
(GNNs) [43].

The resultant DL output derived from the transformed input 
features can be converted back into Cartesian coordinates using 
suitable force fields or protein chemistry- based restraints (e.g. di-
hedral restraints based on Ramachandran diagrams of individual 
amino acids). Some approaches amalgamate the aforementioned 
principles. For example, leveraging the inter- residue connectivity, 
CNNs can be trained by performing convolution along the protein 
sequence using a one- dimensional kernel [41]. Here, the convolu-
tion is executed over pre- defined windows along the amino acid 
chain (utilizing Cartesian coordinates of protein atoms within the 
local window), thereby encoding the molecular topology in the 
training process. Notably, in this specific instance, the authors in-
tegrated a physics- based force field into the training, generating 
physically plausible conformations from undersampled regions in 
the protein landscape that were not present in the training data. The 
idpGAN method incorporated amino acid sequence information 
in the training process using a transformer architecture within a 
GAN framework [38]. Trained using (coarse- grained) MD- derived 
protein structures, idpGAN was shown to generate structural en-
sembles of intrinsically disordered proteins, exhibiting amino acid 
sequence- specific characteristics.

DL agents trained using structural ensembles can be effective 
in sampling the flexible degrees of freedom in a protein molecule. 
Such approaches have practical application in tasks, such as protein– 
protein docking or ensemble docking of small molecules, and have 
been shown in certain cases to outperform classical methods of con-
formation generation, e.g. sampling along the top principal com-
ponents [46]. The DL approaches discussed so far are intended to 
generate protein ensembles, where the structures need not follow 
any temporal sequence. For DL agents to predict the temporal se-
quence of protein conformations, kinetic information must be inte-
grated into the training process, as discussed next.
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15.4.2. Encoding kinetic relationships using MD data

Mathematically, MD simulations behave as dynamical systems 
where the system state (coordinates of thousands of protein and 
solvent atoms and their velocities) at time t +  Δt (Δt: integration 
timestep, 1– 4 fs) is a non- linear function of the state at time t. 
The non- linearity arises due to the physics- based force- field 
functions used in computing pairwise interatomic interactions. 
Thus, the computation time scales as the square of the number 
of atoms. Secondly, the highest frequency motions (i.e. bond vi-
brations) suggest an integration timestep to be limited to a few 
femtoseconds. Together, these two factors are responsible for in-
efficient computation, leading to the challenge of exploring bio-
logically relevant timescales, as discussed in the introduction. 
These challenges have been addressed recently by treating MD 
as a stochastic process combined with DL- based transformation 
of the system states to more manageable latent variable spaces. 
Exciting developments have emerged from these efforts, as dis-
cussed later.

Protein dynamics can also be described as stochastic processes 
where the probability of future states depends on past states. A sim-
plification of this principle results in the Markov model, where the 
probability of observing a given conformation at time t +  τ (τ is 
referred to as lag time) depends only on the conformation at time 
t and not on any other times in history. Due to the non- linearity 
mentioned earlier, casting protein dynamics as a Markov process is 
inherently challenging. The existing Markov state model (MSM) ap-
proach approximates the protein conformation space by clustering 
an ensemble of MD trajectories into kinetically related microstates 
(a heuristic yet practical approach) [50]. The term ‘kinetically re-
lated’ means that protein structures within a microstate are likely 
to experience frequent interconversions over time, while the tran-
sition rate between microstates depends on the adjoining energy 
barrier. The MSM is then constructed by estimating transition 
rates among the microstates over a suitable lag time that captures 
slow meaningful conformational changes, filtering out fast tran-
sitions that are likely to be thermal noise. In theory, once all rele-
vant microstates and the rules governing their temporal exchanges 

Figure 15.2. Description of key aspects of modelling MD data using DL. (A) Example pipeline for encoding protein coordinates from MD into 
machine- learnable features for training a convolutional neural- network- based autoencoder. (B) and (C) Examples of encoding kinetic relationships 
from MD using DL. (B) VAMPnet: Using the input molecular features (e.g. inter- residue distances) at time t, encoder network generates latent 
variables yt, which are related to yt+ τ at time delay τ through a linear transformation (Markov approximation from Koopman theory). Using transformed 
variables yt+ τ, decoder then generates the molecular features at time t +  τ. The encoder– decoder DL is trained by maximizing the VAMP- 2 score. C00 
and C11 are mean variances of yt and yt+ τ, respectively, while C01 is the mean covariance between yt and yt+ τ. (C) General framework for DL- guided 
enhanced sampling. Iterations between DL and biased MD guide the simulations along a preferred reaction coordinate (RC) that facilitates escape 
from metastable states. The enhancer– decoder DL network learns the kinetic relationships in the input data using a predetermined statistical training 
objective, such as the past– future information bottleneck (PIB) (55). With each iteration, a new improved RC and corresponding bias potential Vbias 
are derived, which guide the next round of MD. The process converges when the derived RC does not change further.
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have been enumerated, future time evolution can be predicted. In 
practice, however, MSM suffers from insufficient statistics and the 
challenge to identify relevant microstates, especially the ones rep-
resenting rare events. Recent machine- learning- based approaches 
have shown how to address these challenges, leading to improved 
Markov models of MD- based systems.

It is well known that, using an appropriate transformation of the 
original state variables into a latent space, any non- linear system can 
be recast such that the system state (in the latent space) at time t +  τ 
is obtainable through a linear transformation of the latent variables 
at time t [51]. Although this formulation is exact when the dimen-
sion of the latent space approaches infinity, an approximate solution 
is achievable using a limited number of dominant latent variables 
and a sufficiently long lag time τ [44]. This leads to the variational 
principle for Markov process (VAMP) [52,53] and its DL- based 
implementation to predict protein dynamics, VAMPnet (Figure 

15.2B) [44]. VAMPnet- based approaches seek to find an optimal la-
tent space transformation of the protein coordinates (representing 
the best approximation of an MD system as a Markov model) by 
training neural networks against available MD data. The quality of 
the transformation can be assessed by evaluating the VAMP score 
[44,54]. The VAMP- based approach was shown to be superior to 
MSM (albeit in simulations of simple systems such as alanine di-
peptide) in approximating protein dynamics as Markov models, al-
though their practicality in handling large macromolecular systems 
is yet to be evaluated [44].

The encoder– decoder DL architecture (such as the one used in 
VAMPnet) has emerged as a suitable choice for learning kinetic re-
lationships in protein dynamics since they challenge DL to recreate 
input data patterns using a limited number of latent variables (infor-
mation bottleneck). This ensures that the key (typically non- linear) 
relationships among the input variables responsible for broader 
kinetics are captured rather than thermal fluctuations and noise. 
Examples of DL methods employing the encoder– decoder architec-
ture are time- lagged autoencoder (TAE) [33] and the past– future 
information bottleneck (PIB)- based approach by Tiwary and co- 
workers [55] (discussed in the Enhanced Sampling section). The 
TAE encodes the past– future relationship using an autoencoder, 
where the encoder neural network converts the input molecular 
coordinates at time t into latent variables. Then, instead of recon-
structing the input, the decoder uses the latent variables to predict 
molecular coordinates at a future instant t +  Δt (hence the acronym 
‘time- lagged’). In essence, TAE derives CVs that are non- linear 
functions (implemented in DL) of the input coordinates. This places 
TAE in the general category of methods seeking to find optimal CVs, 
including traditional approaches such as time- lagged- independent 
component analysis where the CVs are modelled as linear rather 
than non- linear functions [33].

15.4.3. Scaling up to larger systems

DL methods such as VAMPnets, which express global dynamics 
using latent variables, are limited by the complexity of the conform-
ational space and are challenging to scale up to large biomolecular 
systems. For proteins with intrinsically disordered domains or 
multi- protein assemblies, the number of relevant microstates can be 
prohibitively large to model using latent variables.

One potential workaround is to decompose a large system into 
separate components or sub- systems and learn their individual 

kinetics using neural nets. The global dynamics is then learned in 
terms of weighted contributions from the individual sub- systems 
[56]. This approach has led to iVAMPnet (independent Markov 
decomposition VAMPnet), where the protein is decomposed into 
semi- independent domains, whose individual kinetics can be 
learned using separate VAMPnets [54]. The global dynamics is then 
modelled by combining the dynamics from individual sub- systems 
(i.e. as the Kronecker product of all component states) into a single 
Koopman framework. During training, the optimal sub- system 
decomposition is achieved by maximizing kinetic independence 
across sub- systems while tuning the individual VAMPnets to repro-
duce slow kinetics within each sub- system. The positive aspect of 
this method is that the user only needs to specify the number of 
components that the system should be decomposed into. The iden-
tity of these components and their relaxation timescales are deter-
mined during the training process.

The application of the iVAMPnet method to the synaptotagmin 
C2A domain (whose kinetics could not be reasonably modelled 
using a single VAMPnet) correctly identified the sub- systems that 
were previously known to exhibit uncoupled dynamics [54,56]. 
Additionally, the identified sub- systems are biologically inter-
pretable; in the case of synaptotagmin, they represent the calcium 
binding region and the loops on the opposite side of a beta sheet 
(refer to Figure 5 of ref. [54]). While the iVAMPnet approach is suit-
able for systems that can be decomposed into a discrete number 
of minimally coupled sub- systems, different approaches may be 
needed to address highly dynamic proteins (e.g. IDPs that are al-
most entirely disordered) without clearly independent sub- systems 
or where the individual sub- systems are simply too large and com-
plicated for a single VAMPnet to model.

15.4.4. Enhanced conformational sampling using  
deep learning

As intricate, connected systems, protein free energy landscapes/ 
surfaces (FESs) exhibit ruggedness, characterized by numerous 
metastable states. To navigate these landscapes effectively, a class of 
MD- based methods called adaptive sampling has emerged. These 
methods aim to enhance the exploration of FESs by selectively re-
starting multiple MD simulations from undersampled states or 
biasing the MD trajectory along specific RCs to increase the prob-
ability of sampling rare events (Figure 15.2C) [18,47).

Recent advancements have demonstrated the integration of ma-
chine learning with adaptive sampling MD simulations as a means 
of further enhancing the exploration of protein FESs [47,55– 58]. 
Iterative coupling of MD with DL can streamline the identification 
of optimal CVs or guide the selection of microstates to restart new 
MD simulations from. The maximum entropy VAMPnet method 
(Maxent VAMPnet) combines DL with the classical approach of 
clustering MD conformations into microstates to guide future simu-
lations [57]. At each step of the iterative process, the uncertainty (in 
the form of Shannon’s entropy) of MD conformations to be assigned 
to one of the microstates is estimated using a VAMPnet. New MD 
simulations are then started from conformations with high Shannon 
entropy. These conformations are likely to reside in high energy re-
gions outside of the already sampled microstates and are expected to 
facilitate exploration of new microstates.

The efficiency of adaptive sampling methods relies on the choice 
of appropriate CVs in defining an RC that captures slow principal 
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motions, rare events, and associated kinetics [18]. In most scenarios, 
CVs are system dependent and selected using human intuition rather 
than data- centric or algorithmic approaches. The PIB principle [55] 
seeks to derive CVs that are maximally predictive of the future while 
using as little information about the past as possible [59– 61]. The 
method works by iterating between rounds of MD and DL, where 
an RC is learned at each iteration by training an autoencoder using 
the PIB criterion. The next round of MD is then biased along the 
newly derived RC. Using a few biomolecular systems (e.g. alanine 
dipeptide and small molecule dissociation from a protein cavity), 
it was shown that successive iterations improved the estimated RC 
in its capacity to represent the collective motion and kinetics of the 
system. For the small molecule (ligand) dissociation dynamics, the 
authors used a limited set of inter- residue and protein– ligand dis-
tances as input coordinates. So, it is conceivable that the quality of 
the retrieved dynamics and FES will depend on the choice of input 
coordinates. However, DL– MD iterative methods like the above can 
improve the sampling of metastable states in the FES, especially the 
ones representing rare events that are often associated with high kin-
etic barriers.

15.5.  Discussion

Advancements in recent decades have seen machine learning, es-
pecially DL, being applied to nearly every domain of science and 
technology. Leveraging the capacity of neural networks to model ar-
bitrarily complex mathematical functions and functionals [62,63], 
DL holds the potential to supplant classical statistical methods, al-
beit at the expense of interpretability. Numerous recent studies have 
showcased DL’s effectiveness in analysing and enhancing MD simu-
lations. However, like any other machine learning approaches, DL’s 
performance hinges on the quality and quantity of training data.

Unlike many fields where training data is obtained from real- life 
observations or experiments, MD data is generated through simu-
lations, often constrained by their limited accessible timescales. 
Given the nature of this training data, the efficacy of DL methods 
in forecasting long timescale protein dynamics, especially for larger 
systems, remains uncertain. Presently, at the nascent stage of devel-
opment, DL approaches are demonstrated in small peptide or pro-
tein systems. It is unclear how these methods will scale up to larger 
systems, such as protein complexes, since important questions re-
garding the optimal number of latent variables or the required 
length of MD simulations for training are unresolved. However, 
DL presents a promising framework when coupled with enhanced 
sampling MD in traversing protein FESs. For instance, adaptive RCs 
derived from iterations between MD and DL can facilitate more ef-
ficient sampling of long timescales or rare events compared to un-
biased MD of similar durations [55], or suggest new regions in the 
FES for extended sampling, even in large systems (e.g. the SARS- 
Cov2 Spike protein) [64].

Beyond temporal trajectory prediction (where successive con-
formations are kinetically related), generative AI techniques can de-
rive protein ensembles by learning structural constraints from MD 
data. AI- generated ensembles offer significant speed advantages over 
traditional methods, such as Monte Carlo sampling or MD simula-
tions, especially when accelerated using specialized hardware. These 
ensembles can be further refined using experimental measurements, 

such as small- angle X- ray scattering and nuclear magnetic resonance 
[65], and rapidly deployed in applications involving small molecule 
drug/ PROTAC discovery and the design of antibodies and CAR- T.

In summary, the practical challenges of applying DL in MD re-
main unresolved, although recent progress suggests that the field is 
moving in a promising direction. Future advancements, including 
faster computing technologies like quantum computing, may bridge 
the gap between DL’s modelling capabilities and physiologically 
relevant protein complexes, while novel algorithms could facili-
tate the forecasting of long timescale dynamics using limited MD 
data. The effective integration of machine learning with physics- 
based simulations holds the potential to develop highly accurate 
multiscale methods [66] that seamlessly traverse biological length 
and timescales.
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Cancer- related intrinsically disordered 
proteins: Functional insights from energy 
landscape analysis
Vitor B.P. Leite, Murilo N. Sanches, and Rafael G. Viegas

16.1.  Introduction

Cancer is one of the toughest health challenges for humanity. It is a 
multifaceted subject, and a complete solution to the problem is un-
thinkable without understanding its molecular mechanisms, par-
ticularly cancer- related proteins. Enormous progress has been made 
in comprehending healthy functioning biochemical processes, and 
this knowledge is the cornerstone to identifying and characterizing 
all sorts of pathologies, including cancer. The specificity of protein 
mechanisms laid the foundation of structural biology: the statement 
that the unique three- dimensional (3D) structure of a protein is in-
trinsically related to its function, such as in a lock- and- key system 
[1] . Along with this idea and through Anfinsen’s findings, the under-
standing that the amino- acid sequence encodes the essential in-
formation for proteins to reach their functional conformation was 
realized [2]. The puzzle of how a protein can attain its native state was 
known as the ‘ protein folding problem’, which has been successfully 
explained by the energy landscape theory (ELT), at least for proteins 
with well- defined native structures. However, a significant portion of 
proteins do not have a stable structure, at least when not complexed 
to ligands or binding partners [3 – 5]. Such unstructured proteins 
populate a diverse set of interconverting conformations to achieve 
their function and are known as intrinsically disordered proteins 
(IDPs). They are often related to cancers, but the lack of reference 
conformational states for comparison presents significant conceptual 
and methodological challenges. In this chapter, we discuss the ELT , 
IDP’s features, computational challenges, methods to address them, 
and finally, recent insights obtained from these approaches.

16.2. Protein folding and the energy landscape

More than 50 years have passed since Anfinsen experimentally 
showed that the bovine ribonuclease A can refold to its functional 

form after denaturation without the help of any biological machinery 
or catalysts [6] . In this way, the Anfinsen’s experiment suggested that 
all the information for building a functional protein was encoded 
in its amino- acid sequence. These facts led Anfinsen to formulate 
the ‘thermodynamic hypothesis’, which states that the 3D native 
structure corresponds to a minimum in the Gibbs free energy of the 
system [2]. Since then, finding the physical – chemical mechanism 
underlying the folding process has become a crucial problem in 
protein science. Cyrus Levinthal soon realized that, due to the high 
number of degrees of freedom, there would not be enough time for 
a protein to sample all possible conformations in the search for the 
most stable one [7,8]. This impossibility was known as Levinthal’s 
paradox and led Levinthal to propose that the folding should pro-
ceed by fast special kinetic pathways.

The ELT, which is based on principles of statistical mechanics, 
has reconciled the experimental observations with the apparent 
Levinthal’s paradox. The ELT uses a framework of spin glass, a mag-
netic system in which the spins randomly interact with each other. 
These random interactions are associated with amino- acid con-
formations of random heteropolymers, which create a rugged po-
tential energy surface due to many competing interactions. The fact 
the energy of such interactions cannot be simultaneously minimized 
is called ‘frustration’. A naturally occurring protein follows the prin-
ciple of minimum frustration, in which frustrated interactions are 
minimized at their native conformations, and this state is associated 
with the global energy minimum of the system [9] . The energy of 
other conformations correlates with the structural similarity to the 
global minimum and yields a low- energy basin of states. The overall 
energy landscape is known as a protein folding funnel [10].

In this representation, the conformation similarity with the native 
structure (Q) serves as a reaction coordinate of the folding process, 
and its free energy (F (Q)) acts as the effective one- dimensional po-
tential of the system. With this simplified representation, one can 
bridge theory and experiments, extracting folding energy barriers, 
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diffusion coefficient along Q (D(Q)), folding rates, and other experi-
mental variables, such as Φ- values [11].

16.3. Intrinsically disordered proteins

The notion that a functional protein requires a well- defined 3D 
structure has been defied in the past few decades by the discovery 
of flexible, unstructured proteins that remain disordered in physio-
logical conditions, at least in vitro [3,4]. They are now widely known 
as intrinsically disordered proteins . In addition, there are partially 
disordered proteins, which are composed of both ordered and in-
trinsically disordered regions (IDRs). While initially considered the 
exception, it is now acknowledged that a significant fraction of pro-
teins lack unique 3D structures. In fact, it has been reported that 
some eukaryotic proteomes comprise 12% of fully disordered pro-
teins and 43% of proteins contain large disordered regions (equal 
or larger than 41 residues) [12]. In spite of being disordered, these 
proteins play crucial roles in transcription, cell signalling pathways, 
cell cycle regulation, and other functions [13]. On the other hand, 
over expression and aggregation of IDPs are the cause of many 
chronic human diseases [14], cancer [15], and neurodegenerative 
diseases [16].

Different from folded globular proteins, IDPs are highly flexible 
and better described by interconverting ensembles. Although some 
IDPs may behave like random coils, it has been shown that IDPs 
may also present some kind of structural order, represented by pref-
erential ensembles, which are characterized by small regions of the 
conformation space separated by energies barriers, resulting in a 
heterogeneous quasi- continuum of structures [17,18].

Although it is easy to depict the interaction mechanism of or-
dered proteins through the lock- and- key model [1] , binding mech-
anisms of disordered binding regions (DBRs) and IDPs are still 
not well understood. In this sense, it has been proposed that these 
interactions occur via a ‘coupled folding and binding ’. Two mechan-
isms were initially proposed: (i) the ensemble selection mechanism, 
which states that the IDP samples a number of different ensembles 
so that the binding partner chooses the most fitted one; and (ii) the 
induced fit mechanism, in which the protein folds after binding 
to its target ligand, i.e. the binding process induces a structure not 
sampled in the free state [19]. Both mechanisms characterize a 
disorder- to- order transition, resulting in a stable structure for the 
bound state. Nevertheless, this is not always the case, and some IDPs 
may retain some degree of disorder or even remain fully disordered 
upon binding, such as in polyelectrolyte complexes [20]. IDPs may 
also engage in fuzzy interactions in which their bond state is context 
dependent, varying with the binding partner or cellular conditions 
[21]. For instance, disordered regions may fold to different struc-
tures according to the binding partner.

Due to this large repertoire of binding modes, IDPs play an im-
portant role in protein interaction networks (PINs). PINs are repre-
sented by graphs in which proteins occupy nodes (edges) connected 
to their binding partners. In these networks, some proteins occupy 
a hub position, connected to many partners, whereas the great ma-
jority of proteins are connected to few partners or to only one, as 
in the case of end proteins [22]. Studies on PINs from different eu-
karyotic interactomes have demonstrated that most hub proteins are 
IDPs [13]. In this case, the intrinsic disorder endows the IDP with 

the ability to bind to many partners with similar affinities. In add-
ition, by engaging in promiscuous binding, IDPs can participate in 
multiple and unrelated signalling networks that could be regulated 
by different pathways [22].

These facts led to the formulation of the MRK hypothesis [23] 
(named after Mahmoudabadi, Rangarajan , and Kulkarni) almost 
a decade ago. In this hypothesis, the authors postulated that, due 
to their rapid conformation dynamics and promiscuous inter-
action, IDPs would cause conformational noise. In biological sys-
tems, the term noise is used to express the variability encountered 
in the system due to stochastic processes. One example of such vari-
ability is the well- known transcriptional noise, which stands for the 
heterogeneity in gene expression in an isogenic cell population. In 
this sense, conformational noise refers to the variability originated 
from the rapid conformational dynamics and promiscuous non- 
functional interactions of IDPs. This unbalanced activity may lead 
to a rewiring of PINs, affecting the cellular fate. In this way, the con-
formational noise may be responsible for a cell phenotypic switch, 
in which, for instance, a cell can change from a normal to a ma-
lignant state. In conclusion, the MRK model provides an insightful 
non- genetic mechanism to generate heterogeneity that may have 
important implications in cancer progression and therapeutics [24].

To fully understand the implications of conformation heterogen-
eity in biological function, it is necessary to characterize the energy 
landscape of IDPs and be able to extract insightful features from 
it. Whereas a random coil would present a flat landscape where all 
states have almost the same energy, a protein that folds in an all- or- 
none fashion would present a single deep funnelled landscape. The 
energy landscape of IDPs lays between these two extremes and may 
be almost flat for highly disordered proteins, or present several local 
minima, being multi- funnelled and highly frustrated [17,25,26]. 
However, the determination of the conformation ensemble of IDPs 
is still challenging for both theoretical and experimental methods. 
Currently, this problem has been tackled by integrative approaches 
combining both molecular dynamics (MD) with improved force 
fields and experimental techniques, such as nuclear magnetic res-
onance (NMR), small- angle X- ray scattering (SAXS), and Förster 
resonance energy transfer [27,28]. In the next section, methods 
developed to extract biophysically relevant features from conform-
ation ensembles are presented.

16.4. Computational approaches

Theoretical– computational approaches use molecular modelling 
to mimic the behaviour of biomolecules, and MD is the most used 
method to simulate the time evolution of these systems. The atoms 
or a group of atoms can be treated as the smallest individual units, 
depending on the coarse- grained level of representation. These 
units are considered particles connected by spring- like potentials, 
interacting with the other particles in their range based on their 
specific potentials. The evolution of the system over time is calcu-
lated using Newton’s equations that describe their motions, with the 
forces between the particles and their potential energies often cal-
culated using interatomic potentials and molecular mechanics force 
fields [29].

The force field consists of a set of parameters and energy functions 
that are used to calculate the potential energy of a system. These 
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parameters are usually derived from experiments and attempt to re-
produce a realistic behaviour. Several approaches have been used to 
develop new force fields or parameterize existing ones to improve 
the sampling for IDPs [30]. The CHARMM36m is one example 
which, using all- atom representation, presents coherence with NMR 
spectroscopy and SAXS measurements of small IDPs [31]. A com-
parison between some of these force fields when applied to a group 
of IDPs is provided in [32].

Obtaining reliable force fields for IDPs is more difficult because 
the error in energy estimates linearly increases with disorder [33], 
so results are highly susceptible to small force field variations. 
One reasonable approach is to take a coarse- grained model, where 
amino-acids are represented only by some of their atoms, aiming 
to understand some essential features of the system. This is the case 
for the Associative memory, Water- mediated, Structure and Energy 
Model (AWSEM) [34], which is based on ELT and the principle of 
minimum frustration, and restricts the representation of each amino 
acid to Cα, Cβ, and O atoms. Along with physics- based potentials, 
AWSEM implements bioinformatically motivated biasing poten-
tials, such as the fragment memory term, which provides local struc-
tural biasing based on the information of locally similar sequence 
fragments. The AWSEM- IDP, a branch specifically developed for 
IDP simulation, presents re- weighted parameters and integration 
with experimental data, with the addition of a radius of gyration po-
tential and fragment memories both based on structural ensembles 
from either NMR ensemble or atomistic simulations [33]. Another 
possibility to fine- tuning the force field is using the available experi-
mental data as simulation constraints, also known as MDFIT [35].

16.5. Reaction coordinates and 
dimensionality reduction

Investigation methods explore molecular systems using reduc-
tionist approaches, in which one seeks to understand the molecular 
processes in terms of a few reaction coordinates or order param-
eters. These effective variables try to convey the essence of such 
mechanisms. In the simplest computational representations, each 
amino acid is the smallest individual unit, and they do not consider 
the individual atoms and solvent molecules. For a protein with N 
amino acids, one has the order of 3N degrees of freedom, which is a  
high - dimensional system of difficult visualization and insightful 
representation, even in such a coarse- grained model.

A possible solution is to use a priori reaction coordinates that are 
usually meaningful variables, such as radius of gyration, end- to- end 
distances, or similarity degree with a reference structure Q (as dis-
cussed above). There are even computationally costly methods that 
try to identify possible reaction coordinates [36]. However, such 
procedures have the potential to shroud the richness of the energy 
landscape and its dynamics.

MD trajectories can also be analysed using dimensionality re-
duction (DR) techniques, which aim to provide visualization of the 
complex manifold in two or three dimensions, retaining the relevant 
information about the system dynamics. In the past decades, several 
DR methods have been proposed using both linear and non- linear 
approaches and making different assumptions about the original 
manifold to be mapped [37, 38]. Combined with effective sam-
pling from molecular simulations, these techniques may provide 

insightful visualization of the conformation space of proteins, en-
abling the identification of collective motions, intermediate ensem-
bles, meta- stable states, and molecular mechanisms that otherwise 
would not be accessible from the raw trajectory data. Next, we dis-
cuss a few well- known DR techniques.

16.5.1. Principal component analysis

The search for an adequate low- dimensional space for describing 
protein collective motions began with a seminal paper by García 
[39]. In this work, the author derived a set of equations to find, from 
a minimization procedure, the most relevant directions to describe 
the collective motions of the protein crambin. The derived equations 
are equivalent to the so- called principal component analysis (PCA), 
a linear DR method that since then has been widely used in the ana-
lysis of MD trajectories. Essentially, the PCA analysis consists of the 
following steps: (i) align all the conformations to a single frame in 
order to remove translation and rotation; (ii) generate a matrix of 
coordinates of the system, e.g. Cartesian coordinates of Cα atom or 
dihedral angles; (iii) calculate a covariance matrix of the coordin-
ates; and (iv) diagonalize the covariance matrix to find its eigen-
vectors and eigenvalues. It is possible to show that the eigenvalue 
is equal to the variance of the data along the direction of its cor-
responding eigenvector. The original set of atomic coordinates may 
then be projected onto the directions of these eigenvalues, revealing 
the motions in each of these principal directions. The dimension-
ality of the system can be drastically reduced if a small number of 
these eigenvalues account for a great fraction of the total variance. In 
this case, these directions are known as essential coordinates, while 
the low- dimensional space formed by them is known as essential 
space (ES). The motions as observed in the ES are referred to as es-
sential dynamics and are related to functional motions of proteins 
[40]. For further examples and discussion about the method, we 
refer to the recent review [41].

16.5.2. Multidimensional scaling

Classical multidimensional scaling (MDS) [42] is a technique widely 
used to reduce the dimensionality and visualize similarity or dis-
similarity in high- dimensional data. In MDS, the coordinates of 
each object in the high- dimensional space are not required. Instead, 
only a matrix of pairwise proximity of points is needed. Initially, 
MDS techniques were developed in the field of psychophysics and 
sensory analysis, where the objects to be mapped were stimuli [43]. 
Although classical MDS considers that the dissimilarity can be rep-
resented by the Euclidean distance in the original space, it may be 
calculated using any distance metric such as geodesic or cosine dis-
tance. Thus, considering n objects populating a high- dimensional 
space, the input data is an n × n matrix in which each entry contains 
the dissimilarity, δij, between the object pair (i, j). Then, the method 
aims to place a set of n points into a low- dimensional space with the 
constraint that the pairwise Euclidean distances are approximately 
equal to dissimilarities. Mathematically, this constraint is expressed 
through a loss (or cost) function given by

 L y y
i j

ij i j= − −( )
<
∑ δ || || ,

2
 (16.1)

where yi is the position vector of the projected point i and || ||y yi j−  
is the Euclidean distance between points representing objects i and j
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. Broadly, in classical MDS, a Gram matrix of inner products can be 
found from the double- centered dissimilarity matrix. The eigenvalue 
problem can be solved to find the principal coordinates. Although 
the classical MDS may have an analytical solution, other methods, 
such as nonmetric MDS, were developed to project data in which 
dissimilarities do not satisfy the metric requirements, for instance, 
qualitative dissimilarity in psychophysics. In this case, the projected 
points may preserve a rank order instead of distances like in clas-
sical MDS. To achieve such projections, nonmetric MDS usually 
minimizes a stress function through iterative minimization proced-
ures. The set of MDS techniques may be used to minimize different 
stress functions through different minimization algorithms [43]. For 
mathematical details about this procedure, we refer to the review 
[44] and references therein.

One great advantage of MDS is that only a dissimilarity matrix is 
needed as input to achieve the matrix of coordinates on the plane. 
To describe how similarity evolves along simulation trajectory, 
the most used strategy is to remove translation and rotation from 
all frames, by aligning them to a reference structure and then cal-
culating the coordinate root- mean- square deviation (RMSD). In 
the case of MDS, the construction of the dissimilarity matrix does 
not require a reference structure but still requires pairwise align-
ment, which may not be the best approach if sampled structures 
are too diverse to be aligned [38]. Another approach that does 
not require alignment involves dealing with internal distances. 
For instance, for a protein consisting of N Cα atoms, there will be 
N(N −1)/ 2 internal distance terms that can be used to calculate a   
distance root- mean- square deviation (dRMSD) [45]. Like RMSD, 
the dRMSD can also be calculated from a reference structure or 
in a pairwise way. Several other dissimilarity metrics have been 
proposed such as contact map distances, power distances, and di-
hedral distances based on the Ramachandran angles [45,46]. It 
should be noted that different similarity measures may highlight 
different features of the conformational space. Nevertheless, the 
combination of these measures with DR techniques may circum-
vent such limitations and unravel global and/ or local features of 
the system.

One interesting example of how MDS can be applied to MD tra-
jectories was provided by Pisani et al. [47]. The authors used clas-
sical MDS and RMSD- based dissimilarity to unveil meta- stable 
states and characterize the conformational ensemble of the cancer- 
related cyclin- dependent kinase CDK2. Specifically, they used 255 
structures obtained from crystallographic data from the Protein 
Data Bank to project an effective low- dimensional conformation 
space. In the resulting projected space, which accounted for 80% of 
the data variance, it was possible to discriminate five clusters corres-
ponding to different known states (e.g. active, inactive, open, etc.). 
The low- dimensional conformation landscape was further popu-
lated by running regular and accelerated MD simulations for CDK2 
in apo state and for CDK2 complexed with fluorophore 8- anilino- 1- 
naphtalenesulfonic acid (ANS) molecules. The new generated con-
formations were added to the initial space through an out- of- sample 
embedding procedure (see details in the original work [47]). The au-
thors also constructed the energy landscape using order parameters 
that had already been used to describe kinase ensembles, such as the 
RMSD of specific secondary motifs. As a result, the space generated 
by MDS was able to discriminate new meta- stable states not seen in 

the landscape generated by the usual order parameters. In addition, 
the landscape for the ANS - bound state showed a populational shift 
towards inactive states. Thus, the analysis of the low- dimensional 
landscape shed light on molecular mechanisms, revealing meta - 
stable structures that may be potential candidate structures for the 
designing of allosteric inhibitors.

16.5.3. Non- linear dimensionality reduction

Despite being robust techniques, it has been acknowledged that 
both PCA and classical MDS only give good results when the data 
lies on a manifold that is isomorphic to a hyperplane. When data 
is sampled from complex manifolds, e.g. isomorphic to a torus, 
the points can not be simply mapped onto a hyperplane while pre-
serving all the distances between them [38]. Several non- linear 
DR techniques have been proposed to address this issue, such as 
Isomap [48], diffusion maps [49], t- SNE [50], UMAP [51], and 
Sketch- map [52]. Additionally, deep machine learning techniques 
have also been applied to manifold learning and visualization, like 
the EncoderMap [53]. For a recent review of these methods and 
their applications in the context of molecular simulation, we refer 
to [38,52,54]. By choosing different loss functions, optimization 
procedures, and dissimilarity metrics, different features of the ori-
ginal manifold can be accurately depicted in a low- dimensional 
space. For example, the method may choose to preserve mainly 
local or global features.

16.6. Energy landscape visualization method

A new approach to generate an intuitive visualization of high- 
dimensional data is the energy landscape visualization method 
(ELViM) [55,56]. Similar to MDS methods, the ELViM projection 
relies on two fundamental steps: (i) the generation of a dissimilarity 
matrix based on a specific proximity measurement and (ii) the mini-
mization of a loss function through an iterative procedure. The prox-
imity measure used by ELViM is based on an order parameter that 
was first devised to study spin glasses and then successfully applied 
as a reaction coordinate or a structural similarity measure [57– 59]. 
The similarity between conformations i and j is given by

 Q
N

exp
r r

w

i j

p m n

m n

i

m n

j

m n

,

,

, ,

,

,= −
−( )











∑1

2

2

2
σ

 (16.2)

where rm n

i j

,
( )  is the Euclidean distance between atoms m and n from 

conformation i or j, and N p is the total number of atom pairs. The σm n,  
is a weighting parameter given, in angstroms, by σ σ

ε

m n m n, = −0 ,   
where ε =  0.15 and σ0 1 0= .  Å [58]. The pairwise dissimilarity is de-
fined as δij w

i jQ= −1 , , so it is 0 for identical structures and tends to 1 
for very different structures. As an advantage, this metric only re-
lies on internal pairwise distances (Cα or heavy atoms) that can be 
promptly obtained from MD simulations.

To generate a low- dimensional visualization, ELViM seeks to 
minimize a loss function (Equation (16.1)) so that δij i jy y≈ −|| ||,   
meaning that the Euclidean distances in the plane fit the dissimilar-
ities as well as possible. A force- based technique called force scheme 
is adopted to achieve such results [60]. In this technique, in each 
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iteration, each point is chosen as a reference and all other points are 
slightly perturbed, being attracted to or repelled from the reference 
in order to approximate the distance to the dissimilarity. A mini-
mization procedure ensures the best configuration and usually con-
verges up to a number of iteration equal to the square root of the 
number of conformations. After reaching equilibrium, conform-
ations that are close on the multidimensional energy landscape are 
attracted to the same basin in the final projection. From a mathem-
atical viewpoint, this DR can be considered an ill- posed problem; 
there is no unique solution, and the results depend on the ELViM- 
adjusted parameters. In our experience, however, if the system’s 
complexity is not too high, results are robust, stable, and can give 
new insights into molecular mechanisms.

Further analysis can be performed by using heat maps to colour 
the projection’s points according to any relevant biophysical quan-
tity, such as the radius of gyration (Rg), the RMSD , or any reaction 
coordinate values. Comparing how these quantities vary over the 
projected space can bring new insights into the dynamics and func-
tion of proteins that can not be extracted by any other means from 
the abundant data contained in the simulation trajectory. Moreover, 
several ensembles of conformations, obtained under different phys-
ical–  chemical conditions, can be analysed using the same conform-
ational phase space. This allows for a differential analysis between 
different systems. Next, we show one example of how this method-
ology can be applied to elucidate the conformation diversity of an 
IDP, the disordered prostate- associated gene 4 protein (PAGE4), and 
its phosphoforms.

16.7. Functional insights from the PAGE4 
energy landscape

PAGE4 is an IDP that belongs to the family of cancer/ testis antigens. 
It is highly expressed in the human foetal prostate, trophoblasts, 
and placenta. During prostate cancer, its expression is elevated, 
which plays an important role both in the benign and malignant 

diseases [61,62]. PAGE4 is a transcriptional coactivator and a stress- 
response factor that potentiates the transactivation by c- Jun, which 
heterodimerizes with c- Fos to form the activator protein- 1 (AP- 1) 
[63]. It has been experimentally shown that the phosphorylation of 
PAGE4, mainly at Threonine 51, by the homeodomain interacting 
protein kinase 1 (HIPK1) results in an ensemble of more compact 
structures that can bind to AP- 1 and potentiate the c- Jun activity 
[64]. On the other hand, PAGE4 can also be hyperphosphorylated 
by the CDC- like kinase 2 (CLK2), resulting in an ensemble of more 
expanded structures that has reduced affinity to AP- 1 and attenuates 
the c- Jun activity [63].

Atomistic details about the system were provided by Oliveira et al. 
[26], which applied the ELViM to analyse a coarse- grained AWSEM 
trajectory of the PAGE 4 and its phosphoforms. Figure 16.1a shows 
the two- dimensional (2D) ELViM projection as a function of the 
radius of gyration, surrounded by typical structures that exemplify 
each region of the phase space. In this projection, each point corres-
ponds to a different sampled structure. The axes have no particular 
meaning, and the important aspect is the relative distance between 
conformations. This method allows for the clustering of conform-
ations to obtain a continuous projection, with the most compact 
structures on one side and the most extended on the other. Another 
advantage of ELViM is the ability to analyse each ensemble individu-
ally. Since the position of each configuration is assigned based on 
their dissimilarity value, it is possible to compare different ensem-
bles simultaneously. This is demonstrated using the 2D density of 
states of each phosphoform shown in Figure 16.1b. The density of 
state demonstrates that the wild type (WT) and the HIPK1 PAGE4 
structures populate the bottom right of the projection, while the 
CLK2- PAGE4 structures are more spread out. Combining this result 
with the radius of gyration analysis, one can note that the WT and 
the HIPK1- PAGE4 conformations correspond to the more com-
pact ones, while most of the CLK2- PAGE4 are near the extended 
and more disordered region. These results are in agreement with 
the experimental finding previously discussed. The analyses of the 
main basins in the projection revealed that for the wild- type PAGE4 

Figure 16.1. (A) ELViM projection as a function of the radius of gyration. The structures around the projection illustrate some ensemble regions 
of the conformation phase space, with the N- terminals shown in red and C- terminals in blue. (B) Density of state for each phosphoform. Different 
phosphoform cases have their density of states (σ) normalized by their highest value, with the highest density occurring for HIPK1. Their relative 
maximum values are σ σ

WT

max

HIPK1

max/ = 0.57 and σ σ
CLK2

max

HIPK1

max/ = 0.29. (C) Suggested fly- casting mechanism of WT, with the Thr51 highlighted in red to 
show the conformational change that the C- terminal undergoes from region A to B to C.
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a loop is formed in the N- terminal region, and the C- terminal re-
gion presents stretched conformations, which exposes the region 
where c- Jun binds, facilitating c- Jun docking to occur [26]. This be-
haviour is in line with the fly- casting mechanism, in which the pro-
tein weakly binds at a large distance and folds as it approaches the 
binding site [65]. This mechanism is frequently observed in the con-
formational dynamics of IDPs as depicted in Figure 16.1c, in which 
the C- terminal is shown in blue and undergoes a conformational 
extension with the Thr51 highlighted in red. This structural change 
allows PAGE4 to dock to the c- Jun and can be traced back at the 
ELViM projection as the cluster examples A, B, and C.

The work of Oliveira and co- workers also makes it possible to visu-
alize the conformational changes induced in HIPK1- PAGE4 ensem-
bles, obstructing the binding site and lowering the PAGE4 affinity to 
c- Jun, when compared to the WT , as found in experiments [64]. This 
lower affinity results in the dissociation of PAGE4 and c- Jun, which 
promotes the interaction of c- Jun to other partners and potentiates 
its transactivation [64]. Analogous studies have addressed other   
pathology- related IDPs, the amyloid- β [66], and other complex 
folding systems [67], which have also elucidated unprecedented de-
tails of these energy landscapes.

16.8.  Conclusions

The discovery of IDPs and IDRs in the past decades has shaken 
the protein science field, mainly regarding the well- established   
structure– function paradigm. The fact that IDPs occupy hub posi-
tions in PINs and are related to many pathologies has inspired 
multiple studies addressing how biological functions arise from 
conformational dynamics and structural disorder. The determin-
ation of the conformation ensembles of IDPs has been a challenge 
for both experimental and theoretical techniques. Whereas most 
biophysical experiments used to study IDPs result in ensemble 
averages, computational modelling aims to provide an atomistic 
description of these ensembles. However, computational models 
also present many limitations due to difficulties inherent in set-
ting an appropriate force field and ensuring proper sampling. 
Nevertheless, a lot of progress has been made, and many strategies 
have focused on integrative approaches, bridging theory and ex-
periment. The ELT has provided a powerful resource for tackling 
complex systems. We have shown that methods such as the ELViM 
can provide invaluable insights into IDP mechanisms, particularly 
cancer- related ones.
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Targeting RAS
Priyanka Prakash

17.1.  Introduction

RAS enzymes are molecular switches that cycle between an active 
‘on’ and an inactive ‘off ’ state [1– 3]. Active RAS is GTP- bound, 
while inactive RAS is GDP- bound [4] . Given that the intrinsic ex-
change rate of inactive to active transition is slow, RAS interacts with 
guanine exchange factors (GEFs) that catalyze the exchange of GDP 
to GTP [5– 8]. GTPase- activating proteins (GAPs), on the other 
hand, catalyze the hydrolysis of GTP in order to make the enzyme 
inactive to cycle it back to the GDP- bound state [5,6,9,10]. There are 
three human isoforms of RAS: H- , N- , and KRAS [11]. The sequence 
and structural similarity among the three isoforms are well known. 
From structural standpoint, RAS is made up of a catalytic G- domain 
that contains the active site or nucleotide- binding site where GDP/ 
GTP binds a hypervariable region (HVR) that attaches itself to the 
cell membrane (Figure 17.1). The G- domain contains two lobes 
[12]: the effector lobe or lobe 1 that contains the switch region that is 
the interaction site of all the binding partners of RAS, such as GEFs 
and GAPs. The other lobe is referred to as the allosteric lobe or lobe 
2. Allosteric lobe has sequence- based differences among different 
isoforms [11,13]. These differences are located on the three helices of 
the allosteric lobe, i.e. α3, α4, and α5 (Fig 17.1). Attached to the allo-
steric lobe is the hypervariable or HVR region that exhibits the most 
prominent differences among the isoforms [14,15]. HVR varies 
among the three isoforms primarily at two levels: (1 ) sequence and 
(2) the number of lipidations [11,15,16]. KRAS has only a single 
lipid anchor (farnesylation); HRAS has two palmitoylation and one 
farnesylation sites making a total of three lipid attachment points, 
while NRAS has a single palmitoylation and a single farnesylation 
site making a total of two lipid attachment points. Despite sharing 
structural and sequence similarities, different RAS isoforms show 
differential functional output under normal conditions [3,17]. 
Among other factors, isoform- specific differences in the HVR of 
RAS is among the key regions that govern these observed differences 
in the functional output [18].

Mutations primarily at the three hotspot residues, i.e. the posi-
tions, 12, 13, and 61, has been found associated with deadly cancer 
types, such as pancreatic, colorectal, kidney, gallbladder, melanoma, 
and others [11]. These mutations disturb the fine balance in the 
RAS cycle leading to an aberrant signalling of MAPK or PI3K [19] 

pathways, and there are several excellent reviews that the interested 
readers are recommended to refer for more details [3,11,20,21]. The 
isoform- specific differences in the functional output is well reported, 
such as pancreatic and colorectal are predominantly associated with 
mutant KRAS, melanoma is largely associated with mutant NRAS, 
and kidney and gallbladder cancer are primarily associated with 
mutant HRAS [22]. The functional output of different RAS mutants 
is also different for an isoform (see, for instance, [11]). Owing to 
their involvement in a variety of deadly cancer types, drugs against 
mutant RAS are essential to abrogate their abnormal signalling. 
Worldwide a multi- pronged research focused on a variety of areas, 
such as small molecules, immunotherapy, peptidomimetics, etc. are 
underway to address these challenges [23,24]. As an example, one 
such effort from immunotherapy to treat pancreatic cancer con-
taining KRAS mutations is based upon KRAS peptide vaccine that 
is currently under clinical trial. While too early to conclude any-
thing and challenging at the same time, however, if successful, this 
will provide us with a promising alternative approach of targeting 
KRAS- driven cancers. In addition, mRNA vaccines for pancreatic 
cancers are also under clinical trial which are first of its kind.

In this chapter, I first discuss the small- molecule drug design fo-
cused on RAS that has gained a fast pace starting 2012– 2013 which 
led to the successful identification of the first FDA- approved anti- 
KRAS drug that is currently in the clinic and targets a specific mu-
tant of KRAS(G12C). There are several excellent studies in this field, 
and readers are referred to many excellent articles and reviews in this 
area [20,23,25– 28]. Here, I primarily focus upon those initial studies 
that paved the way towards the successful identification of mutant 
KRAS- specific drugs and focus at the same time on the binding 
pockets [29– 32]. Next, I highlight selected molecular simulation- 
based studies. My goal here is primarily to highlight simulation 
studies as applicable in the fast- paced industry setting instead of 
focusing on the investigation of conformational dynamics of RAS’s 
G- domain or membrane- bound RAS; here, I highlight the power of 
probe- based simulations or mixed- probe MD simulations as applied 
to RAS proteins and the role of water dynamics in a drug discovery 
process. There are excellent review and research articles that discuss 
the conformational dynamics of RAS, RAS– ligand complexes, RAS 
nanoclusters, dimerization, and others, and interested readers are 
suggested to refer refs. [2,13– 15,33– 40]. At the end, I briefly hover 
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over a yet underexplored area and a potential role of membrane dy-
namics as an alternative strategy to target challenging drug targets, 
such as RAS and RAF kinases.

17.2. RAS targeting: binding pockets

For the direct targeting of RAS, there are studies in the literature that 
reports the presence of four allosteric pockets on the surface of this 
single- domain protein (Figure 1 of [41] and Figure 17.2). These four 
pockets are as follows: (A) p1 or sw1/ sw2 pocket that lies behind 
the sw- 2 and occupies a hydrophobic pocket that opens as a result 
of flipping of Tyr71 and loss of interaction between R41 and D54 
[29,31,32]. Compounds that bind to this pocket may extend towards 
the switch- 2 or switch- 1 in the upwards direction (Figure 17.2, blue 
box) or towards the outside, e.g. BI- 2852 [42] (Figure 17.2). (B) p2 
or SII- P pocket, which is the most explored pocket till date. This is 
due to the successful approach of covalent targeting of G12C mu-
tant of KRAS [30]. (C) p3 pocket in which the metal– cyclens bind 
near helices 4 and 5 that are proximal to the membrane anchor re-
gion [43,44]. Recent studies with compounds binding to p3 pockets 
have further strengthened this yet underexplored pocket/ region in 
RAS, but this pocket comes with its own challenges of being prox-
imal to the membrane anchor (see Section 17.5 for a detailed dis-
cussion on compounds binding p3). Since no crystal structures are 
yet available for these p3 binders and they are obtained from util-
izing computational approaches, therefore, I discuss them separ-
ately. (D) pocket p4 that lies behind sw1 (not shown in Figure 17.2). 
Currently, as evidence of p4 binders, there are not many reports but 
andrographolide, which is a natural product and its analogues are 

predicted using computational approaches to bind p4 pocket, and 
an NMR- based study shows the binding of metal– cyclens in this 
region, as discussed below. However, thus far no X- ray structure is 
available for compounds bound to p4 pocket [45,46]. All these four 
allosteric pockets in RAS were predicted using computational ap-
proaches in 2011 by Grant et al. [45], and these pieces of evidence 
exist for the two of them, p1 and p2, at this time.

Owing to the initial failures in drugging RAS and thus marked 
as undruggable for several decades, the revolutionary studies in the 
year 2012 onwards acted as a game changer in the design of anti- 
cancer RAS- targeting drugs and [29– 32] guided the field towards 
the FDA- approved drugs, thereby marking the beginning of an era 
with immense potential for the future drug- discovery efforts in the 
field [26]. A variety of inhibitors of RAS, such as cyclic compounds, 
natural derivatives, and biologics, have been reported in the lit-
erature [47,48], and here I focus only on a few selected articles. In 
2010, Kalbitzer’s group identified previously unknown binding sites 
in RAS using metal– cyclens (Figure 17.2) [43,44,46]. GppNHp- 
bound wild- type RAS showed two binding regions. One was located 
near the γ- phosphate where Cu2- cyclen could directly interact with 
the γ- phosphate and the amines of the cyclen hydrogen bond with 
Gly12, Asp33, Ala35 (T35A mutant), and Ala59. NMR showed the 
perturbation of the following residues: Gly13, Tyr32, Ala59, Gly60, 
and Gln61. The second was the binding site 2 that was found distant 
from the nucleotide- binding site and localized near the loop7 and 
helix5 with the chemical shift perturbations (CSPs) most predom-
inant for Asp105, Ser106, Asp107, Asp108, Val109, and Met111 res-
idues and those near the C- terminus (or helix5), i.e. Glu162, Gln165, 
and His166. X- ray structure was solved with Zn2+ – cyclen bound to 
HRAS- wt- GppNHp (wt: wild type), and the binding region 2 was 

Figure 17.1. (A) Structural elements of RAS. The switch region and the nucleotide- binding site form the effector- binding lobe (lobe 1) and the 
three helices, helix3, helix4, and helix5, form the allosteric lobe (lobe 2). helix5 is attached to the hypervariable region (HVR) and contains multiple 
lipidation sites. RAS has four allosteric pocket, and the key residues lining these pockets are shown. (B) KRAS has a single lipidation (farnesylation); 
NRAS two lipid attachment points (one palmitoylation and one farnesylation), and HRAS three lipid attachment points (two palmitoylation and one 
farnesylation). Within brackets are the number of lipidation.
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observed while binding site 1 was not. Metal– cyclens stabilized 
the weak- effector binding state, and isothermal titration calorim-
etry showed that the RAS- binding domain of RAF kinase to RAS– 
GppNHp- wt (wt: wild type) was perturbed in the presence of either 
Zn2 +  or Cu2 +  cyclen [43]. These studies served as initial evidence for 
pockets p1 and p3 (Figure 17.2).

In 2012 and 2013, three independent studies reported allosteric 
binding pockets on the surface of RAS for the first time with desired 
functional consequences (Figure 17.2). Fesik’s group carried out an 
NMR- based fragment screening containing 11,000 fragments and 
identified about 140 fragments that bind the inactive GDP- bound 
state of KRAS [32]. A proprietary library obtained from ChemBridge, 
ChemDiv, and other sources was utilized. The fragment binding was 
in the range of 1– 2 mM and observed for G12D- KRAS, G12V- KRAS, 
and wild- type KRAS and HRAS [32]. Chemotypes, such as indoles, 

phenols, and sulphonamides, were identified from the screening. The 
fragment library was constructed utilizing the rule of three with mo-
lecular weight ≤300, c log P ≤ 3.0, ≤3 hydrogen bond donors, and 
≤4 rotatable bonds. Library was filtered for including only the sol-
uble compounds and fragments from known drug molecules but not 
including the reactive and poorly soluble fragments. The presence 
of a hydrogen bond donor such as – NH on the indole or the – OH 
on the phenol was reported important for binding (Figure 17.2). 
Substituents that occluded this hydrogen bond formation resulted 
in reduced binding affinity [32]. The binding pocket that was invis-
ible in the apo enzyme became prominent in the presence of selected 
fragments. It was shown that the triad- interacting partners of Tyr71 
(D54, R41, and S39] were perturbed and Met67 underwent a shift, 
thereby giving rise to slight movement (or changed conformation) 
of switch- 2 and making the binding pocket more ‘open’ for binding 

Figure 17.2. Blue box: Allosteric binding pockets on the surface of RAS. p1 or sw1/ sw2 pocket. Left: The position where arrows meet is a common 
hydrophobic binding pocket, and then the compound can either be extended towards sw1 or sw2 (orange and blue arrows) or points towards the 
outside, e.g. BI- 2852 compounds (dark blue arrow). Middle: pocket p2 or SII- P pocket as described by Shokat (Ostrem et al. [30]); the orange arrow 
shows the deeper pocket that is observed in the majority of compounds that bind in this region, such as MRTX894 (covalent) or MRTX1184 (non- 
covalent), as well as a shallow pocket that is nucleotide- specific and is shallower than that observed in 2C07 compounds (blue arrow). Red rugged 
arrow shows covalent linkage. Right: The pocket p3 that lies near the loop7 and helix3/ helix4/ helix5 of the region where the membrane anchor 
is positioned. Metal– cyclens are shown to bind this pocket. Orange box: The four initial studies that provided promising evidence towards the 
sw1/ sw2 and SII- P binding pockets and showed abrogation of either RAS– SOS or RAS– effector interactions as a consequence of the compound/ 
fragment binding. Dark green box: Compounds targeting the SII- P pocket with attached covalent warhead. Light green box: Compounds, peptides 
(KRpep- 2D), cross- over compounds (Ch- 1), and biologics- derived compounds (Abd- 7) for non- G12C cases. See the text for discussion and 
Figure 17.1 for structural element description.
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fragments. Primarily, it is the flip of Tyr71 away that opens the ligand 
binding site. Overlay of the X- ray structure of RAS bound to the com-
pound on the RAS– SOS complex suggested that the compound will 
likely inhibit their interaction. The functional relevance was reported 
from the SOS- mediated nucleotide exchange assay where unlabelled 
GDP was exchanged by BODIPY- GTP, and a decrease in the fluor-
escence was observed in the presence of selected analogues of the 
fragments [32]. Another study that appeared around the same time 
in 2012 was from Genentech in which Maurer et al. [29] performed 
an NMR- fragment screening using a 3,300- compound library where 
compounds were obtained from commercially available sources. The 
criteria for their selection were ≤16 heavy atoms, c log P ≤ 3, and 
no reactive functional groups. The CSPs of 25 compounds out of the 
total 240 primary hits mapped to a contiguous site, and these 25 frag-
ments were selected as confirmed hits. These hits contained aromatic 
heterocycles with fused rings, directly linked or linked via one or two 
linker atoms. The screenings were performed using the KRAS- G12D 
mutant (referred in the chapter as KRasm) with either GDP- bound or 
containing a mixture of GDP or GMppCp. All 25 hits showed CSPs 
for V8, T74/ G75 and L56/ D57, and additional regions around res-
idues, such as K5, L6, V7, I55, L56, and T74. One of the bound frag-
ments that was larger in size, DCAI, showed the perturbation of the 
downstream signalling and inhibited the SOS- mediated nucleotide 
exchange for RAS [29]. It blocked nucleotide exchange and released 
reactions with IC50 of 342 and 155 µM, respectively. DCAI was found 
to block the first phase of exchange reaction by preventing nucleo-
tide release from KRAS. Mechanistic exploration revealed that DCAI 
interferes with SOScat (catalytic domain of SOS) binding with KRAS, 
thereby preventing nucleotide exchange, and that the compounds did 
not affect the RAS– effector interactions (though their inhibitory ac-
tion in in vivo assays could not be ruled out). DCAI was tested both 
in the in vitro and in vivo assays [29]. The fragment- induced expan-
sion of the binding pocket was observed, and the breaking of the salt 
bridge between R41 and D54 was the key for blocking the RAS– SOS 
interaction. The bound site of DCAI on RAS did not overlay with 
the effector binding region and thus expected to not affect the RAS– 
effector interaction. In 2013, Shima et al. [31] identified a set of Kobe 
compounds and its analogues that were specific for MRAS- GTP 
with P40D mutation (MRAS with P40 renders it HRAS type) and 
also showed activity for KRAS- G12V- GppNHp bound. These com-
pounds were identified using an in silico screening of a library con-
taining 40,882 compounds against a high- resolution crystal structure 
of MRASP40D– GppNHp. A total of ~100 compounds were tested in 
the in vitro assays for their potential to inhibit the RAS– RAF inter-
action (HRAS– GTP and MRASP40D– GppNHp). Two compounds, 
Kobe0065 and Kobe2602, showed potent activity to competitively in-
hibit the RAS– effector interaction for HRAS- G12V mutant. Similar 
inhibition was observed for KRAS- G12V as well. The compound did 
not engage D54 that likely serves as the reason for observed differ-
ences in the inhibitory activities of Kobe compounds and Maurer’s 
DCAI compounds (Figure 17.2) [31].

17.3. Ras targeting: covalent inhibitors

Ostrem et al. showed the presence of an allosteric pocket that lie be-
tween switch- 2 and helix3 and that was specific to the GDP- bound 
G12C mutant of KRAS [30]. This was a breakthrough study that 

utilized the tethering approach [25]. Nucleophilic Cys at the 12th 
position in the G12C mutant of KRAS was harnessed to make irre-
versible covalent modification first via chemical modification using 
the disulphide library followed by the attachment of other carbon- 
based electrophiles, such as acrylamides and vinyl sulphonamides. 
Initially, a disulfide fragment- based screening was performed with 
a library containing 480 compounds against KRAS- G12C with 
GDP- bound state. Both vinyl sulphonamides and acrylamides per-
formed better with former than latter owing to its high reactivity. 
Different compounds induced shifts in the position of either switch- 
2 and switch- 1 (e.g. compounds 6 and 8 from Ostrem et al. [30]). 
This clearly showed that different fragments had potential to in-
duce different conformational changes in different regions of RAS. 
Compounds 8 and 12 were shown to shift the equilibrium towards 
the inactive GDP- bound KRAS- G12C and to abrogate RAS– RAF 
interaction in the G12C- specific cell lines [30]. This and several 
follow- up studies are among those hallmark studies that ignited the 
hope of drugging the undruggable RAS back again, and since that 
time we have indeed taken a leap forward [28,49– 51]. Several efforts 
were initiated to improve the first- generation compounds that were 
developed by Shokat’s group in 2013. For instance, to obtain binders 
with higher binding affinities and better cellular efficacy, such as 
from the first- generation compounds, the hydrophobic region near 
Met72 and the electrophile linker were optimized to achieve a rela-
tively superior analogue from the previously reported compound 12 
from Ostrem’s 2013 article [30] (Figure 17.2); in the biochemical as-
says, ARS- 853 engaged KRAS(G12C) and showed an improvement 
of 600- fold over compound 12 from Ostrem’s original article (Figure 

17.2). ARS- 853 blocked the SOS- catalyzed nucleotide exchange and 
did not bind the active state of RAS as the compound occupied the 
binding pocket where the γ- phosphate of GTP is positioned [50]. In 
2018, Janes et al. [49] published ARS- 1620 as a further improvement 
over ARS- 853, and the authors proved that their compound works 
under in vivo conditions by targeting the mutant KRAS [49] (Figure 

17.2). Then, Amgen and Mirati’s G12C- specific compounds were 
developed, i.e. AMG510 [52] and MRTX849 [53] (Figure 17.2). 
Another interesting strategy was proposed where crossover com-
pounds were obtained by merging PPI binders (that are inactive) 
and biologics- derived compounds (that are active) to create new 
and potent RAS inhibitors, for instance, Ch- 1, as shown in Figure 

17.2 [54].
While the majority of compounds were selective for inactive 

G12C mutant of KRAS, there are several other mutant KRAS forms 
that are involved in deadly cancer types, such as pancreatic and colo-
rectal cancers [11,28]. Mirati developed MRTX1133 that is specific 
for G12D and does not rely on the covalent modifications [55], and 
it has recently received IND clearance by US FDA enabling phase 1 
initiation for first- in- class oral KRAS- G12D- selective inhibitor. In 
addition, there are a number of studies with a similar pocket region 
(though not identical, e.g. see [56]) which could also be open in the 
active state of RAS, for instance, in G12D— though there are differ-
ences in the pocket region, i.e. inactive state G12C pockets are much 
deeper with a pronounced hydrophobic environment via V9 and 
M72 while those in the case of GTP- bound state have been reported 
to be more on the surface (Figure 17.2). 2C07 was the first report 
of a small- molecule binding to an active RAS state that inhibited 
the downstream signalling via the PI3K pathway [56]. A cyclic pep-
tide KRAS- pep2D was reported to bind similar regions spanning 
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switch- 2 and helix- 3 [56– 59]. KS- 58 was reported later to be more 
potent [60]. The exploration of the SII- P pocket of KRAS for other 
reversible inhibitors has been recently reported by Shokat [24], and 
another recent study presented a fragment optimization approach 
for targeting the SII- P pocket to obtain reversible inhibitors [61]. 
The BI- 2852 compound was reported as a high nanomolar binder 
and a tool compound for the sw1/ sw2 pocket region as well as a vi-
able option for targeting other mutants [42]. The progress on the 
covalent inhibitor design and mechanism has been clearly summar-
ized by the leaders in the group in a number of excellent articles 
[27,28].

Studies worth mentioning here are those that were reported in 
late 1990s with collaborative efforts of Schering- Plough Research 
Institute and Agouron Pharmaceuticals [62,63]. Utilizing the 
NMR spectroscopy, spectroscopy- derived NOE restraints, mo-
lecular modelling, and Monte Carlo based refinements, Taveras 
et al. reported an allosteric pocket that extended in the switch- 2 
pocket of G12V GDP- bound HRAS [62]. The compound SCH- 
54292 showed greater solubility over others with an IC50 of 0.7 µM. 
Though the attempts made by using X- ray crystallography were 
failed, but the structural model obtained using Monte Carlo re-
finements showed an allosteric pocket that did not overlap with 
the nucleotide- binding site but rather extended below to lie be-
tween switch- 2 and helix3 (similar to the SII- P or p2 pocket; 
Figure 17.2). The cellular effects were tested on NGF- induced 
neurite outgrowth of PC12 cells that have been linked to the RAS 
nucleotide exchange. One of the analogues of SCH- 54292 showed 
inhibition of NGF- stimulated neurite outgrowth in the 10– 20 µM 
range. However, SCH- 54292 did not show cellular effects at this 
concentration, but other concentrations were not tested [62]. The 
study found that the binding of this inhibitor was enhanced at low 
Mg2 +  concentrations. The answer to this question was addressed in 
a follow- up study where it was found that the low Mg2 +  concentra-
tion stabilizes a new conformational state of the RAS [63]. Upon 
addition of excess Mg2+ , however, the chemical shifts reverted back 
to the regular conformational state. Therefore, the study showed 
that there are two conformational states of RAS and the intercon-
version occurs between them. The regions that showed major dif-
ferences between the two states lie at the switch regions and near 
the nucleotide- binding site. The binding pocket of SCH- 54292 
was reported to be formed by similar residues as the covalent and 

non- covalent binders that bind the SII- P pocket (Figure 17.2).   
The reported residues were Gln99, Ile100, Val108, Met72, Tyr96, 
Ala11, Lys16, Gly12, Gly60, and Gln61. The naphthyl of the SCH- 
54292 was found to lie in a hydrophobic pocket formed by Met72, 
Gln99, Ile100, and Val103, and the phenol lie near Tyr96, Lys16, 
Gly60, and Gln61. Lys16 was proposed to be engaging the carbonyl 
of the compound.

17.4. RAS targeting: antibodies/ monobodies

Antibody designs or mini- proteins are another area of research in RAS 
drug design and development, and a lot of effort was devoted by several 
different groups in this direction, for instance, [64– 70] (Table 17.1). 
Recently reported R15 monobody trapped RAS in its apo state and ef-
fectively inhibited the interaction with the downstream binding part-
ners [65]. In addition, the binding with monobody trapped multiple 
oncogenic mutants— suggesting the immense therapeutic potential 
for targeting the apo state of RAS. The mechanism of inhibition was 
shown to be a competition of R15 with GEFs. Using in vitro and in vivo 
studies, another pan- Ras iMab, inRas37, was identified that blocks the 
RAS– effector interaction and inhibits the growth of mutant form of 
RAS [71]. In this case, antibodies do not work in isolation, but com-
binations with other known inhibitors were tested and shown to work 
effectively. For instance, RAS mutants with concurrent PI3K mutations 
could work better by utilizing hybrid therapy, i.e. combining inRas37 
and PI3K inhibitors; another protein YAP1 was found elevated in 
mutant- RAS- dependent colorectal tumours where combined therapy 
with inRas37 and Yap1 inhibitors alleviated the problem [71,72]. 
12VC1 monobody was reported to be selective for the mutant RAS at 
the 12th position with binding affinity for G12C mutant being the most 
effective [70]. The X- ray structure was obtained for 12VC1 with HRAS- 
G12C mutant bound to GTPγS. The binding pocket was shallow near 
the nucleotide- binding site and engaged D33 from switch- 1 and nu-
cleotide, but the overall binding interface between 12VC1 and RAS was 
extended in the entire switch- 1 and switch- 2 region going downwards 
towards the β- strands. Proteasomal degradation is an emerging prom-
ising area for degrading oncogenic RAS [73]. 12VC1 monobody and 
its variants were used as a warhead and fused with the E3 ubiquitin 
ligase VHL and shown to degrade KRAS(G12C) and KRAS (G12V) 
[70]. Affimers are another promising biologics given the area that they 

Table 17.1. RAS- antibody- based selected studies.

Antibody design Reference

Intracellular antibody capture technology  [68,69]

NS1 monobody bound to the α4– α5 interface, binding region known [67]

RT11- 1 (first- generation) and Ras37 (second- generation) pan RAS monobody, block RAS– effector interactions, and binding  
site is not reported

[71,72]

12VC1 monobody, specific for active state of mutant RAS (12th position mutants such as G12C/ G12V), binding site is known   
in complex with 12VC1+ HRAS(G12C)GTPγS, and is a shallow pocket while K6 binds in the sw1/ sw2 pocket

[70]

K3 and K6 affimers, binding pocket is known for both, and K3 affimer binds in the sw2/ α3 pocket while k6 binds in the  
sw1/ sw2 pocket

[64]

Jam- 20 is a pan- RAS monobody that binds in the RAS switch region and blocks RAS– effector interactions [75]

R15 monobody, selective for apo state of RAS, competes with GEF for binding RAS, and could either bind directly  
at the switch region or at an allostreric site

[65]
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cover the surface of RAS [64]. Two affimers K3 and K6 were reported 
by a group in the United Kingdom [64]. K6 binds near the switch- 1 and 
switch- 2 interface, and K3 affimer binds between switch- 2 and helix- 3. 
K3 affimer demonstrated isoform specificity with the most effective in-
hibition of KRAS (144 ± 94 nM) followed by HRAS (2585 ± 335 nM), 
but IC50 is not obtainable for NRAS. NS1 monobody was found to bind 
at the allosteric lobe of RAS, i.e. the interface of helix- 4 and helix- 5 [67]. 
A group in the United Kingdom developed an effective proteolytic 
affinity- directed protein missile (AdPROM) that led to efficient deg-
radation of endogenous target proteins [74]. They attached AdPROM 
to RAS- specific NS1 monobody and observed that RAS can undergo 
protein degradation using NS1 monobody as the warhead attached to 
VHL showed that RAS could be degraded. Another antibody is iden-
tified as JAM20 that is a pan- RAS monobody and targets the sw1/ sw2 
pocket [75]. Terrence Rabbits group identified the anti- RAS antibody 
that binds near the switch region and prevented the interaction of RAS 
with its downstream effectors [69] using the antibody- derived com-
pound technology. The crystal structure showed that the antibody cov-
ered the same interface where RAS downstream effectors bind [69]. 
The pharmacophore generated from this antibody, a small- molecule 
Abd- 7, was shown to inhibit the downstream signalling of RAS [76] 
(see Figure 17.2).

17.5. RAS targeting: molecular simulations 
to identify allosteric pockets and investigate 
water dynamics for structure- based 
drug discovery

Computational studies have played a pivotal role and span from 
predicting allosteric binding pockets in KRAS to understanding 
the conformational dynamics of its ligand- bound forms (such as 
AMG510 and ARS- 893) and predicting kinetics. In 2011, a com-
bined molecular dynamics simulation and bioinformatic approach 
predicted novel allosteric sites on the surface of RAS enzyme [45]. 
In this study, the conformational flexibility of the protein was taken 
into consideration by the generation of MD- derived ensembles 
and conformationally distinct X- ray structures. Next, a consensus 

obtained from multiple pocket identification methods (fragment- 
based: FTMAP; grid- based: AutoLigand; ligand- based: BlindDock) 
revealed a total of four novel allosteric pockets identified on the sur-
face of RAS. No single method predicted all four pockets, thereby 
further emphasizing the importance of a consensus approach de-
rived by using a variety of methodologies. One of the pockets, how-
ever, was identified by all three methods and this pocket was located 
near the membrane- proximal C- terminus (termed as pocket p3). The 
p3 pocket is formed by loop7, loop9, and helix5. These pockets were 
subjected to virtual screening against the ZINC and NCI compound 
libraries, and the cellular assays showed that the chosen binders in-
hibit the downstream signalling of the RAS pathway. Interestingly, the 
majority of the chosen experimental targets were predicted to bind 
the p3 pocket. Utilizing a combined approach of MD/ computational 
methods and cell- based assays, this study showed the presence of four 
druggable allosteric pocket on the surface of RAS [45] and suggested 
that the p3 pocket could be subdivided into two regions, p3a and p3b.

There are several excellent studies reported in the literature that 
have applied mixed- solvent or probe- based MD on challenging drug 
targets, and here I focus on the one applied on RAS [77– 80]. A com-
putational equivalent of multi- solvent crystallography termed as 
probe- based molecular dynamics (pMD) has been applied to KRAS 
[41]. pMD is advantageous because the probe binding occurs when 
the protein is in motion. It is a grid- based approach where probe 
occupancies are calculated for the cubic grids referred to as voxels. 
The time- averaged number density per voxel is used to calculate the 
grid- binding free energy (ΔGgrid). Several careful filtering criteria 
are applied to ΔGgrid for every voxel, and the resulting interaction 
spots are further clustered based upon defined rules. These clustered 
interaction spots are utilized to estimate the binding affinities (Kd) 
and the druggability of distinct binding pockets. pMD predicted 
five druggable sites and three sub- sites on the surface of KRAS with 
binding affinities ranging from high micromolar to low millimolar 
[41]. These druggable sites were found to be in excellent agreement 
with the previously reported allosteric ligand- binding sites in RAS 
proteins, pockets p1, p2, p3, and p4, as described in Section 17.2. An 
excellent agreement between the pMD- derived and experimentally 
observed Kd values were observed as shown in Figure 17.3A. pMD 

Figure 17.3. (A) The comparison of pMD- derived (probe- based molecular dynamics simulations) Kd values with experimentally determined ranges 
of fragments binding to RAS. (B) Selected fragments with their experimental Kd values.
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estimates are more comparable with the fragment- bound RAS; 
therefore, I focused on a few selected fragment- bound studies of 
KRAS to convey the readers that pMD is an efficient technique to 
estimate Kd values. Some fragments are highlighted in Figure 17.3B. 
The p1 pocket appears to be in an excellent agreement between the 
MD- derived and experimentally observed Kd values (Figure 17.3). 
Note that while p2 is the most studied pocket currently, this is largely 
true in the context of Cys12 or covalently attached compounds to 
the Cys12 of KRAS- G12C mutant. In contrast, p1 pockets bound to 
several fragments/ compounds are all non- covalent. pMD- derived 
results pinpointed a druggable site and a small sub- site comprising 
the p1 pocket; while the sub- site had an estimated Kd value of 55 
mM, the druggable site estimated Kd was 2 mM. While averaging 
the two resulted in a combined Kd of 0.12 mM, but in Figure 17.3A 
a predicted Kd of 2 mM was used for the druggable binding pocket. 
This is because the fragment- based studies reported a deeper hydro-
phobic cavity in the p1 pocket combined with a shallow cleft formed 
by adjacent residues in switch1, E37, and D38 [29,31,32], and a Kd 
of 2 mM is estimated for the hydrophobic cavity of p1. p2 pocket’s 
pMD- derived Kd and its comparison with experiments could not 
be performed by Prakash et al. [41], but with the recently reported 
reversible covalent inhibitor design approach from the Fesik group 
this could be achieved now. This is because, in addition to the S39- 
site modified fragment screen, Broker et al. [61] also reported frag-
ments in G12V- KRAS without any other modifications in the switch 
region (see Figure 17.3B). While earlier studies that supported 
the p3 binding pockets were based upon metal– cyclens [43,44], 
rigorous computational work including molecular dynamics simu-
lations combined with virtual screening led to the identification of 
two compounds that bind the p3 pocket. Extensive experimental 
characterization for these compounds is reported in the published 
studies, as discussed below, and one patent that appears to be the first 
patent targeting this novel pocket. These compounds are shown to 
interfere either with the calmodulin binding with KRAS- G12V [81] 
or are shown to impair the interaction of KRAS- G12D with BRAF, 
thereby preventing further downstream signalling [82]. Feng et al. 
performed a virtual screen against the previously reported p3 pocket 
and found 77 promising candidates. Several biochemical screening 
approaches, such as microscale thermophoresis, thermal- shift assay, 
NMR line broadening, and HSQC NMR spectroscopy, were ap-
plied to the promising candidates and KAL- 21404358 was found 
as the most favourable compound showing positive results across 
all biochemical assays. Abuasaker et al. reported compound P14B 
to increase the apoptosis in DLD- 1 cells that harbour an oncogenic 
allele, thereby making these compounds and this binding site im-
portant. The binding affinities of these p3 binders were relatively low 
as compared to the p2/ p1 binders reported in the literature which 
is interesting given this pocket is proximal to the membrane. KAL- 
21404358 was shown to have a variable binding affinity for different 
nucleotide states that ranged from 88 to 146 μM, whereas P14B was 
reported to be even lower, i.e. 32.8 μM. Differences in the interacting 
residues forming the binding pocket may be responsible for the 
observed differences, for instance, while KAL’s binding pocket is 
formed by R97, D105, S106, E107, D108, V109, P110, M111, W137, 
G138, I139, E162, K165, and H166, the P14B was situated a bit more 
proximal to the HVR with additional contributions from the res-
idues K169 and E168. Additionally, latter study by Abusaker et al. 
showed two different binding modes of the same compound with 

significant differences in the pocket environment. Similar differ-
ences in the p3 pocket have been reported previously by Grant et al. 
[45] where the p3 pocket was predicted to occur as p3a and p3b. 
Prior to 2019, the evidence for the p3 pocket was metal– cyclens 
alone (Prakash et al, 2015), but since they will be much closer to the 
fragments as compared to the full compounds (KAL- 21404358 and 
P14), the cyclens were used to compare the pMD- derived Kd with 
the experimentally reported values (Figure 17.3A). The p4 pocket is 
the one where metal– cyclen binding has been shown and no crystal 
structure is available, but the Kd value was obtained from the NMR 
study as shown in Figure 17.3A [46]. The pMD study also showed 
immense potential in predicting the protein– protein interaction 
surfaces as discussed by Prakash et al.

In any drug- discovery campaign, displacing unfavourable water 
molecules is a standard technique used for enhancing binding af-
finity. Given the water dynamics, specifically if the binding pocket 
is lined by flexible region such as in the case of RAS, these predic-
tions become very challenging. For KRAS Q61H mutant, a belt of 
six water molecules with high residence times obtained from an ex-
tensive molecular dynamics simulation approach has been reported 
that likely connects the distant nucleotide- binding pocket region 
with the membrane- proximal allosteric lobe [83]. This study showed 
that the perturbation of key water molecules has potential to modu-
late the conformational state of RAS. Of all, perturbation in W4 led 
to major shifts in the conformational state of the protein with W4 
acting more like a part of the protein playing functional role. W3, 
on the other hand, was observed to be less affected by the changes in 
the dynamics of even switch- 2 to which it directly associates (W3 is 
associated with Thr58 and Gly10). A computational study published 
afterwards determined a number of conserved water sites on RAS, 
and their water # 307, 302, and 306 were identical to W1, W3, and 
W6 (Figure 17.4). Quite interestingly, a recent study showed that 
water coordinating Gly10 and Thr58 (similar to W3 from Prakash 
et al. [83] and W302 from Kearney et al. [84]) stays conserved in 
the majority of X- ray structures of G12C- KRAS bound with non- 
covalent compounds in the p2 pocket (or SII- P pocket), and when-
ever it is replaced by compounds, the observed effect is suboptimal 
[85]. It is interesting to observe that this water remains intact though 
the Watermap predictions indicated otherwise [85]. Khrenova 
et al. combined the molecular dynamics and QM/ MM approach 
and demonstrated an excellent agreement between their predicted 
Kinact and Ki values and the experimental values for the KRAS- G12C 

Figure 17.4. A network of conserved and high- residence water 
molecules connecting different regions of RAS as predicted from 
computational studies.
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complex with ARS- 853. Their study is a first of its kind that util-
izes the computational simulations for the calculation of Kinact and 
Ki values for covalent inhibitor bound protein complexes as applied 
to KRAS.

17.6.  Conclusions

Computational approaches, such as molecular dynamics simula-
tions, virtual screening approaches, molecular docking, and others, 
have immense power in exploring mechanisms, generating mul-
tiple substates, predicting kinetics, to name a few, and hence are 
useful contributors in the drug- discovery processes [13,86– 89]. MD 
studies with covalently bound AMG510 with KRAS and ARS- 853 
provided insights into the mechanisms of inhibitor interaction and 
the conformational dynamics of the switch regions in the presence 
of covalent inhibitors explaining the dependence of the rate con-
stant of covalent complex formation on the inhibitor’s concentra-
tion, and showed that different oxidation states of Cys12 stabilize 
KRAS- G12C in G12D mutant- specific conformation, among others 
[86,90,91]. MD simulations provide information on atomic details 
of protein– drug interactions, predict cryptic allosteric pockets, 
provide information on the kinetics, and may provide mechanistic 
explanation for observations to progress the drug design process. 
The role of membrane in RAS biology is well known, and there 
have been several computational and experimental studies that 
are available in the literature for interested readers on this topic 
[13,34,37,40,87,88,92– 102]. Studies have reported the Kd of RAS– 
membrane association, for instance, using surface plasmon reson-
ance and neutron reflectometry. Van et al. [101] showed that KRAS 
preferential association with anionic model membranes (a 70:30 
POPC:POPS composition) had a dissociation constant of Kd ≈ 1.5 
μM. The pMD approach predicted the druggable binding pockets 
on the surface of RAS, and the predicted Kd values were found to 
be in good agreement with the known allosteric pockets. The pMD 
approach was further extended to pMD membrane where the 
probe- based MD was carried out in the presence of membrane for 

a membrane- bound RAS complex. Although the determination of 
Kd values, specifically for pockets proximal to membrane, could be a 
bit challenging, it indicated significant differences in binding pocket 
dynamics when compared with solution pMD [103]. MD studies 
have shown a direct and transient interaction of its G domain with 
the membrane that may have potential for novel drug- discovery ap-
proaches (Figure 17.5). The membrane– RAS interface for drug de-
sign purposes has been explored by Ikura’s group to understand the 
mechanism of action of compounds that were found to be active in 
the presence of phospholipids developed by Novartis [104,105]. In 
addition, MD studies have indicated that the direct and transient 
interaction of downstream players of RAS, such as RAF kinase with 
the membrane, may hold functional relevance during RAF activa-
tion that is likely generalizable to a number of kinases [36,99]. Due 
to multiple complexities that underlie the membrane interactions of 
RAS and the membrane– RAS interface, it requires further explor-
ation and is an active area of research by several eminent scientists. 
Year 2010 onwards there have been an immense progress in the field 
of RAS drug discovery that eventually led to the identification of the 
first FDA- approved drug in 2021. Combined contributions from a 
variety of computational and experimental approaches have encour-
aged towards this success and will continue to do so in the future.
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The power of connection— enabling 
collaborative, multimodal data analysis  
at petabyte scale to advance  
understanding of oncology
Brandi N. Davis- Dusenbery, Cera R. Fisher, Rowan Beck, and Zelia F. Worman

18.1.  Introduction

Rapid access to large quantities of diverse and high- quality bio-
medical data is transforming the research enterprise. This evolution 
has been particularly notable in the field of oncology and has been 
fuelled by the success of translating new discoveries into improve-
ments in patient care. Today, researchers are routinely accessing and 
analysing multimodal datasets collected from tens of thousands of 
patients and representing petabytes of data. This scale is made pos-
sible by cloud- based, collaborative environments that enable the 
engagement of interdisciplinary groups including bench biologists, 
computer scientists, mathematicians, clinicians, and others to reveal 
novel insights from large, complex datasets.

Some of the most visible examples of the increased scale of 
oncology research are the large consortia studies that bring to-
gether people, data, and ideas across geographies and disciplines. 
For example, the landmark paper highlighting the findings of the 
International Cancer Genome Consortium (ICGC) included more 
than 1,300 authors from research institutions throughout the world 
[1] . The foundation of this work was the unified analysis of whole 
genome sequencing from 2,658 tumour- normal pairs across 38 
tumour types. More than 100 people were involved in the orches-
tration of three computational workflows across multiple cloud 
environments. This harmonization required more than a year to 
complete but provided the foundation for international scientists 
to make practice- changing discoveries. Despite the breadth of this 
study, approximately 5% of the analysed samples did not contain a 
known driver mutation [1], suggesting that additional large studies 
are required to understand the full repertoire of cancer drivers. 
Fortunately, these future studies can take advantage of the signifi-
cant advances in scalability and interoperability that would enable 
the completion of a similar project in just a few weeks.

18.2. Diverse data sources to support 
biomedical discovery

Biomedical data is generated from a wide range of sources and 
each imposes unique properties that shape how the data can be ef-
fectively used to drive discovery. For the purposes of this discus-
sion, we define three major sources based on the origination of 
the data: Clinical Data (also known as Real World Data or RWD), 
Investigator- Initiated Studies, and Consortia- Initiated Studies. We 
have defined these primarily based on the origination of the data; 
however, they are neither exhaustive nor exclusive. For example, 
some Investigator- Initiated Studies may include Clinical Data and/ 
or aggregations of Consortia Initiated- Studies. Each data source has 
a unique profile that shapes how the data can be effectively used to 
drive discovery (see Table 18.1). In the following sections, we dive 
more deeply into each data source and highlight opportunities for 
researchers to access it.

18.2.1. Real World Data

Data generated during the course of clinical care, also called Real 
World Data, has attracted significant interest over the past years due 
to the massive volume of data and the potential to reveal insights 
into vast populations of individuals. RWD includes the data derived 
from electronic medical records, billing claims, registries, patient 
surveys, or wearable devices [2] . The use of RWD is particularly ex-
citing as it relates to addressing clinical and policy questions that 
may not be feasible to address using traditional clinical trials ap-
proaches. For example, significant progress has been made in iden-
tifying analytical techniques whereby trial treatment arms may be 
compared to synthetic control arms composed of RWD from a com-
parative population [3]. This can reduce the number of participants 
in a trial thus reducing costs and increasing speed. While the cost 
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to generate RWD is low because it is being generated as part of care, 
the lack of standardization and specificity make deriving insights 
from RWD challenging. Furthermore, the highly personal nature 
of clinical data and the evolving landscape of patient consent mean 
that researcher access to that data is frequently extremely limited. 
Advances in tokenization, aggregation, and anonymization are be-
ginning to remove these barriers, but further implementations are 
still needed to enable research [4]. Furthermore, RWD is increas-
ingly being incorporated into Consortia- Initiated studies, which 
currently represent the most accessible way for most researchers to 
compliantly work with that data.

18.2.2. Investigator- Initiated Studies

A second data stream, referred to here as Investigator- Initiated 
studies, represents data collected through the efforts of a single or 
small number of collaborating laboratories. That data may include 
profiling or perturbation studies and is frequently oriented to a spe-
cific hypothesis. While generated at a lower velocity and volume 
than RWD, these studies collectively represent petabytes of data 
that is readily available to researchers for reuse. Continued efforts 
towards encouraging data sharing have improved not only the acces-
sibility of that data but also the quality of submissions. For example, 
the revised US National Institute of Health (NIH) Data Management 
and Sharing Policy [5] , as well as many scientific journals, mandate 
sharing of high- throughput data generated in the course of an ana-
lysis. There remains high variability across studies; however, con-
tinued attention on valuing data sharing aligned with the principles 
of Findable, Accessible, Interoperable, and Reusable (FAIR) data has 
increased the potential for secondary data use.

Increasingly, data repositories serve to convene researchers with a 
shared research focus across multiple high- throughput data sources, 
such as genomics, proteomics, imaging, and sensor data. The primary 
repository for sharing non- human, non- identifiable, or aggregated 
sequencing data is the Sequence Read Archive that as of 2020 cata-
logued more than 9 million records and 12 petabytes of data [6,7].

18.2.3. Consortia- Initiated Data

This leads us to the final primary data stream, Consortia- Initiated 
data. Adoption of robust data sharing and collaboration practices 
represents a relatively recent phenomenon in the biological sciences 

particularly in contrast to fields, such as physics, astronomy, and at-
mospheric sciences. While international collaborations like ICGC 
(discussed in Section 18.1) have been successful in bringing together 
existing datasets, generating new data under uniform methods can 
be costly and requires concerted funding, typically from govern-
ments or not- for- profit organizations [8] . These investments have 
proven transformative in our understanding of health and disease. 
For example, the analysis of longitudinal clinical data from partici-
pants in the Framingham Heart Study established obesity, increased 
blood cholesterol, and blood pressure as major contributors to car-
diovascular disease [9]. Managing these risk factors is now a central 
component of standard of care, and over the past 50 years, the rate of 
heart disease has decreased nearly 70% in both men and women [10].

Just as the Framingham Heart Study provided the spark for long- 
term epidemiological studies, The Cancer Genome Atlas (TCGA) 
demonstrated the power of combining multiple high- throughput 
data modalities with uniform clinical data elements. TCGA was 
originally conceived and launched in 2005, just two years after the 
completion of the Human Genome Project. Over the next 12 years, 
samples from 11,000 patients with 33 distinct tumour types would be 
analysed across multiple modalities as part of the TCGA program. 
In all, more than 2.5 petabytes of data would be generated as part 
of TCGA. The primary analysis of that data transformed our under-
standing of molecular classification, oncogenic processes, and signal-
ling pathways in cancer [11– 13]. Importantly, that data contributed 
to a dramatic shift in clinical cancer care with molecular profiling 
increasingly serving a central role in determining treatment avenues, 
particularly in some cancer types such as glioma [14,15].

The impact of TCGA and other Consortia- Initiated studies ex-
tends far beyond the primary landmark papers describing the data 
generation. Indeed, because these datasets are typically generated 
with the express purpose of reuse, they represent a rich resource for 
quickly developing and testing new hypotheses. Despite the conclu-
sion of TCGA in 2018, the number of papers including references to 
TCGA in either title or abstract has continued to increase years later, 
see Figure 18.1. These nearly 27,000 manuscripts represent just a 
fraction of the studies that have been informed by this incredible re-
source, and novel approaches powered by cloud computing are crit-
ical to ensuring that all researchers can effectively access and analyse 
resources like TCGA.

Table 18.1. Biomedical data streams and characteristics.

Clinical Data (RWD) Investigator Initiated Consortia Initiated

Volumea High Moderate Low

Velocityb Very high High/ moderate Low

Cost to generatec Low Moderate High

Standardization and QCd Low Moderate High

Specificitye Low Variable Low/ moderate

FAIR- nessf Low Variable Very high

aVolume of data generation: how much total data is generated per unit time.
bVelocity of data generation: how quickly is new data added.
cCost to generate: what is the investment required to create the data.
dStandardization and QC: how uniform is the data.
eSpecificity: was the data generated to test or refute a specific hypothesis.
fFAIR- ness: a compound measure evaluating Findability, Accessibility, Interoperability, and Reusability.
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The successes of TCGA and other large- scale studies have driven 
massive investment into coordinating large research efforts that 
ultimately generate large volumes of high impact data. These in-
vestments accelerated in response to the coronavirus disease 2019 

crisis with more than $1 Billion invested in projects including Data 
Coordinating Centers (DCCs) in 2020 by the National Institutes 
of Health alone. As shown in Figure 18.2, while the total funding 
for DCCs has slightly decreased since 2020, the number of DCCs 

Figure 18.1. Publications enabled by The Cancer Genome Atlas (TCGA) dataset. TCGA was initiated in 2005, completed the bulk of its data 
production by 2010, and officially came to an end in 2018. Since it was first conceived of, a total of 26,686 publications referencing it have been 
indexed in PubMed. The bar plot shows the increase in publications referencing TCGA since 2005. The most recent completed year at the time 
of writing, 2022, observed 7,734 publications. The steep rate of increase even after 2018 demonstrates that this resource continues to provide 
benefits to researchers and the global health community. Data Source: PubMed (https:// pub med.ncbi.nlm.nih.gov/ ) using the following advanced 
search pattern: ((TCGA data*[Title/ Abstract]) OR (Cancer Genome Atlas[Title/ Abstract])) AND ((“2004/ 01/ 01”[Date -  Publication]: “3000”[Date -  
Publication]))(TCGA data*[Title/ Abstract]) OR (Cancer Genome Atlas[Title/ Abstract]).

Figure 18.2. Increase in DCC projects compared to funding since 1984. The number of Data Coordination projects approved for funding by all NIH 
agencies since 1984 are represented by the blue bar plots and the right- hand y- axis. The black line segment plot tracks the aggregated funding for these 
projects against the left- hand y- axis in US dollars. The number of projects has steadily increased since 2007 as an increased awareness of large data- 
driven projects was recognized across the NIH. The rate of funding has approximately tracked with the total number of projects with a significant peak in 
2020 likely related to SARS- CoV- 
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is steadily growing, illustrating the continued investment in these 
activities by the NIH.

18.3. Key characteristics of platforms 
that can accelerate effective 
data analysis

As academic, government, not- for- profit, and private data gener-
ating programs increase in size and complexity, it can become more 
difficult for data to be effectively accessed by the research commu-
nity or for it to be combined with other data. Without dedicated 
focus, rich data sources can become data silos that significantly re-
duce their potential. Fortunately, emergent themes are helping to re-
duce data silos and accelerate effective data analysis.

18.3.1. Cloud- based data

First, the increased adoption of cloud computing allows a single copy 
of data to be accessed and analysed by researchers across the world 
[16– 20]. This dramatically reduces data storage costs and enables 
researchers from all institutions to equitably access data generated 
through all of the data streams discussed above. For example, the 
complete repository of TCGA represents more than 2.5 petabytes 
of data, which at 2022 list prices would cost approximately $750,000 
annually to maintain in cloud storage [21]. Based on conservative 
estimates, streamlining the availability of the data via a single cloud- 
based copy provides more than 100- fold cost savings in aggregate 
(see Table 18.2). Of course, many researchers may use local storage 
or high- performance clusters at their university. Because the costs 
of purchasing and maintaining these resources are typically covered 
in indirect fees, the true cost is difficult to determine though un-
doubtedly a single cloud- based copy provides dramatic cost savings 
in aggregate.

18.3.2. Interoperability and APIs

A second emergent theme supporting the reduction of data silos is 
the increased focus on interoperability standards and Application 
Programming Interfaces (APIs). The leading organization advancing 

this focus is the Global Alliance for Genomics and Health (GA4GH). 
Composed of more than 650 organizations from 56 different coun-
tries, the GA4GH community collaborates to develop frameworks 
and standards to support the responsible, voluntary, and secure 
sharing of genomic and health- related data [22]. A critical enabler of 
progress by the GA4GH community has been the focus on ‘driver pro-
jects’ that have defined clear use cases and requirements for interoper-
ability challenges. This focus has ensured that the community stays 
oriented towards addressing the problems faced by researchers today 
rather than creating complex standards that address hypothetical fu-
ture possibilities. Particularly, important and well- adopted standards 
for data interoperability include the Data Repository Service (DRS) 
and GA4GH Passports and Visas [23,24]. DRS allows data consumers 
to access authorized datasets regardless of the repository in which 
they are stored or managed while passports and visas provide a pro-
grammatic approach to support robust data access policies and gov-
ernance systems. The NIH Cloud Platform Interoperability (NCPI) 
effort has successfully leveraged these APIs and other standards to 
support federated data exchange across the National Cancer Institute’s 
Cancer Research Data Commons, the National Heart Lung and Blood 
Institute’s BioData Catalyst, the National Human Genome Research 
Institute’s Anvil Platform, and the Common Fund’s Kids First Data 
Resource Center. Similar to GA4GH, the NCPI has focused on using 
real- world scientific use cases as a driver to prioritize development to 
support interoperability.

18.3.3. Data security

In addition to supporting access and interoperability, it is of course 
absolutely critical that data is housed in highly secure and compliant 
environments that enforce patient consent [25– 27]. As cloud infra-
structures have grown in maturity, there is a growing agreement that 
cloud- based storage represents a more secure storage solution than 
previous paradigms in which individual investigators would down-
load copies of the data for use locally. By maintaining a single copy of 
the primary data, institutions are able to readily trace data access and 
prevent access by unapproved individuals. Audit trails allow further 
understanding of researcher utilization as well as the detection of 
any anomalous events. In many cases, the same technology that pro-
vides deep auditability of data use can also facilitate reproducibility 
of computational analyses.

18.3.4. Analytical reproducibility

Challenges in reproducing and replicating the outcomes of bio-
medical research have plagued the biomedical field. Indeed, a 2016 
survey revealed that more than 70% of researchers have tried and 
failed to reproduce other scientists’ results and more than 50% could 
not reproduce their own experiments [28]. While the complexity of 
biological systems can introduce unknown variables into clinical 
and wet- lab experiments, most researchers agree that the analysis 
of the same data with the same computational tools should yield 
the same results. However, without focus or tooling, this seemingly 
simple expectation has proved quite challenging [29]. Tool versions 
and reference data are evolving rapidly, and most computational 
biology algorithms will have tens of different parameters that are set 
at runtime and typically not well reported in published studies.

When working with biomedical data, researchers are typic-
ally faced with two primary types of tasks, each with differing re-
quirements and reproducibility considerations. Batch analyses are 

Table 18.2. Evaluation of the cost savings of accessing a single 
copy instead of individual investigators independently storing 
the data.

Individual investigators 
store a fraction of data  
for one year

Centralized data 
storage for three 
years

Cost of 1 copy of 
TCGA/ yr

$750,000 $750,000

Fractional copies 26,000a × 10%b =  2,600 1

Years storage 1.5c × 30%d =  0.45 10e

Total cost of storage $877M $7.5M

Notes: We conservatively estimate that each of the 26,000 +  individual manuscripts 
published to date using TCGA dataa required access to at least 10%b of the data 
and spanned 18 monthsc from initiation to publication. Cost savvy investigators 
may download, process, and then delete data throughout the period of manuscript 
preparation, so we estimate the required data storage time of 30%d. In contrast, a 
single copy would need to be available over the entire period of investigation for all 
authors, so we use an estimate of 10 years to accommodate the majority of published 
papers to datee.
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typically computationally intensive, multi- step processes that re-
duce primary data into harmonized information. For example, 
quality control, read alignment, and somatic variant call for matched 
tumour- normal whole genome sequencing experiments. In contrast, 
interactive analysis typically uses scripting, statistical, and other it-
erative methods to transform information into insights. Ultimately, 
combining these insights leads to an impact on patient care through 
new practice guidelines, new therapies, or preventative measures. 
Considering this ultimate goal, it is critical that computational ana-
lyses are performed in a way that makes reproducing them easy.

The development of Docker and other containerization strat-
egies has significantly streamlined the distribution of compiled 
algorithms that can run in a reproducible manner across diverse 
computational environments [30,31]. Containerization enables 
all code dependencies to be packaged together and executed in 
an isolated manner on top of the operating system’s kernel. This 
means that an algorithm can run exactly the same way across dif-
ferent cloud providers or on- prem hardware. It also avoids the 
frequently frustrating and error- prone process of compiling com-
putational tools.

In addition to containerization, standardized frameworks for 
describing computational executions are necessary to support the 
reproducibility of analysis. There are numerous frameworks avail-
able for the description and automation of computational tasks, and 
the bioinformatics community has developed or tailored these to 
address the specific use cases faced by researchers [32]. Common 
workflow language (CWL) [33], workflow description language 
(WDL) [34], and Nexflow [35] currently represent the most com-
monly used frameworks. Unsurprisingly, given the diversity of the 
bioinformatics community, these frameworks provide different 
user experiences and features that influence their application 
under different circumstances. Both WDL and Nextflow repre-
sent domain- specific languages with a single primary open- source 
implementation. Both languages enable a rapid development of 
complex bioinformatics workflows, particularly for sophisticated 
users. In contrast, CWL represents a community- defined speci-
fication with multiple execution engines. This approach enables 
continued innovation and ensures portability across compliant en-
gines. In particular, CWL enables a detailed description of tool in-
puts, parameters, as well as computational requirements that can 

be dynamically determined based on the specific run. This allows 
tool developers to create highly composable and computationally 
optimized tools that can then be reused and remixed by others 
in the community, including through the use of visual interfaces 
Figure 18.3. The comprehensive, human-  and machine- readable 
description provided by CWL is utilized by the BioCompute Object 
standard that is being developed as a means to efficiently submit de-
scriptions of fully reproducible experiments to regulatory agencies 
like the FDA [36,37].

In contrast to batch analysis, interactive analysis is, by defin-
ition, a process of exploration and discovery. Typically, researchers 
use a variety of methods to clean, transform, analyse, and visualize 
information in order to identify and present scientific insights. 
Maintaining a clear record of these transformations allows others to 
understand and reproduce identified results. Additionally, because 
in many cases analysts will work with the same dataset over many 
months, having a record of analysis promotes efficiency and enables 
collaboration. Jupyter [38] and RStudio [39] notebooks provide a 
rich analysis experience specifically tailored to promoting reprodu-
cibility by enabling researchers to weave together executable code 
chunks with markdown- based text and figures. Cloud environments 
that enable these tools to be run directly on data with expandable 
computational resources further support secure collaboration on 
large datasets.

18.4. Multimodal data for cancer research

As discussed above, a variety of approaches have been developed to 
support data aggregation and analysis. The National Cancer Institute 
(NCI) served as an important trailblazer in the space of making 
large- scale datasets available to the community via TCGA. Faced 
with the challenge of democratizing access to TCGA and other NCI 
datasets, the NCI launched the Cloud Pilot program in 2014 with the 
objective of developing a cloud- based ecosystem that brought to-
gether investigator-  and consortia- initiated data within secure, scal-
able, collaborative, and reproducible environments [40– 43]. These 
pilot projects have since evolved into the NCI Cloud Resources 
which connect to multiple application- specific ‘data nodes’. This 
approach enables specific tooling, data harmonization, and access 

Figure 18.3. Composable workflows enable the democratization of bioinformatics. Workflows described in CWL can be visualized and 
interactively edited by researchers with minimal coding expertise that facilitates the use of data by biologists and clinicians. For example, the 
HISAT2- StringTie Workflow can be used to perform a gene abundance estimation of RNA- Seq data (i.e. quantification) of a unified set of genes 
common for all samples in the analysis. The workflow is based on the HISAT2 Nature protocol paper (62) with the last step (differential expression 
testing) omitted. This allows a researcher to plug in alternative differential testing approaches, also described in CWL. In this workflow diagram, 
grey circles represent data— both input files and outputs— while teal circles represent software tools wrapped in CWL for cloud deployment. 
Connections between teal circles represent the flow of outputs from one tool becoming the inputs for the next tool.
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approaches to be applied to diverse data types while also enabling 
the cross analysis and computational integration across, e.g. gen-
omics, proteomics, and imaging data. The connected data nodes 
are described in the following subsections. Section 18.5 highlights 
a number of examples of research that has been enabled by coupling 
a rich cancer dataset with a powerful analysis ecosystem with the 
characteristics described in Section 18.3.

18.4.1. Genomics, transcriptomics, and other 
molecular data

Established in 2014, the Genomic Data Commons (GDC) en-
ables search and discovery of molecular data including genomic, 
transcriptomic, and epigenomic sequencing modalities [44]. The 
36.0 data release from December 2022 included data from 86,513 
cases spanning 74 projects and representing 67 primary tissue 
sites [45]. Lung, bone marrow, breast, and colorectal sites are most 
highly represented, each with more than 8,000 cases included in 
the repository. In addition to providing a rich search interface, the 
GDC performs harmonization and standardization of molecular, 
biospecimen, and clinical data. While researchers still need to be 
aware of experimental batch effects, the standardization of compu-
tational processing workflows enables the combination of data from 
multiple projects. Data from the GDC falls into two categories: open 
access and controlled access. Open access data includes aggregated 
information that does not include individually identifiable infor-
mation such as gene expression levels. Any researcher can access 
that data either by downloading or connecting to a cloud resource. 
Controlled access data does include individual- level information 
and requires authorization, in most cases from the NIH database of 
Genotypes and Phenotypes (dbGaP) [46]. Depending on the spe-
cific dataset, authorization may require engaging an Institutional 
Review Board, and/ or certifying the data will only be used for spe-
cific purposes.

18.4.2. Proteomics data

The Proteomic Data Commons (PDC) also provides highly cur-
ated and standardized biospecimen, clinical, and proteomic data. 
Reflecting the broad range of proteomic analysis, the PDC houses 
data representing diverse analytical fractions, including acetylome, 
glycoproteome, phosphoproteome, proteome, and ubiquitylome de-
rived from multiple experimental technologies. More than 375 mil-
lion spectra were derived from 123 studies, and approximately 4,000 
cases were available in the December 2022 data release [47]. Similar 
to the GDC, the PDC houses both controlled and open access data, 
and controlled access data is authorized via dbGaP.

18.4.3. Imaging data

Imaging represents a wide range of applications from clinical and 
pre- clinical imaging and radiological images, such as computed 
tomography (CT), magnetic resonance imaging (MRI), positron 
emission tomography (PET), digital pathology, and multispec-
tral microscopy. Just as in the case of molecular data, raw imaging 
data must be processed, annotated, and modelled to support cross- 
comparison and derivation of insights. Reflecting the complexity 
and uniqueness of imaging data, the NCI has also established the 
Imaging Data Commons (IDC) [48]. The October 2022 data re-
lease included 128 collections representing more than 470,000 
image series from 63,316 cases. Unlike the PDC and GDC, all data 

available on the IDC has been certified to be deidentified and is 
therefore open access.

18.4.4. Multi- species data

The fourth data node of the Cancer Research Data Commons 
(CRDC) is the Integrated Canine Data Commons (ICDC) [49]. 
Although at first glance it may seem curious that the NCI would 
invest in a data repository focused on canine data, the analysis of ca-
nine cancer progression can provide important insights that impact 
human disease. For many, their dog is a bona fide family member, 
and as a result, dogs are frequently exposed to similar environ-
mental conditions as humans. They additionally receive healthcare 
and participate in clinical trials. Finally, their accelerated ageing 
process and breed- specific disease predisposition provide an inter-
esting backdrop to study human disease. As of January 2023, the 
ICDC provides access to data from nearly 600 cases representing 
more than 75 different breeds. Studies include the PRE- medical 
Cancer Immunotherapy Network Canine Trials (PRECINCT) and 
the Comparative Oncology Program. All data is open access.

18.4.5. Supporting the long tail of data 
modalities and analyses

The type of data generated in the course of biomedical research is 
diverse and wide ranging. Additionally, even when the type of data 
(for example whole genome sequencing) is the same as the focus of 
a CRDC node, it may not be appropriate or feasible to perform the 
standardized processing required as part of a CRDC data node. To 
accommodate these situations and to support researcher’s compli-
ance with data- sharing policies, the NCI developed the Cancer Data 
Service (CDS) [50]. This solution provides a flexible and responsive 
approach for researchers to quickly and securely share data. As of 
February 2023, numerous datasets from the Childhood Cancer Data 
Initiative as well as the Human Tissue Atlas Network are available 
through this repository. As data standards continue to develop, data 
may be transitioned from CDS to dedicated data nodes.

18.5. Combining cloud- based data  
and analysis environments 
to accelerate research

As data volume and complexity increases, it becomes critical that 
the secure, collaborative, and reproducible environments discussed 
above are able to interface with the rich cloud- based data hosted by 
data repositories. In the context of the CRDC, this is accomplished 
through the development of three Cloud Resources by Seven Bridges 
[41], Institute of Systems Biology, [43], and the Broad Institute [42]. 
In the following sections, we provide examples of how researchers 
have used the Seven Bridges resource in the hope that these ex-
amples provide further inspiration to the type of analysis that these 
environments can accelerate.

18.5.1. Multi- omic analysis to understand 
retroposon activity in cancer

Retrotransposons are genomic DNA elements that are copied and 
inserted into different genomic locations. In particular, the Long 
Interspersed Element- 1 (LINE- 1) retroposon is the only active and 
autonomous retroposon present in the human genome. Although 
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derepression of LINE- 1 is frequently observed in human cancer, 
its role in tumorigenesis is incompletely understood. In order to 
comprehensively measure LINE- 1 activity across different tumour 
types, Dr McKerrow et al. at New York University, Langone Health, 
combined genomic, transcriptomic, and proteomic data from 
TCGA and CPTAC studies [51]. Overall, LINE- 1 activity was evalu-
ated through LINE- 1 RNA levels, ORF1 protein and phosphoryl-
ation levels, as well as somatic insertions. This analysis showed that 
ORF1p could serve as a simple and high- quality measure of overall 
LINE- 1 activity in large, multi- omic datasets. The investigators went 
on to show that LINE- 1 activity level is correlated with p53 mutation 
and copy number alterations in multiple cancer types as well as al-
terations in cell cycle progression markers [51]. This work provides 
a deeper understanding of the role of LINE- 1 in oncogenesis which 
could lead to novel treatment or prevention strategies. The ability to 
deploy novel computational tools and rapidly access large volumes 
of multimodal data was critical for the completion of this work.

18.5.2. Pancancer analysis of gene fusions

Gene fusions are known to drive some cancer types. Perhaps most 
infamously, a fusion between the BCL and ABL genes underlies de-
regulated cellular signalling in most cases of chronic myelogenous 
leukaemia. Accurate detection of fusions can be complicated by the 
heterogeneity of tumour specimens that reduce signal and the intro-
duction of false positives during the sequencing process. To address 
these challenges, Dr Dehghannasiri et al. at Stanford University de-
veloped a novel algorithm termed Data- Enriched Efficient PrEcise 
STatistical (DEEPEST) fusion detection that uses statistical mod-
elling to reduce false positives and increase sensitivity of detection 
[52]. After optimizing this tool to run in the cloud, the investigators 
analysed RNA- sequencing data from nearly 10,000 tumour sam-
ples spanning 33 different cancer types within TCGA on the CGC. 
The tool identified 31,007 fusions, 30% more than other methods 
while reducing false positives 10- fold. Kinase domains, anaerobic 
metabolism, and DNA- binding proteins were significantly enriched 
in identified fusions. Importantly, in addition to creating a know-
ledge base of novel fusions and reporting frequency across cancer 
types, the authors also provided the optimized DEEPEST workflows 
that allow other researchers to easily extend this work to novel sam-
ples [53].

18.5.3. Data harmonization, sharing, and 
analysis of Patient- derived Xenograft data

Patient- derived Xenograft (PDX) models are cancer models in 
which patient tissue, often tumour, is transplanted from a human 
patient into a mouse model for use in supporting personalized 
medicine research and pre- clinical and co- clinical trials. The PDX 
Network (PDXNet) leveraged the CGC to provide a secure envir-
onment to facilitate collaboration, promote data harmonization, 
and centralize access to NCI- funded PDXNet consortium resources 
[54]. As of December 2022, more than 330 models, spanning 33 
different cancer types had been catalogued. Molecular data from 
these models was harmonized in the cloud using workflows that 
were benchmarked and optimized by the consortia. That data was 
then used by the consortia to reveal insights into tumorigenesis. 
For example, Guillen et al. identified that matched PDXs and PDX- 
derived organoids could be used for drug screening as these samples 
were representative of endocrine- resistant, treatment- refractory, 

and metastatic breast cancers [55]. Both whole exome and RNA 
sequencing were processed using the Cancer Genomics Cloud in 
accordance with PDXNet- approved pipelines. Using this method, 
researchers identified a Food and Drug Administration (FDA)- ap-
proved drug with high efficacy against the models. Treatment with 
this therapy resulted in a complete response for the individual and a 
progression- free survival period more than three times longer than 
their previous therapies.

18.6. Conclusions and outlook

The ability for researchers and clinicians from a wide variety of dis-
ciplines and backgrounds to access and analyse large volumes of 
multidimensional cancer data is creating unprecedented opportun-
ities to advance our understanding of tumorigenesis and develop 
new strategies for effective therapeutics. As the volume, velocity, and 
complexity of data continues to increase, it is particularly important 
that collaboration across domains is facilitated in a secure and re-
producible manner. For example, the incorporation of mathematical 
and systems biology approaches can allow the identification of sig-
nals that, when contextualized by clinicians or cancer biologists, can 
have a significant impact on patient care.

The past 10 years have been marked by a dramatic increase in the 
adoption of scalable and secure approaches for data distribution and 
analysis of investigator-  and consortia- derived data [56– 60]. Radical 
transformations in cancer patient care, notably the incorporation of 
molecular markers to define therapeutic pathways and the use of li-
quid biopsy to detect and monitor cancer, have occurred. We foresee 
that the next decade will increasingly focus on supporting incorpor-
ation of individual- level clinical data into multidimensional machine 
learning and AI models that will not only allow unique insights into 
health and disease but will also dramatically improve each patient’s 
care journey. Numerous advances in policy, algorithms, and infra-
structure are necessary to realize this future to create positive out-
comes for patients and avoid unintended drawbacks.
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Interpretation of machine learning models 
in cancer: The role of model- agnostic 
explainable artificial intelligence
Colton Ladbury and Arya Amini

19.1.  Introduction

Statistical models typically used in oncology include linear regres-
sion, logistic regression, and Cox- proportional hazards regression. 
These yield odds ratios, hazards ratios, coefficients, and p- values that 
are simple to read and utilize. Oncology is a data- driven field with 
nuanced clinical questions, which necessitates more complicated 
models in some cases, such as modelling non- linear and/ or distri-
bution assumption- free relationships, interaction effects, or image 
analysis, to better utilize data and make more informed and accurate 
decisions. Machine learning (ML) algorithms have the potential to 
develop better and more therapeutically useful models as processing 
capacity has increased [1] . However, when models become more 
complicated in comparison to ordinary regression models, they 
become more difficult for end users (including clinicians, patients, 
administrators, stakeholders, and others) to grasp, resembling a 
metaphorical ‘black box’ [2]. End users are interested not only in the 
accuracy of a model’s output, but also in how that output is produced 
and how it may be changed [3]. That is a fundamental challenge to 
using ML algorithms in the oncology clinic [4].

The trade- off between interpretability and complexity has re-
sulted in the development of so- called ‘explainable artificial intel-
ligence (XAI)’ techniques, which seek to produce interpretable 
visualizations and sets of rules to represent the inner workings of 
the ML ‘black box’ [5, 6]. This is accomplished by both local explan-
ations of single data points, which illustrate how the model arrives 
at an individual prediction, and all local explanations, which permit 
a more global understanding of how the algorithm works (Figure 

19.1). Local Interpretable Model- agnostic Explanations (LIME) [7]  
and SHapley Additive exPlanations (SHAP) [8] are the most com-
monly used XAI frameworks and have been used in fields, such 
as insurance, finance, and healthcare. Examples of the plots gen-
erated using SHAP are shown in Figure 19.2. These frameworks 
have gained significant popularity in part because they are ‘model- 
agnostic’, meaning they can be applied to ML algorithms irrespective 

of how they function. Details of XAI use cases for SHAP and LIME 
can be found in Table 19.1. Other non- model- agnostic XAI frame-
works do exist [9] but are not discussed in this chapter. In oncology 
specifically, ML models and model- agnostic XAI have been used to 
investigate clinical oncologic questions. This chapter summarizes 
the use of model- agnostic XAI in the oncology literature, separated 
by discipline [10].

19.2. Application of Artificial Intelligence in the 
Diagnosis and Workup of Cancer

19.2.1.  Prognostication

Perhaps the area of oncology that has been most extensively ex-
plored using XAI is prognostication, which is of no surprise given 
the abundance of large datasets (including the National Cancer 
Database and the Surveillance, Epidemiology, and End Results) with 
outcomes data. These are of great interest to both clinicians and pa-
tients, given that this approach not only can help counsel patients on 
prognosis and planning but might also inform on potential inter-
ventions that can lead to improvements in outcomes.

A clinical example that lends itself nicely to the utility of XAI 
is modelling of interactions between disease characteristics and 
prostate cancer and their impact on survival. Li et al. modelled the 
impact of prostate- specific antigen (PSA), percent positive cores 
(PPC), and Gleason score on survival using the extreme gradient 
boosted (XGB) tree algorithm [11]. Specifically, they sought to 
examine non- linear relationships and interactions, which facili-
tate identification of prognostic thresholds. Since LIME primarily 
looks only at individual predictions, SHAP tends to be the main 
framework to perform such analyses. Although the impact of the 
specified factors on survival was not controversial, modelling with 
XAI revealed nuances that contradict modern risk stratification. 
Visualization of such interactions is only possible by using a more 
complicated model than standard regressions and then explaining 
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that model. For example, when examining the interaction between 
percentage of positive cores and Gleason score, the SHAP depend-
ence plots revealed that PPC is largely irrelevant if Gleason score 
is 7 or less. Additionally, when Gleason score is 8 or higher, a PPC 
threshold of 0.7 best illustrates differences in outcomes, as opposed 
to the threshold of 0.5 that is used in modern practice to differen-
tiate between favourable and unfavourable intermediate risk pros-
tate cancer. The plots are also able to illustrate phenomena such as 
patients with high Gleason score and exceedingly low PSA counter- 
intuitively having inferior survival compared to patients with more 
intermediate PSA levels. These example plots can be found in Figure 

19.3. In these interaction plots, the combined effect of the two vari-
ables are plotted, with a value of zero representing an overall neutral 
effect.

Bertsimas et al. also used XAI to visualize non- linear relationships, 
thereby identifying prognostic thresholds. The authors used an XGB 
model and the SHAP framework to explore the impact of lymph 
node ratio on survival compared to lymph node count in pancreatic 
cancer, which is used in the current American Joint Committee on 
Cancer (AJCC) staging system [12]. Their model using lymph node 
ratio outperformed the AJCC schema at predicting one- year overall 
survival with an area under the curve (AUC) of 0.638 versus 0.586 
(though not validated via DeLong’s test or confidence intervals). 

Using the SHAP dependence plots, the authors, via inspection, iden-
tified thresholds for lymph node ratio and tumour size. The authors’ 
identification of relevant lymph node ratio thresholds was feasible 
by using the graphical interpretation of dependence plots generated 
by the SHAP framework, and given the interaction is non- linear, 
identification of thresholds with linear methods, such as logistic 
regression or Cox regression, would have required some trial and 
error and would not have been as precise.

The aforementioned studies primarily examined XAI plots that 
summarize all predictions within the datasets. XAI also has been 
used to examine prognostication in individual predictions (i.e. pa-
tients). Both SHAP and LIME have this functionality implemented. 
In a study by Jansen et al., both SHAP and LIME are used to explain 
an XGB model of 10- year overall survival in breast cancer patients 
[13]. In this study, the authors use LIME to model individual pa-
tients and predictions of overall survival, which explains how in-
dividual patients’ characteristics yield their prediction for 10- year 
overall survival. They did the same with SHAP, but as detailed in 
Table 19.1, SHAP has improved functionality in illustrating global 
impact of features in all patients, so they also presented a summary 
plot. Lastly, they compared all individual patient explanations pro-
duced by LIME and SHAP, demonstrating agreement in 87.8%– 
99.9% (95.4% overall) of cases depending on the feature examined. 

Figure 19.1. Use of explainable artificial intelligence in visualizing the inside of the ‘black box’ via local explanations (A) and combined local 
explanations to generate global insights (B). Source: Reproduced with permission from [6] .
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This study highlights key distinctions between LIME and SHAP; 
both approaches can yield consistent local results, but SHAP is able 
to examine global trends within models. The same approach, exam-
ining individual patients and overall trends, has been performed 

on models predicting survival with nasopharyngeal cancer tumour 
burden [14].

Lastly, perhaps the way XAI was used most commonly for prog-
nostication and oncology in general was to delineate global feature 

Figure 19.2. Examples of types of plots generated using explainable artificial intelligence including feature importance (A), dependence (B, C, E), 
and interaction (D, F, G) plots. Source: Reproduced with permission from [6] .

Table 19.1. Overview of LIME and SHAP use cases.

Use case Suitable frameworks Overview Example plots

Local explanation LIME, SHAP - Tells you, in a local sense, what is the most important attribute around the 
data point of interest
- Computationally efficient

- Waterfall plot
- Force plot

Global model 
explanation

SHAP and LIME (only through 
pooled explanations)

- Calculates the average marginal contribution of a feature value over all 
possible combinations of predictions and sets of inputs  
- Decomposes the final prediction into the contribution of each feature
- Computationally expensive (aside from tree- based algorithms)

- Feature importance plot
- Dependence plot
- Interaction plot

Abbreviations: LIME: Local Interpretable Model- agnostic Explanations; SHAP: SHapley Additive exPlanations.
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importance by summarizing all model predictions and outputting 
each feature’s mean impact across all predictions. This permits a 
general understanding that how the overall model functions, similar 
to the summary statistics generated by regression models. Moncada- 
Torres et al. used XAI to explain a general model of overall survival 
in breast cancer [15]. Importantly, models such as Cox regression are 
routinely used for such applications, with outputs being readily in-
terpretable by most end users. ML algorithms, namely the XGB tree 
algorithm, significantly outperformed Cox regression. However, the 
standard output of such an algorithm is not as readily understand-
able in terms of how its output is computed. In this example, the 
authors used the SHAP framework to identify feature importance 
within the model, which can be compared to intuition to build trust 
in the model. By using the SHAP framework, the study was able to 
illustrate the prognostic significance of multiple commonly used 
variables, thereby facilitating adoption of algorithms such as XGB.

Several other studies have used similar approaches to the afore-
mentioned study to create powerful prognostic models to illustrate 
nuanced interactions that influence prognosis, with XAI used to ex-
plain their ML model on a global level. Additional examples include 
predicting 30- day mortality following colorectal cancer surgery 
[16], five- year survival and oesophageal cancer [17], characterizing 
the influence of ethnicity on outcomes and multiple myeloma [18], 
predicting hospital length of stay [19], and risk of skeletal- related 
events following discontinuation of denosumab among patients 
with bone metastases [20].

19.2.2.  Diagnosis

An additional area of research interest is ways to improve diagnosis 
of cancer, where ML models have proven to be valuable tools, but 
given the high stakes of a cancer diagnosis, it is important that the 
predictions of such models are both accurate and easy to explain 
to clinicians and patients, representing a great opportunity for XAI.

In one such application, Suh et al. explored a model predicting 
prostate cancer in general as well as clinically significant prostate 
cancer prior to prostate biopsy [21]. In this study, the authors used 
XAI frameworks for one of the reasons detailed in the previous 
section (understanding global feature importance) as well as a new 
one (feature selection/ construction for building clinically relevant 
tools). When explained using SHAP summary visualizations, the 

authors identified important features predicting prostate cancer and 
clinically significant prostate cancer, which included known pre-
dictive factors such as PSA and Gleason score, and how changing 
these factors individually influenced risk. These visualizations facili-
tated translation to a risk calculator via aiding selection of salient 
features that could be deployed as a data- driven risk estimator that 
would be generally applicable to the oncology clinic.

In another study, Kwong et al. reported on a model that predicted 
side- specific extraprostatic extension and pre- prostatectomy pa-
tients [22], again using SHAP summaries to gauge global feature 
importance. Furthermore, the authors examined the non- linear re-
lationships between relevant factors and probability of site- specific 
extraprostatic extension with dependence plots, which is of clinical 
relevance given that features such as percent positive cores were rela-
tively noncontributory until reaching approximately 75% based on 
inspection of dependence plots. Though these conclusions are quali-
tative in nature, they inform quantitative hypotheses that can inform 
other statistical approaches and overall clinical intuition. Thus, the 
XAI complemented the ML model by not only providing informa-
tion to surgeons on risk of extraprostatic extension but also pro-
viding explanations of how that risk was calculated for given patient, 
where identification of non- linear interactions is valuable.

19.2.3.  Radiomics

A primary field of oncology that has benefited greatly from XAI is 
radiomics, given that it has the reputation of being a ‘black box’ or 
‘fishing expedition’ [23, 24]. Radiomics is defined as a process de-
signed to extract quantitative features from imaging, which can sub-
sequently be used for hypothesis generation, testing, or both [25]. In 
oncology, this might mean using imaging characteristics to predict 
tumour molecular features, behaviour, and prognosis. In doing so, 
a patient’s image might be input into a radiomic algorithm and pre-
dict risk of relapse. However accurate such a prediction might be, it 
is also of vital importance that providers be able to understand why 
the imaging produces such a prediction.

Radiomics specifically represents a field where LIME might be pre-
ferred in certain scenarios, given that radiomics is highly interested 
in individual predictions and commonly uses non- tree- based algo-
rithms, meaning SHAP becomes computationally intensive. Several 
radiomics studies focus on using XAI and individual predictions. 

Figure 19.3. SHAP plots visualizing non- linear interactions between prognostic features in prostate cancer, including interaction between 
Gleason score and PSA (A) and between percent positive cores and Gleason score (B). Source: Adapted with permission from [11].
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One example that has been explored in the literature is molecular 
classification of gliomas. In gliomas, molecular subtypes related to 
isocitrate dehydrogenase (IDH) mutations and 1p/ 19q co- deletion 
are of vital relevance to prognosis and might also inform treatment 
options [26]. Although confirmation of such abnormalities occurs 
via pathologic analysis, it can be useful to identify patients with such 
abnormalities prior to surgery or if pathologic conformation is not 
possible. Manikis et al. reported on radiomic patterns that can pre-
dict IDH mutational status with an accuracy of 73.6% and an asso-
ciated sensitivity and specificity of 0.6 and 0.736, respectively [27]. 
Following model development, results were explained using both 
the SHAP and LIME frameworks, which were able to identify im-
portant radiomic features that lead to an image being classified as 
IDH- mutant, which the authors were then able to correlate with bio-
logical behaviour of IDH- mutant gliomas.

XAI can also be used to describe how a given imaging voxel con-
tributes to a model’s output. Gaur et al. used a deep learning model 
to identify brain tumour subtypes, with an accuracy of 94.64% 
[28]. To explain how their model made its predictions, they pro-
vide examples using the SHAP framework where SHAP values are 
superimposed on imaging voxels, and in doing so, illustrate graph-
ically and intuitively how example images are classified as normal 
or meningioma, as illustrated in Figure 19.4. In these images, the 
probability of a given classification is increased with red pixels and 
decreased with blue pixels. As can be seen, for the normal magnetic 
resonance imaging (MRI), the normal classification has the greatest 
amount of red pixels. The same idea holds true for the meningioma 
classification. The authors use both SHAP and LIME again because 
this classification problem is highly interested in individual cases. 
Another similar published application is classification of ultra-
sound imaging of lymph nodes to predict nodal metastasis and early 
breast cancer (achieving an accuracy of 81.05%, which used LIME 
to graphically identify regions of interest in individual images) [29].

In addition to explaining the radiomic features, XAI can also aid 
in development of the models. A major problem in ML is overfitting 
training data, which can be a result of feeding the excessive features 
in the algorithm, including features that are largely irrelevant or 
strongly correlated with the causative features. This is particularly 
relevant in radiomics, where massive amounts of data points might 
be generated from a given image set. A challenge XAI helps address 
is identifying only the most important features predictive of the 
outcome, which improves final model feature selection, thus elim-
inating the irrelevant ones, leading to a better model that is more 

robust and less prone to overfitting. Kha et al. have reported on iden-
tification of a radiomic signature predictive of 1p/ 19q co- deletion 
[30]. During model development, the SHAP framework was used 
to identify the most important features to include in their model, 
leading to improved model performance when less important fea-
tures, based on average SHAP values, were removed, with an AUC 
of 0.710 before feature selection and 0.753 after.

Other applications of combination ML and XAI in radiomics 
simply use the resulting visualizations to identify global feature im-
portance, to better understand and build trust in their respective 
models. These include prediction of early progression of nasopha-
ryngeal cancer following intensity- modulated radiation therapy 
using MRI (which used the SHAP framework to demonstrate that 
select radiomic features were more predictively powerful than sta-
ging) [31] and classification of breast cancer molecular subtypes 
using non- contract computed tomography (achieving an accuracy 
of 71.3%, using SHAP to identify important radiomic features) [32]. 
In total, these explanations of radiomic models allow providers to 
better understand what the model is looking at, which eases appli-
cation to the clinic by presenting them as more than abstract ‘black 
boxes’.

19.2.4.  Pathology

Pathology is another diagnostic specialty in oncology where XAI has 
improved predictive ML models. Like radiomics, pathology is also a 
field highly interested in individual predictions, where both SHAP 
and LIME can often be applicable. In a study similar to the one per-
formed by Gaur et al. in radiomics, Palatnik de Sousa et al. used 
XAI to depict how a neural network identified tumours in histology 
samples of lymph node metastases [33]. Given that this problem in-
volved a convolution neural network and was primarily interested 
in individual patients, this was a prime example where LIME was 
a good choice, where SHAP would be more computationally inef-
ficient. Using this method, the model output can overlay histology 
slides, and end users can see locations of interest identified by the 
model. These overlays permitted the authors to biologically validate 
results by comparing highlighted areas of interest with clinical intu-
ition. This technique has also been applied to diagnosing leukaemia 
(accuracy of 98.38%) [34]. Examination of individual patients has 
also been used on structured data to help classify primary and meta-
static cancers using origin- based DNA methylation profiles [35].

Next, pathology studies have harnessed plots of non- linear inter-

Figure 19.4. SHAP plots visualizing neural network identification of a normal brain and meningioma. Source: Adapted with permission from [28].
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change. Chakraborty et al. examined the influence of the tumour 
microenvironment on prognosis in breast cancer [36]. In this study, 
not only did XAI facilitate identification of prognostic factors via 
global feature importance, but it also illustrated non- linear inter-
actions that permitted identification prognostic thresholds for each 
factor, which could help tailor identification of treatments that could 
manipulate the tumour microenvironment and improve prognosis. 
In this study, the authors used SHAP dependence plots to identify 
inflection points to correspond to potentially clinically relevant 
thresholds, generally corresponding to where SHAP values crossed 
zero. Similarly, a paper examines the impact of synoptic reporting 
on survival in patients with prostate cancer using an XGB model 
explained by SHAP, as reported by Janssen et al. [37]. As this study 
has the possibility to benefit pathology using XAI summary plots, 
the authors could conclude that synoptic reporting, specifically re-
porting pathologic data in a structured manner, is the second most 
important factor after age. In this example, these plots allow inter-
pretation of an ML model that could lead to real policy changes, such 
as standard implementation of synoptic reporting, which would be 
difficult to illustrate to decision- makers without XAI.

Lastly, as is the case in other disciplines, XAI has been used to ex-
plain overall models to better understand how they generally function. 
Meena and co- worker developed a model for diagnosis of squamous 
cell carcinoma (SCC) based on genetic signature [38]. In a simple 
example of how SHAP values can be powerful, when distinguishing 
between healthy tissue and SCC, only a single gene (HNRNPM) pro-
duced a significant impact on the model, which was interestingly not 
among the 20 most important genes in actinic keratosis based on 
SHAP values. Although accurate diagnosis of SCC is useful, and the 
model was 92.86% accurate, these signatures made available by XAI 
are highly valuable to end users evaluating reports without access to 
sophisticated models, permitting powerful qualitative conclusions. 
Similar approaches have been applied to haematopoietic cancer sub-
type classification (with an accuracy of 97.01%) [39].

19.3. Treatment selection

Following diagnosis, an area where XAI has a significant oppor-
tunity to influence the clinic is in treatment selection. This might 
include identification of optimal treatment options and predicting 
outcomes of a given intervention. This is of great interest to the on-
cology clinic, as any additional information to determine optimal 
patient care is appreciated, but understanding such information is 
equally important in order to be able to explain recommendations to 
patients, their family, and other members of the care team.

Dependence plots generated by XAI can be useful for identifica-
tion of predictive thresholds. Ladbury et al. [40] and Zarinshenas 
et al. [41] examined the prognostic and predictive values of nodal 
burden in endometrial cancer and locally advanced non- small- cell 
lung cancer (NSCLC), respectively, with associated XAI plots aiding 
in addressing controversies in the field. In endometrial cancer, via 
qualitative inspection of SHAP plots, XAI facilitated identification 
of a threshold of four or more positive nodes where treatment with 
adjuvant chemoradiation achieved optimal outcomes, while chemo-
therapy alone had a neutral effect and radiation alone had a dele-
terious effect. This finding adds insight following publication of 
PORTEC- 3 and GOG 258, wherein optimal adjuvant therapy and 

sequencing remains unclear [42, 43]. In locally advanced NSCLC, 
again via qualitative inspection of SHAP plots, XAI enabled identi-
fication of nodal thresholds including three or more positive lymph 
nodes or a lymph node ration of 0.34 or greater as possible scenarios 
where addition of postoperative radiotherapy might improve out-
comes, which is an area of controversy following publication of the 
LungART and PORT- C trials suggesting no benefit with postoper-
ative radiotherapy [44, 45]. These conclusions were only possible 
because XAI enabled graphical depiction of interactions between 
nodal burden and treatments in the models, allowing for identifica-
tion of predictive thresholds. The associated plots illustrating these 
interactions are found in Figure 19.5. Using a value of zero as neu-
tral, the aforementioned thresholds can be identified, where patients 
who do not receive postoperative radiotherapy, represented in blue, 
have increased risk above those thresholds.

Beyond predicting optimal treatments, XAI has also demonstrated 
ability to help globally explain models that predict outcomes of treat-
ments. Namely, Laios et al. [46] and Bang et al. [47] explored models 
that predicted for complete cytoreduction in ovarian cancer and 
curative resection in early undifferentiated gastric cancer. In the case 
of ovarian cancer, the model predicted R0 resection with an AUC of 
0.866, using SHAP to identify important features. Additionally, SHAP 
identified non- linear interactions via inspection of dependence plots, 
such as significant decreases in R0 resection rates with peritoneal 
carcinomatosis indices greater than five and no significant change in 
R0 resection rates in years from 2017 onwards. In the case of gastric 
cancer, the model predicted curative resection with an accuracy of 
89.8% and used SHAP to identify important factors. In combination, 
these two studies using XAI provide end users with useful informa-
tion that can help counsel patients not only on odds of curative resec-
tion but also explain how these estimates were determined.

19.4.  Epidemiology

An additional area involves improvements in epidemiology ana-
lyses using XAI, which benefit from examining global interactions 
and individual predictions. Ahmed et al. used ML to explore spatial 
variability of lung and bronchus cancer mortality rates across the 
contiguous United States [48]. The authors used dependence plots, 
break down plots, and maps to visually and geographically repre-
sent how key factors were interrelated and might affect specific geo-
graphic locations rather than simply describing the United States 
population as a whole. For example, they use XAI not only to show 
that Union County, Florida, has an almost 13- fold higher risk of 
mortality than Summit County, Utah, but also show that elevation is 
the largest protective factor in Summit County, while smoking is the 
largest risk factor in Union County. These conclusions were made 
possible by the authors using waterfall plots for corresponding in-
dividual explanations to visualize how model behaviour can vary 
drastically based on the given example. This information permits the 
model to be both predictive and able to inform possible interven-
tions. In a study by Kobylińska et al., XAI was used to investigate the 
influence of factors on lung cancer screening [49]. The authors used 
the SHAP framework to produce summary plots, to overall illustrate 
lung cancer risk in lung cancer screening populations, dependence 
plots to show how changing individual variables influenced risk, and 
plots of individual predictions, which can be used how individual 
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patient risk is calculated. This information is useful, as it can not 
only be broadly used to counsel patients on decreasing lung cancer 
risk but can also inform specific patients of the best way to decrease 
their risk by identifying the most impactful factors to them.

Similar to other disciplines, studies in epidemiology have also 
benefited from XAI aiding with feature selection/ construction. In 
a study by Richter and co- worker, electronic health record (EHR) 
data was utilized to predict risk of developing melanoma [50]. In the 
study, the use of XAI not only depicted important factors that are as-
sociated with risk of developing melanoma, but it also facilitated im-
provements in model efficiency that would facilitate the use of ML 
algorithms on EHR data by helping to select only the most relevant 
and impactful features, which would otherwise require prohibitive 
computational resources due to large data size and data missingness.

19.5. Radiation treatment workflow

One more niche area where XAI has been evaluated is in the ra-
diation oncology clinic aiding in workflow for treatment planning. 
The first scenario that was evaluated by Siciarz et al. was clinical 
decision support systems for radiation plan evaluation in brain tu-
mours [51]. The authors used XAI to look at the model globally, to 
examine interactions within features, and to evaluate individual 
predictions. This model classified treatment plans based on whether 
the target volume planning objective was met or whether the target 

volume planning objective was met or not due to a priority trade- 
off due to organ at risk constraints. Such a model uses knowledge 
from previous radiation treatment plans to inform on when trade- 
offs might be necessary. SHAP was used on the model to be able to 
determine relevant dosimetric factors that would inform whether 
a plan was acceptable, which can provide useful feedback to med-
ical physicist and radiation oncologists when determining ways to 
further optimize plans that are not deemed acceptable. In this case, 
XAI was helpful in that it provides information on generally what 
leads to objectives being met and also providing a breakdown of 
specific cases. Next, once the plan is approved, quality assurance 
is required to ensure patient’s safety and avoid clinically significant 
errors such as delivery of the desired dose. This is a process that can 
be somewhat automated with ML models. Again, it is important that 
a model predicts that a plan can be safely delivered and for end users 
to understand why this conclusion was made to facilitate improve-
ments. Chen et al. explored a model that evaluated whether a plan 
would be deemed acceptable and used XAI to identify features that 
led to such a prediction, both globally and individually, which aids 
in further automating the quality assurance process [52].

19.6.  Discussion

The studies discussed above, including how model- agnostic XAI 
was used by the authors, is summarized in Table 19.2. We found that 

Figure 19.5. SHAP dependence plots (A, C) and interaction plots (B, D) illustrating thresholds for lymph node burden predictive of benefit of PORT 
in completely resected N2 NSCLC. Source: Reproduced with permission from [41].
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Table 19.2. Summary of identified model- agnostic XAI studies in oncology.

Purpose of XAI

Study Cancer type XAI framework Delineation 
of global 
feature 
importance

Characterization 
of individual 
prediction feature 
importance

Visualization 
of non- linear 
relationships 
and interactions

Identification of 
prognostic and/ 
or predictive 
thresholds

Feature 
selection

Prognostication

Li et al. [11] Prostate SHAP ✓ ✓

Bertsimas et al. [12] Pancreatic SHAP ✓ ✓

Jansen et al. [13] Breast SHAP, LIME ✓ ✓ ✓

Chen et al. [14] Nasopharyngeal SHAP ✓ ✓ ✓

Moncada- Torres et al. [15] Breast SHAP ✓

Van Den Bosch et al. [16] Colorectal SHAP ✓

Gong et al. [17] Oesophageal SHAP ✓ ✓

Farswan et al. [18] Multiple myeloma SHAP ✓ ✓

Alsinglawi et al. [19] Lung SHAP ✓

Jacobson et al. [20] Bone metastases SHAP ✓ ✓

Diagnosis

Suh et al. [21] Prostate SHAP ✓ ✓

Kwong et al. [22] Prostate SHAP ✓ ✓

Radiomics

Manikis et al. [27] Glioma SHAP, LIME ✓ ✓

Gaur et al. [28] Brain tumour SHAP, LIME ✓

Lee et al. [29] Breast LIME ✓

Kha et al. [30] Glioma SHAP ✓ ✓

Du et al. [31] Nasopharyngeal SHAP ✓ ✓

Wang et al. [32] Breast SHAP ✓

Pathology

Palatnik de Sousa et al. [33] General LIME ✓

Abir et al. [34] Leukaemia LIME ✓

Modhukar et al. [35] Breast LIME ✓

Chakraborty et al. [36] Breast SHAP, LIME ✓ ✓ ✓

Janssen et al. [37] Prostate SHAP ✓ ✓

Meena et al. [38] Skin SHAP ✓

Park et al. [39] Leukaemia SHAP ✓

Treatment selection

Ladbury et al. [40] Endometrial SHAP ✓ ✓

Zarinshenas et al. [41] Lung SHAP ✓ ✓

Laios et al. [46] Ovarian SHAP ✓ ✓ ✓

Bang et al. [47] Gastric SHAP ✓

Epidemiology

Ahmed et al. [48] Lung SHAP ✓ ✓

Kobylińska et al. [49] Lung SHAP ✓ ✓ ✓

Richter et al. [50] Melanoma SHAP ✓ ✓

Radiation treatment workflow

Siciarz et al. [51] Brain tumour SHAP ✓ ✓ ✓

Chen et al. [52] Prostate SHAP, LIME ✓ ✓

Abbreviations: XAI: explainable artificial intelligence; SHAP: SHapley Additive exPlanations; LIME: Local Interpretable Model- 
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the use of XAI could be divided into five categories: delineation of 
global feature importance, characterization of individual prediction 
feature importance, visualization of non- linear relationships and 
interactions, identification of prognostic and/ or predictive thresh-
olds, and feature selection/ construction. These permit additional 
conclusions to be drawn from already ML algorithms, which are key 
to implementation in the oncology clinic, given that they improve 
understandability and therefore confidence.

In general, XAI is a vibrant area of ML research, with hundreds 
of papers produced in the field over the past decade. While there is 
a wide adoption of interpretability ‘add- ons’ (to the ‘classical’ ML 
classifiers and estimators), such as SHAP and LIME, there is yet no 
unifying XAI framework in the broad ML field, let alone biomedical 
ML. This situation is likely to change, given the heightened interest 
in XAI within both theoretical and applied ML research commu-
nities. Adoption of the cutting- edge advances and methods in XAI 
ML research in oncology applications, preferably biomedical data- 
specific, is the next frontier. That being said, there are already ex-
isting methods and algorithms in the ML/ AI toolkit that are more 
explainable and interpretable by design, such as probabilistic causal 
modelling, various Bayesian methodologies, and fast/ oblique de-
cision trees. Adaptation of such techniques to the oncology spaces 
is an emerging trend [53- 57]. Other areas of active research with 
direct ties to oncology are computation of hazard ratios from XAI 
output [58] and using XAI as an explicit feature selection/ construc-
tion mechanism [59].

Although XAI is a powerful tool for improving the interpretability 
and thereby adoption of ML models in the oncology clinic, it is not 
without limitations, which do also apply to oncology research [60]. 
First, as discussed previously, an active area of research is implemen-
tation of models that are both accurate and interpretable, which po-
tentially bypassed the need for XAI entirely. Therefore, the notion 
that ML inherently is a black box that must be explained must not 
always be true. Nevertheless, less interpretable models continue to 
be popular in oncology, as detailed by this review, meaning XAI still 
has a niche to fill as long as the gap between using accurate and inter-
pretable models is being bridged. Next, there are inherent inaccur-
acies in explanations of certain ML models; many ‘explanations’ are 
actually approximations or probabilistic measures, as creating exact 
representations is computationally prohibitive [7, 8]. Furthermore, 
attempts to distil models may necessitate simplifications in order to 
be interpretable, which can raise concerns for applicability as well as 
human error when the explanations are used to make modifications 
for individual cases. Of course, this is a major hindrance to adop-
tion in a high- stakes field such as oncology. When addressing this 
problem, a critical question for researchers is model selection; ‘sim-
pler’ models such as LASSO regression may yield superior general-
ization results (thanks to decreased overfitting) relative to feature 
selection facilitated with XAI and a complex ML model. Notably, 
XAI complements feature selection (or includes feature selection, 
in the explainability- embedded ML methods), not ‘competes’ with 
it. A potential analysis framework might include variable selec-
tion, then XAI, and then further variable selection guided by XAI 
if necessary.

Future work should also seek to characterize ‘significance’ of re-
sulting model explanations, which might be accomplished with a 
permutation test such as a permutation LASSO for variable selec-
tion [61] or aforementioned efforts to generate hazard ratios and 
p- values from explanations [58]. Lastly, the explanations can only 

be as good as their models, so it is important that models undergo 
robust testing with suitable performance metrics and are empiric-
ally sound before being explained, yielding improved efficacy and 
safety. Notably, a major limitation of most of the included studies 
in this review is a lack of external validation of model results as well 
as cross- validation of explanations. Future work should ensure that 
models are extensively quality controlled, tested, and validated, opti-
mally via a schema, such as Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis (TRIPOD) 
[62], minimum information about clinical artificial intelligence 
modelling (MI- CLAIM) [63], or Radiomics Quality Score [64], of 
course acknowledging that due to availability of suitable datasets 
may limit external validation. Despite these limitations, it is not our 
recommendation that XAI have no place in oncology. On the con-
trary, as discussed above, it is our belief that it is a valuable tool, but 
it does need to be implemented responsibly and assessed critically 
before being used to influence patient care.

19.7.  Conclusions

ML undoubtedly has the potential to improve the cancer clinic. In 
addition to delivering accurate predictive models, it is critical that 
models be interpretable by the practitioners who will use them; 
otherwise, adoption in the clinic would be limited due to their intri-
cate and sometimes indecipherable character. XAI methodologies, 
such as LIME and SHAP, can generate powerful visualizations that 
illustrate the inner workings of ML algorithms used in a variety of 
oncologic fields, making them easier for average end users to under-
stand and, in some cases, providing actionable information that end 
users can use to improve patient outcomes. Further, XAI facilitates 
feature selection/ construction, identification of prognostic and/ or 
predictive thresholds, and overall confidence in the models, among 
other benefits. To ensure that ML oncologic research achieves its 
maximal benefit and reach, future studies should consider utilization 
of XAI frameworks, which can make the models more understand-
able to end users without technical acumen that would otherwise be 
needed to interpret ML literature.
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Applying cloud computing and   
informatics in cancer
Jay G. Ronquillo

20.1. Biomedical informatics

Biomedical informatics is a growing field of medicine that lever-
ages the increased availability of technology applicable in health-
care [1] . At one level, it is the integration and synthesis of numerous 
fields, such as medicine, engineering, computer science, public 
health, biostatistics, and data science. In addition, it is also the 
broad intersection of healthcare and technology and the practical 
application of technology (in its many forms) to positively impact 
the health of both individuals and populations. The American 
Medical Informatics Association (AMIA) Board published a white 
paper that provides a good description of the key components of 
the field of biomedical informatics. More specifically, there are sev-
eral important subcategories under the umbrella of ‘biomedical in-
formatics’, including (1) bioinformatics and imaging informatics, 
(2) translational bioinformatics and clinical research informatics, 
and (3) health informatics [2]. These subcategories of informatics 
represent the entire spectrum of healthcare, from the microscopic 
(i.e. molecules, cells, and tissues) to the macroscopic (i.e. patients, 
communities, and populations), as well as the translational elements 
in between [2].

Health informatics is an especially important subcategory which 
can be divided, respectively, into its individual and population level 
components of (1) clinical informatics and (2) public health inform-
atics [2,3]. Clinical informatics can be further classified according 
to specific clinical areas of focus, such as medical informatics (fo-
cused on healthcare providers in general), nursing informatics, and 
dental informatics [2] . These classifications and subclassifications 
may overlap and are not mutually exclusive.

Individuals who work or practice in the field are called 
‘informaticists’ or ‘informaticians’ and can be certified in either 
clinical informatics or health informatics [3– 5]. Board certification 
in clinical informatics commonly requires (1) a medical degree, 
(2) medical license, (3) primary board certification, (4) passing the 
Clinical Informatics Board Exam, and either (5a) a demonstrated 
number of years practicing clinical informatics or graduate degree in 

biomedical informatics (Practice Pathway) or (5b) completion of an 
Accreditation Council for Graduate Medical Education (ACGME)- 
accredited fellowship in clinical informatics (Fellowship Pathway) 
[5,6]. Alternatively, certification in health informatics requires (1) a 
graduate degree in health informatics or a related field, (2) a dem-
onstrated number of years of qualifying health informatics work ex-
perience, and (3) passing the AMIA Health Informatics Certification 
Exam [7] .

Separate practice analyses were performed to better under-
stand the domains, tasks, and knowledge commonly leveraged 
for the successful practice of both clinical informatics and health 
informatics [8,9]. For clinical informatics, there are currently five 
major domains of practice: (1) fundamental knowledge and skills, 
(2) improving care delivery and outcomes, (3) enterprise informa-
tion systems, (4) data governance and data analytics, and (5) lead-
ership and professionalism [9,10]. Similarly, for health informatics, 
the five key domains of practice are (1) foundational knowledge; 
(2) enhancing health decision- making, processes, and outcomes; 
(3) health information systems; (4) data governance, manage-
ment, and analytics; and (5) leadership, professionalism, strategy, 
and transformation [8,11]. While the high- level domains appear 
similar at first glance, the practice analysis breakdowns of common 
tasks, knowledge, and skills highlight different areas of emphasis. 
Clinical informatics, for example, has the largest number of know-
ledge/ skills focused on enterprise information systems and a strong 
emphasis on improving care delivery and outcomes. Health in-
formatics, on the other hand, has the largest number of knowledge/ 
skills targeting health information systems, with a heavy emphasis 
on data governance, management, and analytics. These differences 
likely reflect the common medical settings of clinicians practicing 
clinical informatics, in contrast to the diverse and more data- 
intensive backgrounds of professionals practicing health inform-
atics [8– 12]. Both clinical and health informaticists engage in broad 
aspects of cancer research, as their ‘toolbox’ of versatile abilities and 
skills allow them to solve complex problems across disciplines, in-
dustries, and sectors [13– 19].

   

 

 

 

      

 

 

 

 

 



Cancer Systems Biology200

20.2. Informatics for big data research

20.2.1. Biomedical big data

An important aspect of cancer research recently enabled by in-
formatics is the use of biomedical ‘big data’, defined as the growing 
volume, variety, and velocity of data describing the many dimen-
sions of human health [20– 24]. This ‘real- world evidence’ or ‘real- 
world data’ has opened up new avenues of research and allowed 
large population- based studies of diverse patient communities to be 
performed at an unprecedented scale and scope [25– 29]. However, 
working with large healthcare databases differs from traditional clin-
ical trials where study design, patient recruitment, and data collec-
tion procedures are clearly defined and well structured [28]. Indeed, 
many real- world healthcare databases are complex aggregations of 
heterogeneous sources, encoded through a fragmented collection of 
data standards, or even composed of substantial volumes of unstruc-
tured data [28– 30]. As a result, these real- world studies often require 
significant data processing or ‘wrangling’ before any comprehensive 
analysis can be performed, making the application of informatics 
and data science critical for success [28– 30].

Traditional approaches for clinical trials generally involve de-
signing a study, recruiting patients, collecting data, and analysing 
results [28]. The complex and manual processes involved with clin-
ical trials often require large teams of specially trained staff, deep 
investment of resources, and multiple years of effort to find, re-
cruit, and enroll eligible patients [16,28,31]. However, for studies 
that primarily focus on publicly available datasets and real- world 
data, the research workflow is often much faster, requires fewer re-
sources, and enables ‘recruitment’ of hundreds of thousands (and 
possibly millions) of eligible patients. In general, the workflow for 
data- driven studies can be summarized through the design, devel-
opment, and implementation of an ‘informatics pipeline’ composed 
of three phases: (1) identification of appropriate datasets; (2) extrac-
tion, integration, and harmonization of data (‘data wrangling’); and 
(3) analysis and visualization of results (Figure 20.1).

20.2.2. Dataset identification (informatics 
pipeline I)

Finding, evaluating, and selecting robust datasets is a critical first 
step for big data research [27]. Once candidate datasets have been 
identified, investigators should assess their scale and scope by under-
standing the population of interest (e.g. patients, participants, sam-
ples, files, etc.), extent of standardization, degree of missingness, and 
availability of other fields (e.g. metadata) describing the core entities 
of interest [32,33]. Good datasets often have a data dictionary or 
other documentation that provide an overview of the metadata 

fields available and their possible values. In general, data that has 
been structured, standardized, or harmonized into a common data 
model will be easier to analyse and require less preprocessing than 
raw unstructured datasets [27]. In addition, investigators integrating 
multiple datasets together (e.g. to benefit from large sample sizes) 
must decide which dataset will serve as the study’s core content and 
which one(s) will play a more supplementary role used for annota-
tion. For example, a researcher may use de- identified patient data 
from institutional Electronic Health Records (EHRs) as the core 
dataset for their study but enhance it with population data from 
the US Centers for Disease Control and Prevention (CDC) or US 
Census Bureau. Finally, it will also be important to assess the cred-
ibility of each source of data, as datasets generated by different sec-
tors (e.g. government, industry, and nonprofit) will vary in terms 
of scale, scope, completeness, update frequency, access restrictions, 
degree of standardization, and even potential quality [32,33].

From a practical perspective, one approach to assessing the quality 
of a dataset involves using the ‘FAIR’ guiding principles for scien-
tific data: Findable, Accessible, Interoperable, and Reusable [34]. 
Firstly, according to Wilkinson et al., datasets with high ‘findability’ 
are characterized as having unique and persistent identifiers, being 
annotated with comprehensive metadata, and accessible through an 
easily searchable repository [34]. Secondly, datasets with high ‘acces-
sibility’ possess robust and clearly defined authentication, authoriza-
tion, and retrieval protocols revolving around persistent identifiers 
and metadata [34]. Thirdly, highly ‘interoperable’ datasets leverage 
robust data models and vocabularies that make scalable integra-
tion with other datasets possible [34]. Finally, ‘reusability’ describes 
datasets with clearly defined data usage rules and provenance to en-
able repeated, consistent use across different research domains [34].

Once datasets have been selected for a study, it will also be im-
portant to understand specific access requirements. While some 
datasets may be open access and publicly available, others (e.g. those 
with sensitive patient or patient health information) may have more 
rules and restrictions regarding access. Organizations sharing ro-
bust research datasets usually have their privacy and access policies 
clearly described, and may require that investigators (or institu-
tions) enter into specific data use agreements, obtain institutional 
review board approval, complete required research/ ethics training, 
or submit short research proposals for review.

20.2.3. Data wrangling (informatics 
pipeline II)

Once datasets are selected, the technical aspects of accessing, in-
tegrating, and transforming data must be addressed. This could 
be done by writing and running queries using a database language 
like Structured Query Language (SQL) to extract needed data and 
relevant fields. Alternatively, many real- world datasets are access-
ible through an Application Programming Interface (API), which 
allows scripts (e.g. in programming languages such as Python or R) 
to access the data over the internet [24,35]. For researchers using 
cloud- based resources, this may also involve transferring datasets 
into a cloud workspace or environment where they can be further 
transformed into an analysis- ready format.

Data integration and harmonization can be a complex and non-
trivial task, especially when dealing with large heterogeneous datasets. 
In general, the harmonization process involves making sure all key 
data and metadata fields are in a structured and standardized format Figure 20.1. Informatics pipeline for biomedical big data research.
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[36,37]. This requires assessing a dataset’s level of standardization, 
which often falls into one of the three categories: (1) raw unstruc-
tured data that needs to be structured and standardized, (2) struc-
tured data that is not standardized or only partially standardized, 
and (3) structured data that has been fully standardized [36,37]. Raw 
unstructured data can be converted into a structured format using a 
variety of tools and techniques, from simple (but time- consuming) 
approaches, such as manual review and extraction by a subject 
matter expert, to automated approaches, such as natural language 
processing [38– 40]. Structured data can be further transformed and 
standardized through the mapping of relevant fields to any number 
of biomedical terminologies, ontologies, nomenclatures, classifi-
cations, or vocabularies [41,42]. Some examples include mapping 
clinical diagnoses to International Classification of Diseases (ICD) 
codes, laboratory tests to Logical Observation Identifiers Names and 
Codes (LOINC) codes, medical procedures to Current Procedural 
Terminology (CPT) codes, or genes as represented in the Human 
Genome Organization (HUGO) Gene Nomenclature Committee 
(HGNC) database [37,41,42]. The final step in the harmonization 
process involves integrating structured and standardized datasets 
so that common data elements in different datasets follow the same 
biomedical data standards. Informaticians with appropriate subject 
matter expertise and a strong understanding of biomedical termin-
ologies are capable of effectively performing these steps. The end-
game of this process should be a single, clean, integrated dataset that 
is ready for robust analyses.

20.2.4. Data analysis (informatics pipeline III)

While the options can be broad, the analysis of large real- world 
datasets usually start with understanding fundamental characteris-
tics of the population being studied, often described in the first table 
(‘Table 1’) of most published studies. Depending on whether data 
are categorical (e.g. nominal and ordinal) or numerical (e.g. discrete 
and continuous), descriptive statistics can include frequencies and 
proportions (or percentages), measures of central tendency (e.g. 
mean, median, and mode), as well as measures of variability (e.g. 
standard deviation, range, and interquartile range) [43– 45].

In general, biostatistical approaches for hypothesis testing in-
volve parametric tests when assumptions of normality, equal vari-
ances, and independence are satisfied [43,44]. Common parametric 
tests include the following: two- sample unpaired t- test when as-
sessing mean differences in two different groups, analysis of vari-
ance (ANOVA) for comparing differences in means between three 
or more groups, and the Pearson correlation coefficient to assess 
the relationship between two different sets of data [43,44]. Non- 
parametric tests are used when the assumptions for parametric 
tests are not satisfied, often deal with frequencies (i.e. counts), and 
commonly include the following: chi- square test, Fisher’s exact test, 
Mann– Whitney U or Wilcoxon rank sum test (analogous to the 
two- sample unpaired t- test), Wilcoxon signed- rank test (the non- 
parametric version of the paired t- test), Kruskal– Wallis (the non- 
parametric ANOVA), and Spearman’s rho (roughly equivalent to a 
non- parametric Pearson correlation coefficient) [43,44].

Additional analysis and visualization of integrated data can be 
performed using several approaches. There are many options ran-
ging from commercial off- the- shelf software to open- source tools to 
home- grown applications. Many solutions are standalone technolo-
gies designed specifically to perform data analysis and visualization. 

However, many packages and libraries have also been developed 
for popular programming languages like Python (e.g. pandas, 
Matplotlib, and Seaborn) and R (e.g. dplyr, ggplot2, and Plotly), and 
which can be leveraged through interactive computing notebooks 
(such as Jupyter Notebooks) [35].

20.3. Informatics and cancer research

While informatics has been leveraged in many areas of biomedical 
research, there are subtle nuances when applying informatics to on-
cology. For example, while some data standards contain broadly 
defined content that must be adapted for cancer research, others 
have content designed specifically for cancer. For example, the ICD 
is a standardized vocabulary to describe many different conditions. 
Current versions in existing US health information technology 
(IT) systems include International Classification of Diseases, Ninth 
Revision (ICD9) and International Classification of Diseases, Tenth 
Revision (ICD10), which contain a rich collection of diagnoses ran-
ging from hypertension to diabetes to Alzheimer’s disease, along 
with many different types of cancers [46]. However, while ICD9 
and ICD10 codes can describe general cancer sites (e.g. lung cancer, 
colorectal cancer, etc.), International Classification of Diseases for 
Oncology, Third Edition codes were created to more specifically and 
accurately describe cancer as a combination of topography, morph-
ology, and behaviour codes [47]. Firstly, topography describes the 
general location or site of the cancer (e.g. lung cancer, colorectal, 
breast, prostate, etc.). Secondly, morphology corresponds to the 
specific histology associated with the cancer (e.g. adenocarcinoma, 
squamous cell, intraductal, small cell, etc.). Finally, the behaviour 
code distinguishes whether the tumour is a benign neoplasm, in situ 
neoplasm, primary malignant neoplasm, or secondary malignant 
neoplasm [47]. In practice, identifying a cancer cohort in real- world 
databases is complex and often involves a combination of different 
structured data elements (e.g. cancer- specific diagnoses, treatments, 
procedures, visits, etc.) as well as diverse data sources (e.g. EHRs, 
claims, patient surveys, etc.) [48– 50].

20.4. Cloud computing

The onset of cloud computing has presented new challenges and op-
portunities for biomedical research in general and cancer research 
in particular. There are active discussions about the overall bene-
fits of performing biomedical research through cloud computing 
compared to ‘on- premise’ resources [35,51]. Broadly speaking, re-
searchers who use ‘cloud computing’ will access and interact with 
data almost exclusively through the Internet since all data- related 
hardware and software are remotely provided by a third- party 
vendor with cloud expertise (e.g. Google, Amazon, and Microsoft) 
[51]. From the researcher perspective, this effectively means that all 
relevant data are stored in the cloud, and all analyses are performed 
with software and analytics tools residing in the cloud as well. There 
are minimal upfront costs by the researcher’s home institution since 
cloud providers are responsible for all updates and maintenance, 
giving users high service availability with relatively little downtime 
[51]. In addition, many cloud vendors offer investigators a variety 
of cloud ‘services’ (e.g. ‘software as a service’, ‘infrastructure as a 
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service’, and ‘platform as a service’) through an on- demand, pay- as- 
you- go basis, allowing for researchers to add or remove services to 
match their specific needs [51].

In contrast, ‘on- premise(s)’ computing involves computational 
hardware and software that is licensed, installed, and maintained by 
the researcher’s home institution. Specifically, all research data are 
stored on servers controlled and maintained within the researcher’s 
organization, along with all relevant software and subsequent ana-
lyses. This approach requires larger upfront institutional invest-
ments in both technical infrastructure and staff for its maintenance 
and support (e.g. software and security updates, hardware replace-
ment, or upgrades). However, it also enables the home institution to 
provide a very consistent, stable, and controlled technical environ-
ment for its research investigators.

One way to better understand these differences is through the 
analogy of ‘buying a home’ (‘on- premise’) vs. ‘renting an apart-
ment’ (‘cloud’). A prospective homeowner must cover substantial 
upfront costs to purchase the home as well as assume responsibility 
for addressing all issues with its repair and upkeep. One major ad-
vantage is that the homeowner has full control over everything 
they want to do with the home (e.g. remodelling, renovating, land-
scaping, etc.). In contrast, someone renting an apartment cannot 
meaningfully alter the apartment (e.g. remove walls, change ap-
pliances, etc.), but only worries about paying for services they 
use (e.g. heat, water, and electricity) rather than fixing things that 
break, which is handled by the landlord. Apartment renters also 
have the flexibility to move to larger or smaller apartments (or en-
tirely different locations) based on their needs and finances. In a 
nutshell, researchers using on- premise technologies (the ‘home-
owner’) have not only full control of resources but also full respon-
sibility for its maintenance, while cloud computing (the ‘renter’) 
offloads both control and responsibility to cloud vendors (the 
‘landlord’) in exchange for dramatic scalability and convenience. 
Just as individuals have different housing needs and preferences, 
specific investigators have different research goals that could be 
addressed through cloud technologies.

20.5. Cloud costs

Understanding how to monitor and manage costs involved with 
using the cloud remains an important barrier to wider adoption of 
cloud resources, and there are several rules of thumb for aspiring 
cloud researchers [52,53]. Broadly speaking, cloud technologies 
provide three important functions for biomedical big data: (1) cloud 
storage, (2) cloud computation, and (3) cloud services [54]. Firstly, 
there is a direct relationship between costs and data storage volume, 
with costs increasing as data storage requirements increase [53,55]. 
Also, data storage retrieval time (‘latency’) has an inverse relation-
ship with costs, meaning cloud costs become more expensive when 
researchers need faster data retrieval times and less expensive if 
slower times are acceptable [53,55]. Secondly, costs associated with 
cloud computation have similar relationships, with costs higher for 
research projects that require (1) more highly configured virtual 
machines instead of ones with fewer features, (2) longer instead of 
shorter data analysis and processing times, or (3) continuous, on- 
demand availability of compute resources instead of flexible or off- 
peak usage [52,53,56].

Finally, cloud ‘services’ have the most variable range of cloud costs 
as their pricing structures depend on the specific technology being 
used, the cloud provider who developed it, and the usage needs of 
the researcher. Cloud- based healthcare natural language processing 
services, for example, take large volumes of raw unstructured text, 
extract relevant medical terms, and assign each term a specific code 
from selected biomedical vocabularies [53,57,58]. However, the 
pricing for this service depends on many factors, including the total 
characters processed, type of analysis (e.g. entity analysis, sentiment 
analysis, syntax analysis), how much de- identification of sensitive 
data was performed, which biomedical data standards were mapped, 
and even where in the cloud documents were stored or analysed 
[53,57,58]. In summary, many factors can influence cloud costs, 
but informed researchers can configure their cloud environments 
to minimize unneeded costs and maximize research productivity.

20.6. Cancer research and the cloud

Practically speaking, there are two main reasons an investigator 
would want to use the cloud for cancer research. Firstly, the cloud 
will likely become necessary to perform ‘big data’ studies of un-
precedented scale and scope. The Genomic Data Commons, for 
example, is one of the many large cloud- based repositories of 
cancer data maintained by the National Cancer Institute as part 
of the Cancer Moonshot initiative [59]. At the time of this writing, 
the Genomic Data Commons alone contains nearly 3 petabytes 
of data or roughly 3,000 times the maximum capacity of a top- 
of- the- line laptop [59]. For investigators planning to perform re-
search involving millions of patients and billions of data points, 
big data storage and computation needs will far surpass the cap-
acity of a single computer (or even institution) to physically handle 
this workload, and the cloud becomes a clear, scalable solution. 
Secondly, cloud vendors with deep technical expertise have created 
many robust big data analytics tools, including services expected 
to play a key role in cancer research: natural language processing; 
search, image/ video processing; and even artificial intelligence, 
machine learning, or deep learning [52,60– 64]. For cancer re-
searchers who cannot find useful open- source solutions or do not 
want to build analytics tools from scratch, these proprietary fee- 
based services provide a powerful option.

20.7. Future directions

20.7.1. NCI Cancer Research Data Commons

The National Cancer Institute (NCI) Cancer Research Data 
Commons (CRDC) is a cloud- based cancer research data ecosystem 
created to accelerate cancer research through big data [22,61,65– 67]. 
In general, the CRDC is made up of two major components: (1) large 
cancer datasets centralized in focused repositories called ‘data com-
mons’ and (2) technical infrastructure in the form of cloud- based 
platforms or ‘cloud resources’. Datasets in the CRDC with similar 
modalities are grouped into individual data commons. For example, 
cancer- related genomic, proteomic, and imaging data are stored in 
the CRDC’s Genomic Data Commons, Proteomic Data Commons, 
and Imaging Data Commons, respectively [22,65]. Other databases 
include the Clinical Trial Data Commons, Cancer Data Service, and 
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Integrated Canine Data Commons [22,65]. Each data commons has 
their own portal where researchers can explore different projects 
with available data; filter for specific cancers, file formats, or meta-
data characteristics; define their own research cohorts; or download 
a manifest summarizing all available files for a given cohort.

The CRDC ‘Cloud Resources’ are cloud- based computing en-
vironments where investigators can ingest, process, and analyse 
big data from the cloud for their research [22]. The three avail-
able CRDC Cloud Resource platforms include (1) Broad Institute 
FireCloud, (2) Institute for Systems Biology Cancer Gateway in the 
Cloud, and (3) Seven Bridges Cancer Genomics Cloud [22]. Both 
the Broad Institute FireCloud and Institute for Systems Biology plat-
forms currently run on the Google Cloud Platform, while the Seven 
Bridges platform runs on Amazon Web Services [22]. Each platform 
provides interactive computing resources (i.e. Jupyter Notebooks), 
along with their own suite of tools geared to users with different 
levels of technical and scientific expertise [22,65]. The CRDC Cloud 
Resources also provide hundreds of preconfigured analytics work-
flows and bioinformatics pipelines, along with the option to create 
new pipelines using the Common Workflow Language or Workflow 
Description Language [22,65,66].

Cancer investigators leveraging the CRDC for research would 
typically follow a few common steps. Firstly, users would search 
all available data commons to identify a collection of datasets most 
relevant for their research. They would then use one of the Cloud 
Resources to load those datasets into their cloud environment, im-
port needed software tools and libraries, and then perform their 
planned analyses. As with any research study, users will need to 
complete required training; gain appropriate review board approval; 
and demonstrate awareness and respect for all data sharing, access, 
and privacy policies and procedures [68].

20.7.2. Precision medicine and the NIH ‘All 
of Us’ Program

Biomedical informatics and cloud computing have begun to trans-
form the current practice of medicine from a ‘one- size- fits- all’ 
approach to a ‘precision medicine’ model that personalizes care 
according to the specific needs of patients [69,70]. The National 
Institutes of Health ‘All of Us’ Research Program is one example 
of a growing trend of using big data, informatics, and cloud tech-
nologies to accelerate precision medicine research. This initiative is 
recruiting a diverse population of at least one million participants 
throughout the United States, particularly from communities his-
torically underrepresented in biomedical research [69,70]. From 
these participants, the All of Us program collects medical data from 
EHRs, genomic data from whole genome sequencing, as well as so-
cial, environmental, and behavioural data from mobile health and 
wearable technologies [69,70]. In addition, informatics approaches 
are being leveraged to harmonize all data into a single repository 
accessible through the National Institutes of Health (NIH) All of 
Us Researcher Workbench, a cloud- based platform available to re-
searchers with appropriate training. Ultimately, this initiative is ex-
pected to help researchers discover highly effective and personalized 
approaches for the diagnosis, treatment, and prevention of a broad 
range of diseases [69,70]. While still in its early stages, the NIH All of 
Us program has already demonstrated potential to positively impact 
research for precision medicine, precision oncology, and for patients 
with cancer [14,15,33,71,72].

20.8.  Conclusions

Biomedical ‘big data’ is capable of accelerating cancer research 
through large studies of real- world evidence increasingly available 
through diverse cancer data ecosystems. Cloud computing can serve 
as the technical infrastructure for the storage and computation of big 
data. Further, biomedical informatics provides the foundation for 
translating raw biomedical data into new research discoveries about 
cancer. The robust and responsible application of informatics and 
big data will help transform the potential of precision medicine into 
a widespread practical reality for patients with cancer.
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Single- cell sequencing analysis focused on 
cancer immunotherapy
Luciane T. Kagohara and Joseph Tandurella

21.1.  Introduction

The development of single- cell sequencing technologies lever-
aged the previous knowledge of tumour heterogeneity and pro-
vided tools to better determine the cell types contributing to 
the intermixed signals in the tumour microenvironment (TME) 
[1] . The single- cell resolution analysis of the TME had a major 
impact on tumour immunology studies, as now it is possible to 
obtain the transcriptional profile of individual immune types 
without the sorting step to isolate the multiple cell types and pro-
file each population individually [2]. Single- cell RNA sequencing 
(scRNA- seq) is the major approach to understand tumour im-
mune responses as it allows cell- type annotations. With that, it 
is possible to examine the heterogeneous cell composition and 
also the molecular features of the immune responses against 
the cancer cells in the absence or presence of immunotherapies. 
Thus, scRNA- seq became a powerful tool to profile the mechan-
isms of response and resistance to immune checkpoint inhibitors 
(ICIs) that revolutionized cancer therapy by providing clinical 
benefits to previously untreatable cancers, but it is still not effica-
cious against the majority of cases [3,4].

Transcriptomics analysis with single- cell resolution, due to their 
genome- wide capability, generates high- dimensional datasets that 
enable a wide range of analysis to determine cell types, molecular 
perturbations, and cell- fate inferences [2] . Nevertheless, these ana-
lyses require robust computational approaches that account for the 
complexity of scRNA- seq datasets to deliver biologically true results 
that could potentially lead to the identification of new targetable 
genes or pathways to develop new therapeutic interventions or to 
overcome therapeutic resistance [5].

This chapter briefly describes the computational analysis of 
scRNA- seq data with a focus on understanding immunotherapies. 
However, the steps described here are applicable to any scRNA- seq 
dataset. The overall aim is to highlight benchmarked good practices 
when handling such precious and complex datasets to properly un-
veil new biological information to improve tumour immunology 
comprehension.

21.2. Single- cell RNA- sequencing 
approaches to examine 
immunotherapy responses

Single- cell gene expression analysis approaches deliver genome- 
wide RNA expression for each individual cell captured during ex-
perimental data generation [1] . The computational analysis of 
scRNA- seq allows a wide range of analyses that include cell com-
position characterization, gene expression and pathway analysis, 
cell- state inference analysis, and intercellular interaction prediction 
[6– 9]. A variety of experimental approaches have been developed for 
scRNA- seq. These technologies differ on the method of cell capture, 
cell barcoding, and sequencing library generation [10– 15]. All the 
approaches ultimately allow cellular composition examination and 
the downstream molecular investigation of biological perturbations.

An increasing number of studies have used scRNA- seq to under-
stand TME heterogeneity and tumour immune responses [16– 29]. To 
better profile tumour immune responses, an experimental strategy 
is applied to isolate the tumour infiltrating leukocytes (TILs), per-
form scRNA- seq only in the immune cells present in the tumours, 
identify immune effector and suppressive cells, and examine their 
transcriptional profiles to better understand tumour immune re-
sponses and mechanisms of resistance to ICIs [16,21,23,30– 34]. The 
application of scRNA- seq to understand immune responses against 
cancer has driven the discovery of cell- state transitions conserved 
across response and resistance to ICIs and provided new insights 
into the development of new therapeutic interventions [5,35]. The 
power of scRNA- seq to study tumour immune responses and their 
modulation by immunotherapeutic agents resides in its ability to 
provide single- cell gene expression profiles of virtually all immune 
populations that can be recovered from a tumour sample. With that, 
it is possible to identify the immune types that are changing as a re-
sponse to immunotherapies from those that remain unaltered. Then, 
within the group of cells that are modulated by ICIs, scientists and 
clinicians can uncover the molecular pathways that are relevant to 
response or resistance in an attempt to identify new targets to in-
crease treatment efficacy.
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The next sections of this chapter focus on the current available 
computational methods to obtain robust and reproducible results 
from scRNA- seq. Those methods are not only applicable to examine 
immune cells infiltrating the tumour but can also be applied to any 
scRNA- seq dataset.

21.3. Computational analysis 
of scRNA- seq

To fully explore scRNA- seq data and examine the impact of hetero-
geneity and transcriptional features on cancer biology, computa-
tional analysis is a major step on handling these high- dimensional 
datasets. The analysis starts with scRNA- seq data pre- processing that 
involves alignment, sequencing quality check, and initial filtering. 
Next, the pre- processed data will pass through additional quality 

check steps and normalization. Then, the data will be corrected for 
clustering and visualization. Finally, the scRNA- seq data will be read 
from downstream analysis: differential expression analysis, pathways 
analysis, cell- fate inferences, and interactions and network analysis 
(Figure 21.1). For all the steps, there are a multitude of open- source 
software available as R/ Bioconductor or Python packages and pipe-
lines that have been peer reviewed and that usually offer detailed 
tutorials to facilitate community accessibility. Pipelines in R, using 
Seurat [36– 40] and Monocle [7,8], and in Python, with Scanpy [41], 
have been extensively applied to analyse scRNA- seq data, and the 
sections in this chapter are fully implemented on those tools.

21.3.1. Pre- processing: alignment and count 
generation

The pre- processing of the scRNA- seq raw data involves the align-
ment of the sequences to a reference genome and the generation of 

Figure 21.1. Single- cell RNA- sequencing computational analysis workflow. (A) Pre- processing of sequencing raw data (FASTQ files) involves read 
alignment to a reference genome to generate count matrix of transcript abundances for each cell in the dataset. (B) The quality of the scRNA- seq data 
is checked for the number of counts, genes, and mitochondrial content per cell; the filtered good quality data is normalized to correct for technical 
noise. (C) The pre- processed scRNA- seq data is examined for batch effect identification and correction (1) and the sparsity is corrected with imputation 
(2). (D) The normalized data underdoes dimensionality reduction for visualization and clustering. (E) The clustered data is analysed to identify gene 
markers for each of the clusters to allow cell- type annotations for downstream analysis. (F) Gene expression analysis is performed to identify differentially 
expressed genes (1) and pathways enriched (2) under biological conditions, predict cell- state transitions using trajectory inference analysis (3), and 
identify gene regulatory networks that could be activated as a result of cellular interactions. Source: Created with BioRender.com

 

   

  

   

 

 

 

 

 

 

 

 

 

   

 

 

 

 

   

 

  

  

 

 



CHAPTER 21 Single-cell sequencing analysis focused on cancer immunotherapy 209

transcript abundances (counts) for each cell (barcode) sequenced. 
This pre- processing converts the raw sequencing files (FASTQS) 
into transcript abundances for each cell captured from the sample 
and is a critical step in scRNA- seq analysis as the downstream com-
putational pipelines depend on these outputs (Figure 21.1A).

Different open- source software for alignment of single- cell 
sequencing data are available. The most commonly applied are 
Kallisto- Bustools [42], Cell Ranger [15], STARsolo [43], and Alevin 
[44]. In general, these alignment tools

 1. read the provided FASTQ files;
 2. map the reads to the reference transcriptome chosen, using ei-

ther classical alignment or pseudo- alignment modalities;
 3. adjust for sequencing errors in barcodes that could be intro-

duced during the library preparation;
 4. perform unbiased cell identification using restrictive unique 

molecular identifier mismatch allowances;
 5. and assign read counts to the respective genes (features) and 

cells barcodes.

The output will invariably be a matrix of feature (gene) counts for 
each barcode or unique cell captured.

Subsequent to alignment and count estimation, the next step is 
to implement a computational pipeline for data quality check, fil-
tering, normalization, dimensionality reduction, and gene expres-
sion analysis. There is a broad range of computational tools for those 
analyses from more user- friendly automated tools, such as Loupe 
Browser (10x Genomics), to less automated and more bioinfor-
matics heavy tools that are available as free, open- source software. 
There is no gold- standard analytical tool for the scRNA- seq analysis. 
Bioinformaticians in general utilize a software or platform they are 
more trained on as long as those computational tools incorporate 
mathematical and statistical methods that make analysis and find-
ings more robust and reproducible. Some examples of software for 
scRNA- seq analyses are R/ Bioconductor packages (Seurat [36– 39] 
and Monocle3 [8,45,46]) and Python packages (Scanpy [41]). These 
software have been peer reviewed, have detailed publicly available 
tutorials, and are broadly used by single- cell bioinformatics. Other 
open- source computational tools are available and have been exam-
ined regarding their performance and can be applied for the analysis 
that is discussed in this chapter [47].

21.3.2. Processing and normalization

Data processing and filtering involves a series of steps to generate a 
final dataset with transcripts captured from high- quality single cells 
(Figure 21.1B). Most pipelines have a default set of parameters in 
place, but for best practices, it is ideal to test different parameters and 
identify those that work best for the data in hand and hypotheses to 
be answered.

Verification for sequencing quality is performed by examining the 
number of counts and features (genes) per cell. The sequencing is 
usually considered low quality when the number of detected genes 
per cell is below 200 genes per cell. However, the number of genes 
expressed might vary depending on the cell type, and the cut- off 
should be established taking into account the tissue, cell type, and 
function. Although high number of genes per cell is a sign of good 
sequencing data, when that number surpasses a few thousand genes, 
it might suggest that for that specific barcode more than one cell got 

captured and sequenced. Doublets, as they are called, are a common 
finding in scRNA- seq datasets and filtered out as it is impossible to 
separate two or more cells that were labelled with the same barcode. 
Finally, other parameters to check to filter out cells with no biological 
relevance to the analysis are those with high mitochondrial gene 
counts as these reads will frequently be a confounding effect during 
the downstream gene expression analysis. To determine the ideal 
maximum percentage of mitochondrial genes present in each cell is 
very subjective, but it typically ranges from 5% to 20%. Nevertheless, 
here is another parameter that should take into account the types of 
cells that are sequenced. Tissues with higher activity, like brain, have 
higher mitochondrial activity than others, and consequently, the 
percent of mitochondrial genes will be elevated even among viable 
cells. This stage of the analysis is probably the most important and 
should be completed carefully because any misstep could introduce 
non- biological signal to the data that would interfere with the final 
interpretation of the results due to the introduction of downstream 
statistical biases in the following steps of the analysis [48]. The rec-
ommendation is that different parameters are tested in each of the 
pipeline steps to understand the data and adjust and apply the cor-
rect cut- offs and thresholds, even if that means going back and forth 
to the initial step multiple times.

Subsequently, data normalization must be performed to address 
any bias or noise from technical artefacts potentially introduced 
during the experimental steps of sequencing library preparation 
(Figure 21.1B). Unwanted bias and noise can be a result of low sample 
input or quality, and technical artefacts from amplification during 
sequencing [48– 50]. Thus, to ensure these non- biological variables 
will not impede proper identification and interpretation of the bio-
logical findings, data normalization is crucial to identify and correct 
the potential unwanted biases that would confound biological in-
terpretation. There are different open- source methods available for 
scRNA- seq data normalization. Another correction applied by most 
of these computational tools is gene expression adjustment based on 
sequence depth in each cell to ensure that gene expression measure-
ment will not be influenced by lower or higher sequencing depth. 
Some of the computational approaches that have been developed to 
identify and remove noise from the data include Linnorm (a linear 
model and normality- based normalizing transformation method 
for scRNA- seq data) [51], SCnorm (robust normalization of single- 
cell RNA- seq data) [52], scran [53], and SCTransform [49].

An experimental option to increase robustness of sample pro-
cessing and normalization is to include engineered spike- in molecules 
added to each lysate specifically for use in proper normalization as 
the level of expression should be fairly consistent across cells [54].

21.3.3. Batch correction and data imputation

Experimental variations are commonly detected on next- generation 
sequencing datasets, and scRNA- seq datasets are not an exception. 
The variations in the data that introduce unwanted bias are known as 
batch effects. Batch effects can result from experimental inconsisten-
cies that could happen from sample collection, processing and ma-
nipulation, until the final sequencing step. Ideally, protocols should 
be designed to reduce batch effects and ensuring consistent proced-
ures for sample handling, pipetting, and reagents usage. However, 
some factors cannot be controlled and thus computational analysis 
for batch effects identification and correction is a mandatory step for 
proper single- cell analysis [55,56] (Figure 21.1C).
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The data normalization does not remove batch effects, and cor-
rection is another essential step in the analysis. Discrepancies in 
features abundances and variations that are not biologically correl-
ated are fairly common in single- cell data. As mentioned previously, 
this has been seen with next- generation sequencing technologies, 
and the single- cell resolution only exacerbates batch effects [57,58]. 
To correct unwanted batch effects in scRNA- seq data, many algo-
rithms have been developed to account for these discrepancies in 
the low- dimensional embeddings used during the visualization. 
Alternatively, manual correction can be performed by preserving 
biological variation in correlation structures and incorporating 
batch as a covariate in downstream analytical steps. The presence 
of batch effects in the data will dramatically impact the downstream 
gene expression analysis and confound the interpretation of the real 
biological findings [55,56].

In addition to batch effects, another future on scRNA- seq datasets 
that can impact the analysis and data interpretation is the high fre-
quency of zeros. The zeros can be interpreted in two ways: true 
biology (lack of gene expression) or technical dropouts (transcript 
that is not captured during library preparation). Technical zeros can 
be introduced when transcripts are rare or when sequencing depth is 
not adequate [59]. To distinguish biological and technical zeros and 
adjust the data for the last step called data imputation is performed 
(Figure 21.1C). Overall, data imputation is an additional method 
used to remove technical noise, more specifically the increased 
sparsity (high frequency of zeros) present in single- cell data [60]. 
During data imputation, the sparsity of the data is examined to esti-
mate the real gene expression for all genes, including those with very 
low abundances. Good computational methods for data imputation 
should not interfere with the downstream gene expression analysis. 
There are various imputation methods to correct data sparsity, which 
can be summarized into three main approaches: (1) those that apply 
probabilistic models, (2) those that consider the diffusion of gene ex-
pression using ‘neighbouring’ cell profiles, (3) and those that use la-
tent space/ deep- learning models of cell representation. An example 
of a highly utilized imputation tools are the SAVER and Magic due 
to their robustness [60,61], created specifically for use in single- cell 
and bulk RNA sequencing. Although data imputation is important 
for adequate downstream analysis, it is still controversial as it can 
introduce false positives in the data due to data heterogeneity as-
sociated with cell number differences across biological conditions. 
Another issue from data imputation considers expression differ-
ences that when small can be lost during imputation. Nevertheless, 
comparisons of scRNA- seq data analysis with and without imput-
ation demonstrate that, even if not perfect, data imputation methods 
improve the robustness of the results [60,61].

21.3.4. Visualization and clustering

The normalized scRNA- seq data is represented by high- dimensional 
matrices of transcripts abundances for each cell captured. The high 
dimensionality imposes challenges to the application of standard 
visualization methods as they mostly rely on 2D or 3D graphs. Thus, 
dimensionality reduction is performed to allow visualization and 
downstream analysis (Figure 21.1D). Most biological processes (cell 
types, state transitions, etc.) do not occur at the single feature (gene) 
level but rather encompass measurements of the correlations across 
multiple features, allowing the application of dimensionality reduc-
tion for scRNA- seq [62– 64].

Currently, the most frequently used computational methods for 
data dimension reduction are the t- distributed stochastic neighbour 
embedding (t- SNE) [65] and the uniform manifold approximation 
and embedding (UMAP) [66]. The resulting plots from both com-
putational methods are a representation of each individual cell in the 
data with the preserved distances among cells within the axes cor-
responding to the distances separating them molecularly— meaning 
that the distance between the cells in the plot represents their simi-
larities. The more similar the cells’ gene expression profiles are, the 
closer they will be represented on the plot. As previously mentioned, 
the transition from high dimension to lower dimensions is able to 
retain the genetic profile while minimizing the number of compo-
nents to plot. The UMAP and t- SNE methods work in similar ways. 
However, while UMAP balances the global structure of points, t- 
SNE allows adjustments to preserve the distance of nearby points 
with more distant clusters. Typically, a single embedding is used 
at a time to keep the consistency across analysis and comparisons. 
Following dimensional reduction, the cell groups (clusters) can be 
coloured based on their expression profiles or cell- type annotations 
[65,66].

In summary, dimensionality reduction is applied for visualization 
and as a tool to examine cells’ gene expression variations and simi-
larities, but additional approaches are required for biological infer-
ences in interpretation of the visualized data.

21.3.4.1. Cell- type annotations

Cell- type annotations from scRNA- seq data (Figure 21.1E) are 
the initial step to determine cell proportions and compare changes 
across biological conditions (e.g. treated vs. untreated; therapeutic 
response vs. resistance; and long vs. short disease- free survival) as 
those are usually performed within specific cell types. Clustering is a 
suitable approach to annotate cell types in scRNA- seq. Gene markers 
that are specifically expressed by groups of cells are used to iden-
tify cell clusters. The number of cell types and subtypes identified 
in the data depends on the number of clusters obtained and that is 
tightly correlated with the number of dimensions (resolution). The 
resolution will determine the granularity of cell- type delineation, 
which can be taken into account using ensemble- based clustering 
[67– 69]. Thus, a common practice is to test clustering with multiple 
numbers of dimensions and examine the gene markers identified for 
each cluster and with that attempt cell- type annotation. Combined 
with the gene markers, it is possible to apply gating strategies similar 
to that applied for flow cytometry. This combined approach al-
lows the identification of major cell types (e.g. B cells, T cells, and 
myeloid cells) using a gating strategy, while the gene markers from 
the clustering will provide more granularity and information re-
garding the molecular heterogeneity of the cells captured. For cell 
clustering, both t- SNE and UMAP are suited to provide clustering 
for the identification of distinct cell types. Many of the clustering 
algorithms used in single- cell analysis use social network tools to 
identify groups of cells with similar expression levels [70,71]. Once 
identified, these clusters contain unique profiles of expressed genes 
that will serve as markers to annotate the cell- type identifier of the 
cluster. Sub- clustering within clusters may be additionally com-
pleted to delineate specific cell subtypes. A prime example of this 
would be the clustering of the tumour infiltrating immune cells in 
a sample, where initial clustering will separate the immune lineages 
(lymphocytes, monocytes, and granulocytes), but sub- clustering 
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within the lymphocytes will allow for the annotation of CD4+  and 
CD8+  subtypes. This is the standard practice in cell- type annota-
tion, in which clustering and sub- clustering are tools that support 
the identification of the groups of cells with similar transcriptional 
profiles and states.

The manual annotation of cell types is a strenuous process that 
requires knowledge of cell- specific markers. Most frequently, the 
described cell- type markers are defined based on protein markers 
adding a new challenge to the annotation process as RNA abun-
dance of some markers is not perfectly correlated with protein 
abundance with genes that are not translated into proteins that still 
present basal levels detected in the scRNA- seq data. To facilitate 
annotation, several methods, like Azimuth [38], have been devel-
oped to automatically infer the identity of individual cells or clus-
ters with the use of public domain reference cell databases or atlases, 
such as the Human Tumor Atlas Network [72]. The automated tools 
will correlate the cell- type expression profiles in the reference data 
with the profiles in the target data. This approach is considered to be 
more robust as the results can easily be reproduced across studies, 
but requires a comprehensive and laborious back end where these 
cell types were previously annotated at the desired level of granu-
larity in the reference dataset. The automated approach will not be 
adequate if the desired cell types are not present in the reference or 
if the granularity expected is not present. In the case that a cluster of 
cells cannot be annotated using this method, manual annotation will 
be required. It should be noted that different tissues have variable 
expression, so one should ideally use a reference of the same tissue 
within the model organism. Additionally, ideal annotation using a 
signature- based method will include a brief manual validation of the 
annotations.

21.3.5. Differential gene expression analysis 
and pathway analysis

Following cell- type classification, the analysis to examine the bio-
logical relevant perturbations can be performed with differential 
gene expression analysis (DGEA) followed by gene set enrichment 
analysis (GSEA) or pathway analysis (Figure 21.1F). The DGEA will 
compare the expression levels for each gene between the biological 
conditions in question within the cell type of interest. For the com-
parisons, multiple statistical tests are available with the most robust 
results obtained with negative binomial tests [47,49,73,74].

An alternative method to perform DGEA on scRNA- seq data is 
to perform pseudobulking. Pseudobulking refers to the aggregation 
of captured cells gene counts to create a bulk RNA- seq count ma-
trix. This is particularly of use when there are confounding variables, 
such as different captured cell numbers across patients. To complete 
this, a sum aggregation of gene counts by cell types and patients will 
be completed followed by a typical bulk RNA- sequencing analysis 
protocol [75].

Standard GSEA or pathway analysis tools can then be applied to 
determine the molecular pathways that were altered based upon the 
results of these differential expression analyses [76,77]. While com-
paring gene- level differences due to treatment provides individual 
gene changes, exploring changes in biological processes is also pos-
sible with scRNA- seq datasets. In the case of treatment, gene- level 
changes might not be as drastic as expected; however, pathway- level 
changes may be present. During GSEA, changes in predetermined 
gene lists across the perturbations in the data are examined. The 

pathway analysis is performed upon DGEA completion and uses the 
statistics from the differential analysis to rank genes. Preselected sets 
of pathways or molecular signatures are required as input for the 
analysis that uses an enrichment score statistic, calculated from a 
vector of gene- level statistics [77]. This enrichment score is calcu-
lated for each pathway provided, where a multiple hypothesis cor-
rection is applied to generate adjusted p- values.

While DGEA followed by pathway analysis is extremely useful 
in identifying changes within a cell type, there are additional mo-
lecular changes that may not be limited to single- cell types but ra-
ther will result in state transitions across all immune cell types. To 
address this issue, non- negative matrix factorization approaches 
have been developed. These methods work to uncover overlap-
ping, low- dimensional patterns of additive variations that occur 
simultaneously to multiple cell types in the data. These patterns, or 
sets of genes, can then undergo a pathway identification to better 
understand which genes are present in these patterns and their bio-
logical functions. Each pattern has the potential to represent a single 
biological process that encompasses multiple signalling pathways 
[78– 80].

21.3.6. Trajectory inference analysis

One of the advantages of scRNA- seq analysis is the possibility 
of inferring cell- state trajectories based on cells RNA content 
(Figure 21.1F). This is possible because the cells, although captured 
at the same time, do not all present at the same state. Trajectory infer-
ence analysis methods allow for the visualization of cellular changes 
over time and space. The computational approaches to infer the tra-
jectory of the single cells use the gene expression profiles to order the 
cells in a continuous trajectory that represents a pseudotime of the 
evolution of each cell during the development of a biological process 
[46,81,82]. During the analysis, a pseudotime score, that is represen-
tative of cells’ position in the biological process trajectory, is assigned 
to each cell. With that, the pseudotime analysis allows the prediction 
of continuous changes in the gene expression dynamics to identify 
cell states across biological processes. In recent years, many trajec-
tory inference methods have been developed; each differing in their 
underlying algorithms and expected topology profiles. Most of these 
methods work to order cells along an assumed topology (i.e. cyclic, 
linear, and bifurcating), while recent methods infer the topology of 
the trajectory [46,81,82].

The accuracy of the cell- fate predictions depends on the algo-
rithm of choice and also on the features of the dataset. For example, 
TILs encompasses multiple cell types that are heterogeneous re-
garding their differentiation processes and state transitions. Thus, 
to obtain realistic cell trajectories, TILs are sub- clustered and the 
subtypes of interested are extracted from the dataset for the cell- 
fate inference analysis [Savas 2018]. Cell- fate or trajectory inference 
analysis is an important step to understand cell- state changes that 
are induced under specific conditions, such as treatment with ICIs, 
and can be useful to predict immune cell evolution during cancer 
evolution.

21.3.7. Gene regulatory network and cellular 
interaction analysis

Another pertinent information to understand tumour immune re-
sponses is to understand if the cells in the TME are interacting. For 
example, is tumour reduction a result of immune cell killing elicited 
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by treatment with ICIs? In scRNA- seq datasets, the possibility of 
isolating each cell allows cellular interaction analysis to infer which 
cell types are interacting and the molecular consequences of such 
relations.

While simultaneously analysing molecular changes, gene regu-
latory network (GRN) inference is an analysis tool that allows for 
the understanding of the interactions occurring between genes 
within and between cells to gain an additional perspective of the 
underlying molecular regulation (Figure 21.1F). GRN tools were 
originally created for bulk RNA data, but advances in single- cell 
resolution have allowed for these tools to look within and between 
cells rather than only quantifying the correlation between pairs 
of genes within bulk datasets [83]. Overall, GRN computational 
methods learn the gene networks in the data, providing a snapshot 
of the activated pathways in each cell. Then, it identifies pairs of 
genes (e.g. ligand– receptor pairs) that can modify the activity or 
expression of one another. With that, it is possible to identify the 
cell types expressing the ligands of interest and those expressing 
the matched receptor and examine the activation of the pathways 
between the cell types to infer the result of the potential cellular 
interaction [84,85].

Newer approaches have been developed to model the heterogen-
eity of single- cell data, such as extensions for time- course data or 
comparing changes across treatment arms [9,86– 89]. For example, 
the utilization of temporal ordering by first applying trajectory in-
ference methods allows for GRN inference methods to predict gene 
expression regulation through the use of temporal changes when 
each gene begins expression across time, predicting how genes regu-
late one another within each cell [90– 92]. In addition to exploring 
temporal changes in gene regulation using GRN tools, many regu-
latory processes also occur between cells through the use of cell- to- 
cell contact and paracrine signalling. To estimate these interactions, 
additional GRN tools have been developed to look at co- expressing 
genes, further referred to as known ligand– receptor pairs, across 
cell types.

21.4.  Conclusions

The recent and quick development of single- cell sequencing de-
livered a powerful tool to examine cancer biology while accounting 
for its complex and heterogeneous TME. Among the single- cell ap-
proaches, gene expression profile at the single- cell level is the most 
used as it allows for cell- type identification combined with the profile 
of the transcriptome. Thus, scRNA- seq provides valuable informa-
tion to understand molecular perturbations and cell- state transi-
tions. These capabilities are valuable features to understand how the 
cells infiltrating the tumour are modulated by immunotherapies and 
how they interact with the tumour cells. The experimental develop-
ments were followed by advancements in computational analysis. 
Using robust algorithms, it is possible to classify cell types, compare 
gene expression changes, and infer cells evolution and interactions. 
Therefore, using meticulous established experimental and compu-
tational pipelines, it is possible to obtain an informative dataset that 
will infer how immune cells in the tumour respond to ICIs and how 
it drives tumour killing or how the immune cells change from an ac-
tive to an exhausted state that allows tumour regrowth.

Nevertheless, scRNA- seq requires careful experimental design 
as we demonstrated in this chapter that numerous confounding ef-
fects can be introduced in the data. Moreover, assistance from com-
putational scientists is critical to support the experimental design 
(sample size and number of replicates) and analysis. Without proper 
selection and application of the computational algorithms based on 
the hypotheses to be addressed, the full potential of the data cannot 
be explored. New translatable discoveries from scRNA- seq data re-
quire a multi- disciplinary approach from sample handling, through 
the computation analysis, to the data interpretation. The analysis 
of scRNA- seq datasets to leverage our knowledge on immunother-
apies is already a reality, but it is mostly a profiling approach to pro-
file the TME in response to ICIs. To translate the findings into new 
immunotherapeutic interventions, the scRNA- seq findings must be 
mechanistically validated at the bench using preclinical models and 
gold- standard methodologies.

Future developments in single- cell approaches for multi- omic 
profiling of the same cells, in computational algorithms to address 
the complexity of single- cell datasets, and in the creation of multi- 
disciplinary teams of scientists are critical to unleash the full poten-
tial of single- cell analysis and are already a reality. Altogether, it will 
provide a deeper knowledge of tumour immune responses and its 
dynamics that will conclude with new therapeutic agents to trigger 
more efficient responses and increase the number of cancer patients 
who benefit from immunotherapies.
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Application of artificial intelligence to 
overcome clinical information overload    
in cancer
Arnulf Stenzl, Jennifer Ghith, and Bob J.A. Schijvenaars

22.1. Needs and challenges 
of clinical information overload

There has been unprecedented growth in the volume and   
availability of published biomedical data over the past decade,   
exceeding 38 million publications in MEDLINE/ PubMed by April 
2025. Similarly, a basic PubMed literature search using the word 
‘oncology’ identified >80,000 scientific publications related to clin-
ical trials in oncology from January 2010 to May 2025. Furthermore, 
approximately 25,000 cancer- related articles were accepted in 10 
high- impact oncology journals in 2024 (Figure 22.1A). Alongside 
this growth in biomedical data is the emergence of artificial intelli-
gence (AI) literature. The 2025 AI Index Report highlights that the 
total number of AI journal publications in computer science more 
than doubled between 2013 and 2023, from approximately 102,000 
to 242,000 (Figure 22.1B) [1] .

The coronavirus disease 2019 (COVID- 19) pandemic changed 
the dynamics of research and science communication. Publishers 
responded by expanding offerings, with new spinoffs and a surge in 
sister journals. For example, Springer Nature launched Nature Cancer 
in January 2020, and the British Medical Journal (BMJ) started pub-
lishing online- only BMJ Oncology in October 2022. In parallel, pub-
lishers are developing AI- focused journals, such as the New England 
Journal of Medicine AI, to accommodate the rapidly growing med-
ical AI literature and create a stronger evidence base for the clinical 
applications of AI. During the pandemic, journal editors expedited 
the dissemination of COVID- 19 research through fast- tracked peer- 
review processes, and online preprint repositories expanded. Over 
125,000 articles were released on COVID- 19 in 2020, of which more 
than 30,000 appeared on preprint platforms. Publication using pre-
print platforms continues to grow post  pandemic despite concerns 
over the lack of traditional peer review and the elevated risk of poor- 
quality research dissemination [2] .

In addition to the surge in scientific data, digital advancements 
enabled a substantive increase in patient- level data, including 

electronically recorded patient- reported outcomes (PROs) and 
other health data from wearables, mobile apps, electronic health re-
cords (EHRs), and periodically collected imaging, digital pathology, 
and multi- omic data [3] .

22.1.1. Information overload 
in clinical practice

Clinicians work in fast- paced, data- rich environments that re-
quire digital communication to search for medical information 
[4] . Clinicians select information sources based on relevance to 
clinical practice, content credibility, accessibility, and usability 
[5]. In a 2021 internal survey of 150 US and EU urologists and 
oncologists treating prostate cancer (PCa), respondents iden-
tified time- consuming searching for complex information, and 
lack of relevant and accessible materials as barriers to successful 
information seeking. Most respondents also considered the use 
of trusted, comprehensive, and unbiased sources, and automated 
concept- based rather than keyword- based searches as important 
features of an effective question-answering (QA) tool. A summary 
of the electronic knowledge resources used by healthcare profes-
sionals (HCPs) and researchers and their key features is presented 
in Table 22.1.

Clinicians are often unaware of different search strategies    
(e.g. keywords, Boolean operators, medical subject headings 
[MeSH], and filters) [5]  and make their queries in natural language 
[6]. Further, traditional QA methods are not scalable to medical in-
formation overload and fail to filter out irrelevant information and 
provide tailored answers to queries, which poses challenges to ef-
fective information extraction by HCPs [7]. There are concerns, par-
ticularly with the emergence of generative AI, that personalization 
algorithms can introduce or strengthen confirmation and popularity 
biases, creating filter bubbles, promoting trending information that 
underrepresents higher- quality content, and facilitating manipula-
tion by social bots and spread of misinformation or low- credibility 
content [8].
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Persistent exposure to information overload leads to unsustain-
able workload, cognitive burden, inconsistent documentation of 
care actions, and reduced performance, causing unfavourable im-
pact on clinicians’ health and patient outcomes [4, 9]. This also 

applies to oncology where cancer information overload causes 
worry and confusion among patients, practice inconsistency, scepti-
cism, uncertainty, distrust of medical evidence, and potential lack of 
awareness of or adherence to recommendations [10].

Figure 22.1. The number of (A) PubMed publications in high- impact oncology journals (according to journal impact factor) during 2015–2025, 
data as of May 2025; and (B) publications in AI journals during 2013– 2023. Source: Adapted from ‘The AI Index 2025 Annual Report’ by Maslej N,   
et al. Stanford (CA): Institute for Human-Centered AI, Stanford University; 2025. CC BY-ND 4.0 [1] .
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(continued )

Table 22.1. Examples of electronic bibliographic databases, literature search platforms, and medical knowledge resources commonly 
used by clinicians [5,11,12].

Platform Organization Features Access

Bibliographic databases

Cochrane Library Cochrane    
(published by Wiley)

A collection of six databases that contain high- quality, independent evidence 
to inform healthcare decision- making, including the Cochrane Database of 
Systematic Reviews and CENTRAL; CENTRAL includes citations to trials from 
MEDLINE, Embase, ClinicalTrials.gov, and other sources

Free search; access to the 
citation records or full text 
requires a subscription

ClinicalTrials.gov NIH The largest searchable registry and results database of clinical trials; contains over 
536,900 research studies in 221 countries and all 50 US states

Free access; free registration 
of clinical trial details

Embase® Elsevier A comprehensive bibliographic database of biomedical and pharmacological 
literature, including journals not indexed in MEDLINE and conference literature; 
links to the full- text articles, if available

Subscription- based

PubMed® NLM NCBI A bibliographic database of life sciences and biomedical information published 
since 1966; facilitates searching across three NLM literature resources, i.e. MEDLINE, 
PubMed Central, and Bookshelf; MEDLINE is the primary component of PubMed; 
records are indexed with MeSH; MEDLINE citations in PubMed contain a link to (free 
or access- restricted) full texts archived in PubMed Central or at the journal website

Free access

AI- based medical literature search platforms

Causaly Causaly Search and analysis of scientific literature, clinical trials, and side- effect databases; 
maps relationships within scientific data

Paid access

Dimensions Digital Science and 
Research Solutions Inc.

Search and analysis of scientific literature, grants, clinical trials, datasets, patents, 
and policy documents; graph- based visualization of key elements in the 
published articles; full- text pdf files of some publications are available to directly 
view and download; comprehensive coverage, including book chapters and 
some proceedings papers

Free limited version for 
personal, non- commercial 
use; also offers paid access

Dr.Evidence® Dr.Evidence    
(Doctor Evidence, LLC)

Search and monitoring of scientific literature, conferences, clinical trials, grants, 
patents, RSS feeds, and drug labels; identifies and filters studies containing   
real- world data

Paid access

EVID AI Genesis Research 
Group

Gap and landscape analysis of scientific literature; allows comparative 
effectiveness studies

Paid access

Galactic AI™ Biorelate Ltd Search and analysis of biomedical literature; drug discovery; causal search 
capability; detects and categorizes the relationships linked to search terms;   
lists the relationship type by confidence interval

Paid access

Google Scholar Google Search and indexing of scholarly literature; analysis of scientific web content and 
patents; full- text pdf files of some publications are available to directly view   
and download

Free access

IRIS.AI Iris AI AS Scientific literature processing and research landscape mapping Paid access

Meta AI Meta Platforms, Inc. Scientific literature search and curation of feeds on biomedical topics Paid access
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Platform Organization Features Access

scite_ Scite LLC Search and analysis; checks if citations have been supported or disputed by 
others; basic QA functionality to find answers from full- text articles for natural 
language research queries

Paid access; researchers 
can access a very limited 
number of reports and 
visualizations, and set up 
author alerts for free; QA 
function is free to use

SciBite SciBite from Elsevier Search and analysis; semantically extracts scientific terminology from 
unstructured text and converts it into clean, contextualized data

Paid access

Scopus Elsevier Search and analysis of scientific literature curated by an advisory board; interface 
is also available in Chinese and Japanese; full- text pdf files of some publications 
are available to directly view; links to the repository version of the articles; 
covers peer- reviewed journal articles with substantial references and citations, 
conference proceedings, and book chapters

Free access to Scopus; 
preview features

Semantic Scholar Ai2, The Allen 
Institute for Artificial 
Intelligence

Search and analysis of biomedical literature; highlights and graphically represents 
the key elements of a paper; provides access to full- text articles; citations cannot 
be exported; does not search licensed resources

Free access

Web of Science Clarivate Search and analysis of scientific literature; contains non- English regional citation 
indexes; full- text links to the subscribed databases; covers journals, books, 
proceedings, meeting abstracts, book reviews, and patents; does not include a 
book citation index

Subscription- based

Medical knowledge and point- of- care learning resources

epocrates® epocrates, Inc. Point- of- care decision app for mobile devices; free version provides drug information, 
interaction check, pill identifier, clinical practice guidelines, formulary, and dosing 
calculators; full version (Epocrates+ ) contains peer- reviewed disease content from 
the BMJ, alternative medicine monographs, ICD 10th Revision and Current Procedural 
Terminology codes, infectious disease treatment, and laboratory tests

Full version requires a 
subscription

DynaMed® EBSCO Industries, Inc. Point- of- care resource for health information; publishes and monitors NICE 
guidelines; includes concise summaries and detailed recommendations based on 
the most current evidence; contains Micromedex® drug content

Subscription- based

UpToDate® 
Lexidrug™ 
(formerly 
Lexicomp®)

Wolters Kluwer Drug reference tool for healthcare professionals consisting of pharmacological 
databases, with information on prescription drugs and over- the- counter 
products, medical calculators, drug interactions, and patient education handouts

Subscription- based

Micromedex® Merative Multi- database drug search engine that provides evidence- based information 
for prescription drugs and over- the- counter products), diseases, toxicology, and 
alternative medicine; includes patient counselling tools; “Ask Watson” search uses 
AI to produce answers to simple drug reference questions

Subscription- based

Medscape® WebMD Point- of- care drug and disease information for physicians across subspecialities; 
provides access to MEDLINE and other databases; customizable user profile 
settings for enhanced learning; provides customized medical news, clinical trial 
coverage, drug updates, journal articles, and continuous medical   
education activities

Free to use after initial   
free registration

QxMD QxMD Software, Inc. QxMD platforms (Read and Calculate) include point-of-care medical literature 
surveillance, clinical calculators, and interactive decision-support tools; provide 
access to PubMed, with personalized trending literature feeds and subspecialty 
specific article collections

Free to use after initial free 
registration; access with 
no separate registration for 
Medscape Network users

UpToDate® Wolters Kluwer Point- of- care medical resource for physicians; primarily covers internal medicine 
and its subspecialties; addresses specific clinical issues in the form of topic 
reviews, although the expert- directed evidence acquisition and synthesis 
process is not clear

Subscription- based

of Medicine; QA: question answering; RSS: Really Simple Syndication.
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22.1.2. Artificial intelligence to address 
information overload

AI is emerging across oncology in areas such as diagnostics, digital 
pathology/ imaging, multi- omics, drug discovery, and prognostics 
[13,14]. Although AI applications in biomedical literature mining, 
knowledge discovery, and writing novel content within academic pa-
pers and grants had been a nascent field [3,15], rapidly advancing cap-
abilities in generative AI, such as ChatGPT (Generative Pre- trained 
Transformer), are making this an increasing area of focus [16– 18].

AI can overcome information overload and support decision- 
making by enabling clinicians to efficiently search and synthesize lit-
erature and trial databases, extract meaningful information, identify 
knowledge gaps, promising research directions, and rapidly chan-
ging landscapes [11] . This can be enhanced by AI- assisted analysis 
of real- world evidence (RWE) through text- mining and processing 
of real- world data, including clinical records (e.g. EHRs), discus-
sion posts in cancer patient forums, electronic message exchanges 
between patients and care providers, patient– physician question 
and answer sites, and narratives in social media feeds [19]. RWE 
can assist physicians in addressing complex cancer- related queries 
on demographics, model- based predictions, treatment efficacy and 
side effects, and PROs [19]. AI tools also factor into improved health 
literacy in cancer care through text translation and simplification of 
scientific language into more understandable plain- language sum-
maries, with potentially favourable impacts on patient– provider 
communication, care experience, and outcomes [20]. Generative AI, 
in particular, has the potential to be used not only to support clinical 
practice (e.g. by reducing the administrative burden of note-taking, 
integration into EHRs, predicting disease risk and outcome, and re-
fining personalized medicine) but also in the evolution of scientific 
communications and data dissemination (e.g. writing scientific pa-
pers, literature searches, and summarization) [21,22].

22.1.3.  Takeaways

Increased volume and availability of information as well as improve-
ments in the democratization of medical knowledge are cause for 
celebration; however, exposure and access to this torrent of informa-
tion is a double- edged sword.

Widely accessible medical information helps identify precise 
answers to queries and develop effective strategies for improving 
patient outcomes. However, processing large amounts of informa-
tion, as well as potential misinformation, is time- consuming and 
labour- intensive.

AI technologies can provide accurate and contextualized answers 
to specific queries of users, driven by their background characteris-
tics and predicted interests. AI developers, however, need to guard 
against exacerbating bias and incorporating misinformation into 
their algorithms. When developing AI tools, do so with full constitu-
encies in mind— developers are encouraged to bring in diverse teams 
to evaluate tools at an early stage and identify potential concerns.

22.2. Information retrieval, QA, and 
generative AI in the medical domain

Information retrieval systems are algorithms focused on facili-
tating the processing of large, mostly textual documents to extract 

information and answer user queries by identifying keywords and 
matching them with documents. Historically, information retrieval 
systems relied on a lexical approach using simplified text represen-
tation models, which captured the meaning of a text by counting the 
frequency of each word [23]. In the medical literature, semantic gap 
and vocabulary mismatch between the query and source document 
are challenges because of high variability in language and spelling, 
frequent acronyms and abbreviations, and ambiguity of document 
contexts. These issues are addressed by semantic searches on struc-
tured knowledge sources (MeSH and International Classification 
of Diseases) that link medical terms to associated meanings or un-
structured knowledge, i.e. collections of raw text (MEDLINE and 
EHRs), to automatically establish semantic relationships between 
words, phrases, and documents [23]. Linking text documents to 
knowledge requires semantic annotation that involves identifying 
medical entities/ concepts in the document (named- entity recog-
nition), relationships between entities (relation extraction), and 
connections between entities/ concepts and the whole text docu-
ment (text classification). Semantic annotation can occur at the 
document level but can also be assigned to individual terms in a 
text to allow for searches for two entities (terms) in close proximity 
(e.g. polyps and prognosis). Relationships can also be leveraged in 
search, e.g. by searching for general terms (tyrosine kinase inhibi-
tors) and retrieving documents about more specific information 
(dasatinib, nilotinib, etc.).

Data mined from multiple knowledge sources can be integrated 
into a graph structure called a knowledge graph. A knowledge graph 
represents a network of interlinked descriptions of semantically re-
lated entities, concepts, and terminologies in a particular domain 
of knowledge (ontologies). Semantic representation of structured 
knowledge in knowledge graphs has important applications in se-
mantic search, text analysis, generation of natural language, and 
complex QA [24].

Modern information retrieval systems include search en-
gines, platforms, QA systems and, recently, large language models 
(LLMs), and generative AI. Search engines (e.g. PubMed) operate 
on keyword- based information retrieval and return algorithmically 
ranked documents for the user to access and review to find answers. 
Platforms store, organize, and share data in a structured and search-
able manner, which enables automated information retrieval and 
data visualization via web application programming interfaces [25]. 
QA systems analyse a question posed in natural language, process 
semantically related documents from existing knowledge sources, 
extract matching text passages from the documents, and return 
fitting answers [26]. QA systems use natural language processing 
(NLP), an AI field that combines linguistics and computer science, 
to identify natural language rules (syntax, semantics, morphology, 
and pragmatics) and transform them into a machine- readable 
format (semantic transformation). Additionally, QA systems em-
ploy machine- learning (ML) techniques to automatically mine the 
literature and extract contextual information related to domain- 
specific queries [11] . LLMs are pre-trained on large amounts of texts 
without labelling efforts to learn the rules and associations within a 
language and then fine- tuned with a small, labelled training set to 
produce outputs for specific NLP tasks, such as text generation and 
QA [27]. The advent of LLMs will provide a significant boost in the 
capabilities of QA systems, although there are still shortcomings to 
address.

   

 

 

   

 

 

 

   

  

 

 

 

 



Cancer Systems Biology222

22.2.1. Medical QA systems, LLMs, and 
generative AI

Medical QA datasets, including biomedical and clinical datasets 
(Table 22.2), are crucial for training LLMs on biomedical data and 
benchmarking their capacity to perform NLP tasks, such as QA 
on smaller datasets. Large datasets, such as PubMed and PubMed 
Central, contain semi- structured documents with section annota-
tions that cover various medical subfields important for building 
medical QA models. One limitation is the failure to return accurate 
answers to clinical queries. In comparison, clinical datasets accom-
modate semantically annotated unstructured documents (e.g. EHRs 
and handwritten clinical notes) that cover a wide range of clinical 
topics and are prominent sources for training deep- learning models. 
Recently, open-source LLMs, such as Llama 3 and Mistral, have be-
come significant starting points for fine-tuning medical LLMs. This 
leverages their general language understanding for more efficient 
adaptation to medical data. Models like BioMistral and the more 
recent OpenBioLLM-Llama3 [28], which were directly trained or 
fine-tuned on medical text, demonstrate this trend. While medical 
data quality still impacts performance, the use of strong open-source 

foundations could improve results, although it needs further study. 
These advancements offer promising routes for better medical QA 
(Table 22.3); however, ongoing evaluation for reliability remains 
essential.

Language models (LMs) have evolved over the last 60 years from 
the early rule- based models to deep- learning models that employ 
NLP and ML techniques. Subsequently, transformer- based LMs, 
such as Bidirectional Encoder Representations from Transformer 
(BERT), with attention/ self- attention and unsupervised learning 
capabilities were developed. This landmark achievement gave rise 
to emerging/ cutting- edge LMs such as OpenAI’s GPT models , 
Google’s Gemini, and Meta’s LLaMa. These are just a few examples, 
and due to the fast- evolving nature of the field, there will certainly 
be more by the time of this book’s publication. These models can be 
fine- tuned with a small, labelled training set for more difficult NLP 
tasks, such as indexing, ontology matching, semantic reasoning, 
automatic translation, mathematics, and coding; and natural lan-
guage generation for summarization or even generation of novel 
text, sounds, or images, and conversational interaction with users 
[29– 34].

The most recent advances in generative/ conversational AI tools 
include the integration of multimodal LLMs into everyday tools like 
Microsoft Office and Google Search [16–18]. Multimodal LLMs ac-
cept different formats of input (image and text) and generate text 
outputs. Self-learning AI tools combine GPT with a notable major ad-
vance in the field, i.e. the use of reinforcement learning from human 
feedback, to score the responses to a given prompt by the fine- tuned 
LM and to optimize the generated text for user intent. This tool uses 
a dialogue format that allows for answering follow- up questions, 
while declining questions with inappropriate text [18]. These cap-
abilities may help with hypothesis generation, scientific writing, and 
RWE analysis. The latest versions of ChatGPT are built into the AI- 
powered Bing search engine using Microsoft’s Prometheus model 
to provide more accurate answers and offer responses to current 
events. Microsoft has also integrated the OpenAI technology into 
Microsoft 365 Office, known as Copilot.

ChatGPT has been listed as a co- author on numerous published 
research papers, although its authorship is highly controversial 
[35]. Some editorial boards have stated that inclusion of LLMs in 
the author list is not appropriate as this does not align with current 
International Committee of Medical Journal Editors guidance, and 
recommend against crediting or citing AI- assisted technologies as 
authors due to the lack of responsibility for the accuracy, integrity, 
and originality of the submitted material [36,37]. As such, authors 
should disclose and describe any use of such technologies in the pro-
duction of their work. ChatGPT- generated research abstracts have 
also been vague, falsified, and poorly styled to journal specifications 
despite convincing readability and originality [38]. Furthermore, 
ChatGPT is not trained on sufficiently specialized scientific litera-
ture to generate accurate, evidence- supported, and academically 
plausible content. Akin to other LLMs, ChatGPT can hallucinate 
seemingly authoritative but conceptually incorrect, misleading, or 
nonsensical answers [39]. Cost and computational requirements, 
copyright and licensing issues, credibility, explainability, safety, re-
sponsibility, and unpredictable societal changes are other important 
considerations [39].

A brief history of the evolution and important characteristics of 
QA and LMs is presented in Figure 22.2.

Table 22.2. Medical datasets for QA systems.

Medical dataset Description

BioASQ Semantic biomedical QA dataset derived from the 
NLP-based BioASQ challenges; includes factoid, list, 
yes/no, and summary questions, along with  
expert-provided answers referenced to  
MEDLINE-indexed documents

emrQA First large- scale clinical QA dataset; contains large- 
scale question– answer pairs; automatically generates 
questions using semantic extractions from the Stanford 
Question Answering Dataset, medical ontologies from 
the UML5 database, and expert- level annotations; 
combines a general- domain language and  
medical- domain knowledge benchmark for  
comparing clinical QA models

MedQA Multiple-choice open-domain QA dataset for   
real-world medical problem-solving; includes 
questions collected from the professional medical 
board exams in the US, Mainland China, and Taiwan 
with textbook-extracted answers

MEDIQA2021 Extension of MedNLI designed for QA tasks; includes 
question– answer pairs with paragraph- length    
context; biomedical language understanding evaluation 
benchmark for evaluating new clinical QA algorithms; 
applied to NLP- based extraction of adverse drug 
reactions data from HCP– patient conversations, with 
regulatory, pharmaceutical, and clinical implications

MedQuAD Includes large- scale medical question– answer pairs 
from 12 NIH websites on diseases, drugs, and other 
medical entities

PubMedQA Biomedical QA dataset of questions linked to PubMed 
abstracts with yes/no/maybe answers, which require 
reasoning over the context (abstract without the 
conclusion section)

Abbreviations: HCP: healthcare professional; MedNLI Medical Natural Language 
Inference: NIH: National Institutes of Health; NLP: natural language processing; 
QA: question answering; UML: unified modelling language.
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22.2.2.  Takeaways

AI has changed medical literature mining, data extraction, and QA, 
and is a dynamic area that needs bridging to broader audiences to fa-
cilitate understanding of strengths, limitations, and responsible use.

Modern QA systems, LLMs, and generative AI tools that use at-
tention mechanisms can deal with increasingly difficult tasks, such 
as semantic understanding and reasoning.

Next- generation LLMs and generative AI tools are self- learning, 
multimodal AI interfaces with generative and conversational cap-
abilities that can assist HCPs and researchers with scientific writing, 
landscape scanning, evidence synthesis, and potentially RWE ana-
lysis. The validation of accuracy, clarity, reliability, and completeness 
of these models is an area of active investigation.

22.3. Applications of AI in literature 
search and data extraction in oncology

The next section focuses on the utility of AI- based tools for syn-
thesis and automation of cancer literature and clinical trial database 

searches to address information overload in oncology. AI- driven 
information processing is increasingly employed in oncology for 
screening and diagnosis, biomarker phenotyping, genomic charac-
terization of tumours, imaging and digital pathology, optimization 
of decision- making, individualization of treatment, cancer surveil-
lance, and accelerated drug discovery [13,14]. A review of these ap-
plications is beyond the scope of this chapter.

22.3.1. Clinical literature search and synthesis

AI tools for medical literature search and data extraction assist by 
helping users efficiently conduct systematic searches and obtain fo-
cused information from rich datasets, i.e. published literature and 
clinical trials. In a randomized controlled trial (RCT), scientists 
with an extensive research background who used the IRIS.AI search 
engine for the literature search on the research and development 
needed to implement augmented reality in medical surgical training 
found more high- quality papers related to the topic compared with 
their peers’ traditional search [40].

Emerging AI platforms also interactively visualize findings to fa-
cilitate intuitive understanding of complex information, allowing 

Table 22.3. Examples of pre-trained language models and generative AI tools in the medical domain.

Language model Release/ launch date Description

PubMedBERT July 2020 First biomedical- domain– specific deep- learning NLP pre-trained model; high accuracy in answering; lacks 
performance on clinical NLP tasks; low quality in answering longer questions; uses a different vocabulary to BERT

BioELECTRA June 2021 Biomedical- domain– specific; better performance on benchmark QA tasks; trained on abstracts and articles from 
PubMed; does not incorporate clinical datasets and has limited performance in a clinical setting

Generative AI

GENTRL September 2019 Developed by Insilico Medicine; this generative AI platform has been used to design new drugs for diseases

Med- PaLM 2 December 2022 Google’s medical LLM aligned to the medical domain to more accurately and safely answer medical questions; 
the first AI system to achieve a pass mark (>60%) in USMLE-style questions

Dragon Ambient 
eXperience (DAX) 
Express

March 2023 Nuance and Microsoft’s clinical documentation tool powered by GPT- 4. The tool will enable healthcare workers 
to automate clinical documentation simply by ‘listening’ to physician– patient consultations

Glass AI March 2023 Glass AI 2.0 combines an LLM with a clinical knowledge database, created and maintained by clinicians, to 
create differential diagnoses and clinical plan outputs

Med-PaLM M July 2023 A multimodal version of Med-PaLM that generates HCP-interpretable information from imaging files, medical 
records, and genomics

MedLM December 2023 Built upon Med-PaLM 2, this set of generative AI models is fine-tuned for healthcare-specific tasks; generally 
available on Vertex AI to Google Cloud customers in the US; piloted integration into other AI-powered   
platforms for enhanced ambient medical documentation, drug research and development, and patient  
access and experience

Starling-LM-7B-beta March 2024 An open-source LLM fine-tuned with reinforcement learning from AI feedback; good performance (66–70%) 
on certain medical domains of MMLU benchmark (clinical knowledge, medical genetics, and professional 
medicine); underperforms the commercial LMs GPT-4 base and Med-PaLM 2

Hermes-2-Pro-
Mistral-7B

April 2024 An upgraded version of the open-source Nous Hermes 2 LM with good performance (65–72%) on MMLU clinical 
knowledge, medical genetics, and professional medicine domains; underperforms GPT-4 base and Med-PaLM 2

Gemini Pro May 2025 A performance-optimized model from the Google’s Gemini family of multimodal models, with broad image 
and audio-visual processing and reasoning capabilities; strong performance in data-intensive and procedural 
medical domains, particularly biostatistics, cell biology, and obstetrics and gynaecology

Gemma-7b May 2025 A more powerful (7b) version of Gemma, a family of lightweight, open-source LMs from Google, based on 
the same research and technology used to create Gemini models; diverse QA, summarization, and reasoning 
capabilities; good performance (68–71%) on MMLU clinical knowledge, medical genetics, and professional 
medicine domains; underperforms GPT-4 base and Med-PaLM 2

Abbreviations: AI: artificial intelligence; BERT: Bidirectional Encoder Representations from Transformers; GENTRL: Generative Tensorial Reinforcement Learning;   
GPT: Generative Pre-trained Transformer; HCP: healthcare professional; LM: language model; LLM: large language model; MMLU: Measuring Massive Multitask Language 
Understanding; NLP: natural language processing; QA: question answering; RWD: real- world data; USMLE: US Medical Licensing Examination.
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Figure 22.2. Evolution of QA and language models [11,16,30,32,35,41–49]. BERT: Bidirectional Encoder Representations from Transformers;   

REtrival Conference.
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clinicians to delve further into data based on their personal queries, 
and potentially develop new hypotheses, grant application ideas, 
or practice guidelines [11,50]. Figure 22.3 compares a typical 
keyword- based search engine to an AI- powered QA system that 
uses concept- based literature mining and data extraction to answer 
a clinical query.

AI- based tools utilize NLP and ML to semantically analyse an-
notated text documents retrieved from knowledge sources (e.g. 
titles, abstracts, and pieces of text within an article), sort them into 
predefined categories of interest (e.g. RCTs), identify snippets of 
query- related information (e.g. hormone therapies for PCa), filter 
out irrelevant information, and sometimes produce visual represen-
tations of the semantic analysis [11] .

AI models have been applied to two key areas of literature search 
automation. ML- based study design classification systems are cur-
rently used in the Cochrane Register of Studies and validated public- 
access tools have been made available [51]. However, this approach 
may not be effective when there are multiple topic- specific inclu-
sion criteria with different study designs, and a conventional key-
word search is still needed. Literature exploration by concept rather 
than keyword can be a solution to this issue, but it requires exten-
sive manual annotation. To resolve the need for human interven-
tion, the National Centre for Text Mining has developed a semantic 
search engine with enhanced concept recognition features (Thalia) 
that automatically indexes new PubMed articles in the biomedical 

domain with daily updates and provides a visual interface to interact 
with the concepts identified [52].

Furthermore, automatic abstract screening systems have demon-
strated a high level of accuracy in a systematic search [53]. Select sys-
tems (e.g. RobotAnalyst) also allow exploration of search retrieval 
by automatically grouping abstracts on a similar topic [54]. The key 
limitation of automated abstract screening is that the optimal stop-
ping point for screening is unclear and their relevant articles may be 
missed by stopping too early.

Data extraction platforms for systematic reviews are still in 
the early stages of development and not readily accessible to 
clinicians. Available prototype systems, such as ExaCT and 
RobotReviewer, are trained on the annotated full- text articles 
and automatically extract relevant data on trial characteristics of 
interest (e.g. study population, descriptions of interventions, and 
outcomes) [55].

AI capabilities to assess the strength of evidence and the risk of bias 
in RCTs are growing. For example, RobotReviewer automatically re-
trieves the text that describes trial conduct relevant to the domains 
of biases included in the Cochrane Risk of Bias tool and classifies 
the trial by bias per domain [55]. Although these systems have rea-
sonable accuracy, their performance is below the level achieved by 
the Risk of Bias tool and requires additional input from the reviewer 
[56]. Another important limitation is the lack of adequate training 
data with precise annotations [55].

Figure 22.3. A schematic comparison of a typical keyword- based search engine to an AI- powered QA system that uses concept- based data 
mining and extraction from the biomedical literature and trial databases to answer a clinical query. AI: artificial intelligence; HCP: healthcare 
professional; ML: machine learning; QA: question answering.
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Smart citation is a function featured in the scite_ tool that differ-
entiates between citation statements (supporting, mentioning, and 
disputing) for a scientific paper, and reports out on the classifica-
tion type, publication date, cited paper section, and paper type [57]. 
Scite_ also launched ‘Ask a Question’, a QA function that returns re-
liable answers from full- text scientific articles to research questions 
asked in plain language [58].

AI tools that incorporate advanced LLMs can be considered for 
data synthesis and guideline development due to their ability to 
visualize and automatically summarize large volumes of research 
evidence [59]. Of note, the Dr.Evidence® AI- based platform was 
used to systematically review evidence and develop the American 
Society of Clinical Oncology clinical practice guideline on the man-
agement of immune- related adverse events in patients who received 
immune checkpoint inhibitor therapy [60].

The emergence of AI platforms (Table 22.1) with expanded 
databases, improved semantic reasoning and QA mechanisms, 
and interactive data visualization capabilities provides an oppor-
tunity for clinicians to extract complex, specific, and personalized 
information, enabling them to achieve the best outcomes for their 
patients. For example, the Dimensions platform conducted a com-
prehensive search in clinical trial databases and scientific literature 
sources on studies that investigated the role of combination therapy 
and treatment sequencing in PCa [11] . Findings were visualized in 
an interactive dashboard to represent trial details and the emerging 
treatment landscape. The output has some limitations, including the 
absence of semantic analysis to separate the two main topics (drug 
combination versus treatment sequence) and the need for subject 
matter expertise to interpret the data [11]. Nevertheless, semantic 
analysis has been used in the INSIDE- PC project to extract content 
from scientific publications on clinical outcomes of a specific treat-
ment sequence for advanced PCa. Dimensions has also been used 
to generate networks of biomarkers across six cancer indications, 
through biomarker co- occurrence processing [41]. The Michigan 
Urological Surgery Improvement Collaborative developed a web- 
based platform (askMUSIC) that utilized data from a prospective 
registry to inform newly diagnosed males with PCa of the treat-
ments recommended by urologists for other patients with similar 
characteristics [42].

There is ongoing work on the integration of AI technology to iden-
tify and address the main knowledge gaps in cancer care and to gen-
erate RWE for the development of clinical practice guidelines. The 
PIONEER and OPTIMA projects are at the forefront of these efforts. 
PIONEER is a European consortium of 32 public and private or-
ganizations across nine countries that are focused on PCa [43]. The 
project aims to develop an AI platform that integrates and analyses 
longitudinal PCa registry data along with clinical and omic data from 
diverse patient populations across different disease stages. Planned 
objectives include consensus building on PCa understanding and 
outcome definitions, identification of critical evidence gaps in PCa 
management, improved risk stratification, and improved standard-
ized care pathways. Upon implementation, PIONEER will house a 
central data hub which will support a network of interdisciplinary 
professionals by addressing PCa- related questions [43]. Similarly, 
OPTIMA is a European consortium of 36 multidisciplinary expert 
and public stakeholders that utilizes AI technology to improve care 
for oncology patients. This project aims to establish a secure, inter-
operable, and large- scale data platform for prostate, breast, and lung 

cancer, which includes RWE [44]. These evidence- informed tools 
can assist clinicians in care decision- making, based on enhanced 
practice recommendations [44]. OPTIMA will add to the impact of 
other emerging AI- integrated projects, such as the European Health 
Data Evidence Network and PIONEER, which currently support the 
European Health Data Space to implement better exchange and ac-
cess to different types of health data. The outputs from this project 
will inform European policy regarding the clinical deployment of 
AI algorithms in healthcare. Time will tell how and when emerging 
generative AI capabilities will be integrated into the tools mentioned 
within this section.

Generative AI has already opened opportunities in other settings. 
For example, Be My Eyes has developed a tool, Be My AI (formerly 
Virtual Volunteer™), that integrates OpenAI’s GPT models to dy-
namically assist visually impaired users in their daily tasks, such as 
description and hazard estimation of an object on the ground [61]. 
Elsewhere, the Icelandic government has partnered with OpenAI 
to train GTP models on Icelandic grammar and cultural know-
ledge through reinforcement learning from human feedback, with 
the key goal of improving generative AI capabilities in low- resource 
languages and reducing the existing cultural and language divide in 
AI [62].

22.3.2. Data extraction from clinical trial 
databases and EHRs

In the precision medicine era, clinical practice and clinical trials 
have emerged as valuable sources for AI- powered knowledge ex-
traction and refinement. Clinical notes (e.g. EHRs, pathology and 
radiology reports, and patient charts) harbour important clinical 
information, crucial for translational research and patient- centric 
care [63]. Due to their unstructured or semi- structured text format, 
clinical notes are not applicable to traditional information retrieval 
systems due to the time, cost, and errors involved in manual pro-
cessing. AI tools, including the state- of- the- art transformer- based 
models, have opportunity in this area and are gaining prominence 
in oncology practice for data extraction. Promising applications of 
clinical AI in oncology include text classification, information ex-
traction, text summarization, topic modelling, QA, and, most re-
cently, report generation [64].

These AI methods have been applied to clinical notes from EHRs 
for different clinical purposes, including cancer screening, diagnosis, 
staging and risk stratification, tumour description, biomarker associ-
ation, pre- treatment assessment, and insight into the patient experi-
ence [63]. A novel NLP system has used transfer learning capability 
to automatically extract information from operative and pathology 
reports of patients with breast cancer. The system extracted outcomes 
data from tumour characteristics, prognostic factors, and treatment- 
related variables with high accuracy compared with expert reviews 
[65]. ML- based text classification and data extraction models trained 
on narrative text from progress notes and pathology reports have also 
demonstrated good performance in identifying high- risk breast le-
sions [66]. NLP has also been applied to extract information on colo-
rectal polyp characteristics from colonoscopy records. Investigators 
linked colonoscopy records to patient- level data in the Surveillance, 
Epidemiology, and End Results (SEER) Cancer Registry and their 
subsequent EHR data to predict the risk of colorectal cancer in pa-
tients with conventional adenomas or sessile serrated polyps com-
pared with the polyp- free population [67]. A deep- learning system, 
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DeepPhe, was developed, which combines ontology and text sum-
marization to extract information pertinent to tumour descriptors 
in annotated EHRs of patients with breast cancer, and clusters them 
by their phenotypic profile [68]. NLP- based systems for data extrac-
tion from prospective cancer registries and pathology reports have 
also been applied to risk stratification and staging of solid tumours 
[69,70]. Additionally, several studies support the utility of ML- based 
methods in identifying initial treatment options for non-metastatic 
prostate, oropharyngeal, and oesophageal cancers based on struc-
tured and free- text treatment information extraction from cancer 
registries. At present, a National Cancer Institute— US Department 
of Energy collaboration project, MOSSAIC (Modeling Outcomes 
Using Surveillance Data and Scalable Artificial Intelligence for 
Cancer), applies multitask AI capabilities to automatically extract 
tumour features from free- text pathology reports using population- 
level SEER data, in an effort to address gaps in public access to high- 
quality cancer data and improve cancer surveillance [71].

Although AI shows promise for application in patient- level data, 
the volume, velocity, veracity, and variety of data present chal-
lenges. Most trial and EHR databases underrepresent non- white 
populations, introducing bias in data analysis; clinical records may 
contain relevant information for only certain subpopulations, or in-
formation may be entered only for select patients; HCPs may enter 
patient data using inconsistent terms or different formats; and field- 
entry data could also be incomplete, miscoded, or missing [72]. 
Furthermore, incorrectly defined selection criteria may lead to in-
accuracies in algorithmic outputs. Prospective clinical data often 
change over time, and this drift in EHR data would deviate the re-
sults of AI methods [73]. This highlights the need for continuous 
quality assessment and refinement of AI algorithms and govern-
ance standards, such as the Observational Medical Outcomes 
Partnership Common Data Model, to harmonize the structure and 
semantics of disparate real- world data for more efficient and reli-
able analysis [74]. Apart from technical hurdles, legal and practical 
barriers (data privacy regulations, storage, and sharing policies) 
present additional challenges to the availability of RWE, including 
EHRs [72].

22.3.3. AI in clinical decision- making

Progress in AI- assisted clinical decision- making has been made 
through automated translation of cancer- related queries into ac-
tionable recommendations that can be adjusted by practitioners’ 
feedback to improve the model’s output [75]. Traditional clinical 
decision- support systems comprised software that matched pa-
tient characteristics to a clinical knowledge base and presented 
patient- specific recommendations for point- of- care decisions. 
However, these were stand- alone systems that integrated poorly 
into the clinician workflow and generated imprecise or disruptive 
alerts, and resulted in clinician fatigue and reduced quality of care 
[76]. AI models can augment efficiency and accuracy of decision- 
support systems by mining and distilling knowledge from big data 
sources in oncology. The emerging agentic AI and AI agents have 
metacognitive-like capabilities to self-regulate and adapt to chan-
ging data inputs for refined and relevant executive actions, and 
offer promising potential in clinical decision-making and care de-
livery support [50, 77]. However, data-driven bias and limitations 
in clinical reasoning, adaptability, and contextual comprehension 
are important challenges for the integration of these systems in the 
real-world setting [50].

In a healthcare framework where point- of- care decision- making 
is informed by routine clinical practice and/ or clinical trial data, 
AI- integrated decision- support systems can beneficially contribute 
to precision medicine, and improve patient classification, tumour 
control, treatment optimization, and quality of life [78]. For ex-
ample, IBM’s Watson for Oncology (WFO), trained on US cancer 
treatment guidelines and clinical practice experiences, provided 
treatment recommendations for multiple malignancies concordant 
with decisions by multidisciplinary teams [79]. However, WFO 
needs improvements as the recommendations may not be applic-
able to other countries with different population characteristics and 
national guidelines, or may not account for coexisting conditions or 
reversible drug- related complications [79]. Notably, the Optellum 
Virtual Nodule Clinic, an AI- powered computer- aiding system 
for risk stratification of indeterminate pulmonary nodules using 
nodule descriptors on radiology reports, demonstrated better per-
formance than conventional risk models in a prospective validation 
cohort from Vanderbilt University Medical Centre. It received FDA 
clearance for the evaluation of incidentally detected solid and semi- 
solid pulmonary nodules in patients aged ≥35 years [80].

Despite these encouraging results, a critical challenge is the limited 
explainability of outputs from complex deep- learning systems (black- 
box models) [73]. Inadequate data availability for training and hetero-
geneity of clinical practice data (e.g. EHRs) is another impediment to 
data mining and integration from multiple sources [75]. Nevertheless, 
the use of ontologies as a well- defined collective reference for all data 
sources has provided opportunity for knowledge distillation from se-
mantically interoperable data, which enables standardized disease- 
specific approaches to AI- integrated decision- support systems in 
clinical practice [81]. Furthermore, the application of knowledge graphs 
and reranking to AI- driven recommendation models may improve rea-
soning and multitask learning potential in cancer research [82].

22.3.4.  Takeaways

AI technologies are emerging as ways to enable clinicians to efficiently 
and systematically search published literature and clinical trial data-
bases to obtain focused and reliable information for complex queries.

Emerging AI platforms offer the opportunity for interactive data 
visualization, evidence synthesis, insight generation, guideline de-
velopment, and even scientific writing.

AI- based data extraction from clinical notes is gaining promin-
ence in oncology practice, with promising applications in cancer 
screening, biomarker association discovery, tumour staging and risk 
stratification, treatment landscape scanning, and exploration of the 
patient experience.

AI- powered tools can assist urologists and oncologists in point- 
of- care decision- making by providing evidence- informed recom-
mendations based on big data sources in oncology.

Integration of AI systems in clinical practice is, however, hindered 
by important factors, such as data limitations, automation bias, 
limited explainability, and inadequate AI literacy.

22.4. Enablers and barriers to the application   
of AI- driven systems in healthcare

22.4.1. Educational needs of the medical workforce

With the exponential growth in medical knowledge, physicians are 
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organize, retain, and utilize this information in their practices. 
However, there is a gap in clinicians’ knowledge of AI and its 
various applications, which puts present and future physicians at a 
disadvantage. The implementation of AI- based technologies in the 
clinic requires informed clinician– machine interaction to enhance 
evidence- based clinical decision- making. Thus, medical practi-
tioners need to develop a good understanding of fundamental AI 
functions and their practical implications in healthcare, as well as 
the shortfalls, ethical considerations, and regulatory oversight [91]. 
The transition to an AI- assisted clinical practice can also be chal-
lenging because of resistance to change. This is reinforced by diffi-
culties in changing curricula, and scepticism in the trustworthiness 
of AI- powered predictions and recommendations [84]. In the ab-
sence of evidence- based interventions, a multi- tiered approach to 
the inclusion of AI across medical education through changes in 
the national medical education system, institutional programmes, 
medical school curricula, and individual student and  practitioner 
engagement would be a step forward in addressing these chal-
lenges [92].

22.4.2. Barriers to AI implementation in healthcare

At present, there is a chasm preventing the deployment of AI tech-
nology in clinical practice (Figure 22.4) [8,14,84–89]. There are con-
ceptual, technical, and humanistic challenges to patient– practitioner 
trust in medical AI [85]. AI systems currently lack medical reasoning 
capabilities when using data from a specific patient population to 
make decisions about patients with different characteristics. Incorrect 
conceptualization of the medical problem by AI tools adds to this 
confusion [85]. Use of EHRs for selecting control cohorts, incomplete 

and non- representative training datasets, and data drifts in AI models 
and clinical decision- support systems may impair model perform-
ance, and produce biased and non- generalizable outputs, with poten-
tially unfavourable patient outcomes [73]. Over- reliance of clinicians 
on AI algorithms may intensify biases and result in over- testing, 
overtreatment or undertreatment, or have other implications for clin-
ical decision- making [85]. Lack of legal liability for medical AI and 
fear of over- reliance among the community, patients, and caregivers 
further impact the trustworthiness of AI in healthcare settings [84]. 
We foresee, however, that future legal liability may occur for clinicians 
who will not use robustly validated AI systems. Lack of transpar-
ency in the design and functioning of AI technologies is contrary to 
patient- centred values of patient autonomy and informed decision- 
making, privacy, confidentiality, and fairness [14,85,87]. It is critical to 
address these key challenges using a transdisciplinary approach. For 
instance, groups of AI experts, HCPs, patient advocates, and medical 
ethicists can collaborate to develop AI algorithms [85]. On this note, 
the FDA has released discussion papers on the use of AI and ML tech-
nologies in medical product development and drug manufacturing to 
advance stakeholder engagement and collaboration in this field [93].

There is also increasing demand by clinicians and researchers 
for transparency to address the black- box nature and incompre-
hensibility of AI data and models. Multiple technical approaches 
have been used to get insight into deep- learning models, such as 
DeepLIFT and Shapley additive explanations [94]. However, most of 
these explainability techniques only describe how AI models func-
tion without providing insights into the validity of their decision- 
making process [86]. In the absence of suitable explainability 
methods, rigorous performance evaluation of AI models in RCTs 

Figure 22.4. A graphical summary of the barriers to the wider implication of AI in the clinical setting based on the technology adoption life 
cycle model from Rogers’ Diffusion of Innovations [83]. The ‘chasm’ is depicted as a set of technical/ technological (green), conceptual (blue), and 
ethical/ legal (peach) challenges that limit access to the use of AI technologies within healthcare niches by HCPs [8,73,84–89]. Source: Adapted 
from ‘Crossing the chasm: a “tube-map” for agent-based social simulation of policy scenarios in spatially-distributed systems’ by Polhill, JG et al. 
GeoInformatica. 2019; 23:169–199 [90]. AI: artificial intelligence.
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Glossary

Term Description

Artificial intelligence (AI) Refers to systems or machines that mimic human intelligence to perform tasks and can iteratively improve 
themselves based on the information that they collect

Conversational AI A set of AI technologies, such as chatbots and virtual assistants, that utilize natural language processing and 
machine learning to interact with human users in a natural way

Deep learning A subfield of machine learning. Machines are trained on the principles of the human brain, where neurons are 
triggered by an activity they have previously learned and a path of decision- making is chosen. For example, 
when humans see a burning surface, our brain immediately relays information not to touch it as it would cause 
severe burns. The neurons trained on predicting such an event are triggered and a path is chosen from there

Generative AI A subfield of AI that focuses on generating new data rather than analysing and categorizing existing data

Information extraction Involves the identification of key snippets of information from structured texts

is crucial for establishing a scientific basis for medical AI [85,86]. 
This evidence base is growing and several trials have evaluated the 
effectiveness of AI- based interventions [95]. In conjunction, RWE, 
such as EHRs, can be leveraged to measure the impact of AI in clin-
ical practice [88]. Additionally, European Parliament is working 
towards approval of the AI Act, the world’s first transparency and 
risk- management legislation for AI systems [96].

Specific challenges also remain on the application of AI methods 
in literature search and clinical trial assessment. Many AI models 
are not trained on full- text articles and lack the capacity to read and 
extract information from full- text documents or rank the quality of 
source information. The inclusivity and diversity gap in the litera-
ture or clinical trial data for training AI tools is an additional source 
of bias, which limits data quality and accuracy [73]. Moreover, pub-
lisher licences for full- text data mining are mostly restricted to re-
search. Also, there are concerns over the originality of AI- driven 
manuscripts and non-human authorship, capability of AI systems 
in making complex decisions, risk of bias in AI- training data, and 
generation of misinformation; with potential for abuse, lack of ap-
propriate governance, the possibility of AI sentience, and the con-
sequences of deviation from human intelligence for human society 
[97,98].

22.5. Conclusions and future outlook

AI is an evolving area in oncology that holds promise for the synthesis 
and automation of literature, trial databases, and EHR searches. 
AI exhibits broader potential for clinical QA, insight generation, 
guideline development, interactive data visualization, and decision- 
making support. However, a wider application of AI tools in this 
setting requires multi- tiered approaches to tackle existing technical, 
conceptual, and ethical challenges. There is ongoing rapid pro-
gress in AI research, including conversational AI, smart search, and 
generative QA systems. With these advancements, future AI tech-
nologies will be able to extract more complex clinical concepts and 
specific text from a large body of documents, perform advanced sys-
tematic literature reviews, generate novel hypotheses, develop auto- 
updating oncology guidelines, act as intelligent teaching systems for 
HCPs, assist in medical writing and peer review, produce ready- to- 
use plain- language summaries from scientific publications, and help 

medical practitioners find accurate answers to their complex clinical 
queries more efficiently. As the use of AI technologies continues to 
grow, their capabilities will take different directions, and it will be 
difficult to forecast all future uses, challenges, and misuses of these 
systems, and their ultimate impact on society.
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Application of artificial intelligence in 
cancer genomics
Xiwei Wu and Supriyo Bhattacharya

23.1.  Introduction

Cancer is a complex and heterogenous disease, which can be 
caused by genetic and epigenetic abnormalities. Identification of 
these abnormalities in cancer patients not only helps researchers 
to understand the tumorigenesis process but also guides clinicians 
on selection of the best treatment. As the genome technologies 
advanced rapidly in recent years, particularly high- throughput 
sequencing, single- cell genomics, and spatial transcriptomics (ST), 
a tremendous amount of genomic data have been generated using 
specimens from patients in various cancers. The embedded disease 
signatures within genomic data are often too complex and noise- 
ridden to be amenable to classical statistical treatment. These large 
volumes of data, together with clinical records, enabled the devel-
opment and application of artificial intelligence (AI) methods in 
cancer research and clinical practice. The applications of AI range 
from diagnosis and prognosis of cancer, molecular characterization 
of tumours and their microenvironment, to predicting therapeutic 
response for patients. In this chapter, we begin by introducing the 
genomic data types and AI methods. We then focus on summarizing 
the AI methods for analysis of cancer genomics data as well as its 
application in cancer biology and clinical practice, mainly published 
in the past five years. We then discuss the challenges and future per-
spectives of AI in cancer genomics.

23.2. Genomic data types

Depending on the materials used in the assay, either DNA or RNA, 
different modalities can be appreciated (Figure 23.1). RNA samples 
can be used to interrogate coding gene expression, and long non- 
coding RNA expression, microRNA expression, and other small 
RNA species, including piwi- interacting RNA, small cytoplasmic 
RNA (scRNA), small nucleus RNA, as well as transfer RNA, can be 
detected when appropriate library preparation protocols are used. 
For DNA sequencing, one can obtain single- nucleotide variants 
(SNVs), small insertions/ deletions (INDELs), copy number vari-
ants (CNVs), and large structural variants (SVs), which include 

large insertion, large deletion, translocation, inversion, tandem re-
peats, etc. These variants can be detected at genome level via whole 
genome sequencing (WGS) or at targeted regions via whole- exome 
sequencing (WES) and amplicon sequencing. Chromatin accessi-
bility and three- dimensional interactions, histone modification, 
and transcription factor binding can also be measured with gen-
omic DNAs enriched for these specific regions of interest. DNA 
methylation or hydroxymethylation at cytosine residues can be de-
tected at single base resolution with different variants of bisulphite 
sequencing.

Depending on the goals of the study, samples can be collected 
from paired tumour and normal tissues of the same patient, or be-
fore and after treatment. Liquid biopsy, with cell- free DNA and RNA 
samples collected from blood and other body fluids, offers a con-
venient and non- invasive way for early cancer detection and moni-
toring. Mouse patient- derived xenograft model and primary tissue 
culture, such as organoid, are also common for easier perturbation.

Cancer is very heterogenous, which frequently includes multiple 
clones accumulated during evolution, and its microenvironment 
can also be very diversified, such as tumour infiltrating lympho-
cytes, myeloid cells, and fibroblasts. Bulk sequencing measures the 
average expression of variations of all cells in the tumour, providing 
suboptimal view that is hard to interpret due to mixed cell types 
and multiple tumour clones. As the single- cell genomics becomes 
mature and sequencing cost dramatically reduced, it has been in-
creasingly adopted in cancer centres and research communities 
to study cancer with more granularity. Tumour heterogeneity and 
tumour microenvironment (TME) can be more appreciated using 
single- cell technology. However, the tissue context is lost in a typical 
single- cell analysis, which can be mitigated by ST. Indeed, spatial 
transcriptomics is so instrumental that it was selected as the tech-
nology of the year by Nature in 2021 [2] .

23.3. Overview of ML methods

ML methods can be classified as unsupervised, supervised, and 
reinforcement learning. Unsupervised learning refers to the 
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identification of patterns or features by analysing large unlabelled 
datasets. The goal of unsupervised learning can be, for example, to 
discover a set of key features, which is then used to reconstruct the 
input data or to arrange the input data into clusters based on simi-
larity. In contrast with unsupervised learning, supervised learning 
uses labelled datasets for training purposes that enable the system to 
classify new data according to learned categories. However, the cap-
acity of supervised learning is limited by the quality and extent of la-
belled data. In practice, such data may be expensive to annotate, or in 
some cases, the labels themselves could be uncertain or error prone. 
Often, the majority of the available training data is unlabelled, with 
only a small percentage correctly labelled. In such scenarios, there-
fore, the optimal approach involves combining both supervised and 
unsupervised learning (i.e., semi- supervised learning) to maximize 
the performance of the classifier. Another efficient approach called 
transfer learning can harness an established ML model (source) for 
a related application (target), where sufficient training data is un-
available or training the model from scratch is time- consuming. 
Compared to the above approaches, reinforcement learning is less 
relevant to cancer genomics space.

DL is a special branch of ML that employs artificial neural net-
works (ANNs). DL agents are comprised of ANNs having many 
hidden layers (source of the phrase ‘deep’) that are inspired by the 
neuronal architecture of the human brain. DL models are capable 
of identifying key features from large and complex datasets that 
represent the discriminative properties for tasks such as predic-
tion, classification, or synthetic data generation. This approach, 
popularly called representation learning [3] , is a major strength 
of DL that separates it from traditional ML methods, which rely 
on human intervention in feature extraction and are therefore 
unsuitable for complex and very large datasets or in cases where 
the training data changes over time. Therefore, DL has found 
unprecedented success in many fields, such as natural language 

processing, image analysis, clinical informatics, bioinformatics, 
and robotics.

23.4. Application of AI in the analysis of   
cancer genomics data4.1: SNVs and 
short INDELs

Variant detection is a common task in analysing cancer genome 
or exome sequencing. Both germline and somatic variants are of 
interest to understand the mechanisms of tumorigenesis. Besides 
simple filtering and probabilistic models, AI methods have been 
popular in variant detection applications. For example, Cerebro 
uses a specialized random forest classification model that evalu-
ates a large set of decision trees to generate a confidence score 
for each candidate variant [4] . Several ensemble- based ML ap-
proaches have been developed to improve somatic mutation 
calling accuracy. SMuRF combines predictions from four muta-
tion callers with auxiliary alignment and mutation features using 
random forest classifier [5]. NeoMutate incorporates seven super-
vised ML algorithms to exploit the strengths of multiple variant 
callers, using a non- redundant set of 17 biological and sequence 
features [6].

DeepVariant is the first attempt to use DL approach for germline 
SNV calling. The algorithm takes advantage of the robustness of con-
volutional neural network (CNN) in detecting variants by learning 
statistical relationships between images of read pileups around puta-
tive variant and true genotype calls [7] . HELLO implements meticu-
lously designed deep neural network architectures and customized 
variant inference functions [8]. It accounts for the underlying na-
ture of sequencing data instead of converting the problem to one of 
image recognition, with reduced error rate and much smaller model 
compared to DeepVariant [8].

Figure 23.1. Overview of AI applications in cancer genomics. Source: Reproduced from [1] .

 

   

  

 

  

  

 



CHAPTER 23 Application of artificial intelligence in cancer genomics 237

Deep learning (DL) has also been applied to somatic mutation 
calling. For example, VarNet is an end- to- end DL approach for the 
identification of somatic variants from aligned tumour and matched 
normal DNA reads [9] . Feedforward neural network was evaluated 
to automate the somatic mutation refinement steps, and it matches 
or outperforms the time- consuming manual refinement for several 
cancer types [10].

23.4.1.  CNVs

Genome instability is one of the characteristics of many cancers, and 
the associated CNVs and SVs are as important as other aberrations 
in cancer diagnosis and prognosis. Although WGS is more afford-
able now with the rapidly reduced sequencing cost, WES is far more 
common. Copy number calls based on WES data usually contain 
false positives due to the noncontiguous nature of the targeted cap-
ture. CN- learn, a random- forest- based ensemble approach, was de-
veloped to improve the performance of four individual CNV callers 
[11]. The authors showed that ∼58% of all true CNVs recovered by 
CN- Learn were either singletons or calls that lacked support from at 
least one caller [11]. After trained using paired WES and WGS 1000 
Genomes Project data, DECoNT, a DL model with single hidden 
layered Bi- LSTM architecture efficiently tripled the duplication call 
precision and doubled the deletion call precision of the state- of- the- 
art algorithms [12].

23.4.2. Single- cell RNA- seq (scRNA- seq)

As single- cell genomics became mature in the past few years, more 
researchers have utilized this technology to better understand tu-
mour heterogeneity and TME. Single- cell data have higher vari-
ations, undersampling, and noises compared to bulk data, hence 
preprocessing and analysis of scRNA- seq data are more challenging. 
Due to its large data size, ML algorithms, particularly DL, have been 
widely applied to analyse scRNA- seq data.

Dropout is very common in single- cell data, and it can signifi-
cantly affect downstream bioinformatics analysis as it decreases 
the sensitivity and introduces biases into the data. Currently, sev-
eral machine learning (ML) imputation algorithms have been pro-
posed. Besides LASSO regression model used by ScImpute [13] and 
SAVER [14], autoencoder (AE) becomes the natural choice because 
of its data regeneration and denoising properties. For example, 
AutoImpute uses an overcomplete AE trained on non- zero entries 
for the imputation of dropout locations [15]. scScope uses an itera-
tive AE that cycles output into input while applying batch effect cor-
rection [16]. DCA builds an AE to model the gene distribution using 
a zero inflated negative binomial prior [17]. scGNN uses three AEs 
in a cycle— a graph AE, a plain AE, and a cluster- specific collection 
of AEs [18], and the convergence of a cell graph is used in the regu-
larization of a final AE that performs the imputation. Other deep 
NNs have also been explored. scIGANs uses a generative adversarial 
network (GAN) to model the generation of scRNA- seq data using 
the generated expression data for the imputation [19]. DeepImpute 
is a deep- neural- network- based imputation algorithm that uses 
dropout layers and loss functions to learn patterns in the data, al-
lowing for accurate imputation [20].

Transforming raw count data to a lower- dimensional represen-
tation of each cell using dimensional reduction (DR) technique is 
a useful step to remove technical noise in single- cell data and al-
lows easier visualization. DR belongs to unsupervised ML. While 

the linear principal component analysis (PCA) on log- transformed 
count data was initially popular for DR, t- distributed stochastic 
neighbour embedding [21] and uniform manifold approximation 
and projection (UMAP) [22], which are non- linear, graph- based 
methods, became widely adopted because they can better represent 
the high- dimensional and non- linear single- cell data. AE and vari-
ational autoencoders (VAEs), very popular classes of DL models, 
have also been used in DR of single- cell RNA- seq data. These in-
clude SAUCIE [23], scVI [24], DCA [17], and scVAE [25]. It is inter-
esting to note that when AE contains single layer with two nodes and 
uses linear activation function, its reduced dimensions are equiva-
lent to PCA [26].

Annotation of cells or cell clusters is one of the most critical tasks 
in analysing single- cell RNA- seq data. Classical supervised ML al-
gorithms, such as support vector machine (SVM) [27], K- nearest 
neighbour [28], neural network [29], and random forest (RF) 
[30,31], are commonly used. Recently, DL- based algorithms began 
to gain popularity due to their superior accuracy. ItClust uses stacked 
AE and transfer learning to learn a target network for clustering and 
cell- type classification [32]. scSemiGAN is a semi- supervised cell- 
type annotation and dimensionality reduction framework based on 
GAN [33]. scMRA uses a graphic convolutional network based on 
a knowledge graph constructed from multiple reference datasets 
[34]. scNym is another DL method that combines semi- supervised 
learning and adversarial neural network [35]. sigGCN incorporates 
gene interactions using a graph convolutional network (GCN) com-
bined with a neural network for cell- type classification task [36]. 
scDeepSort provides a pre- trained DL model with a weighted graph 
neural network (GNN) of cells and genes based on large human and 
mouse single- cell data [37].

23.4.3. Spatial transcriptomics

Currently, the two most common types of ST approaches are spa-
tial barcoding- based techniques, such as Slide- seq and VISIUM 
from 10X Genomics, and multiplex imaging- based techniques, 
such as MERFISH (Multiplexed error- robust Fluorescent in situ 
Hybridization). While barcoding- based techniques can resolve the 
expressions of tens of thousands of genes, their resolution is limited 
to several cells per spot. On the other hand, multiplex imaging- based 
methods can achieve cellular to sub- cellular resolution but only for a 
limited number (up to 1,000) of genes.

These ST maps can provide valuable insight into tumour hetero-
geneity, immune cell composition of the microenvironment, as well 
as cellular interactions. However, proper utilization of ST- derived 
data is associated with several challenges. In barcoding- based 
methods, the expression information of a single spot can come from 
multiple cell types, contributing to uncertainties in assigning cell 
identities to spatial locations. Also, the amount of RNA captured in 
each spot is limited, thus affecting the accuracy of low expression 
genes. In multiplex imaging- based methods, expression informa-
tion is available only for a limited number of genes. These deficien-
cies can be addressed by supplementing ST data with single and bulk 
RNA- seq profiles of the same tissue section, as well as anatomical 
information obtained from histology staining.

Due to their capacity to extract high level features of gene ex-
pression covariation among multiple cells and spatial locations, 
DL- based methods such as DEEPs [38] and Bulk2space [39] have 
been successfully applied to impute missing expression data in ST 
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maps, using reference single- cell RNA- seq profiles. In DEEPsc, 
the gene expression profiles of ST spots are analysed to derive 
principal components (PCs), and the scRNA- seq data is projected 
onto this PC space. These low- dimensional feature vectors are 
then used to train a neural network model to predict the prob-
ability of each cell in the scRNA- seq to have originated from a 
given spot in the ST map. In contrast, Bulk2space uses genera-
tive DL (VAE) to synthesize cellular expression data from a bulk 
RNA- seq dataset using scRNA- seq of the same tissue as reference. 
It then uses traditional ML (random forest) to assign cells to each 
spot in the ST map.

Besides mapping scRNA- seq to ST profiles, one important appli-
cation of DL is to predict the cell- type composition of each ST spot. 
Methods such as DestVI [40] and DSTG [41] fall in this category. In 
DestVI, both the cell- type annotated scRNA- seq and the paired ST 
profiles are converted into low- dimensional latent variables using 
encoder neural networks. Then, a decoder network trained on the 
scRNA- seq data is used to deconvolute each ST spot into the con-
stituent cell types and their gene expressions. In DSTG, the refer-
ence scRNA- seq is used to generate a pseudo- ST map by randomly 
selecting a few cells and combining their gene expressions to create 
an ST spot. The pseudo- ST map is then compared with the real ST 
map to generate a similarity graph between the spots in both maps 
and used as input to a GCN model. By learning the topological 
structure of the similarity map, the GCN predicts the cell- type com-
position of each spot in the real ST.

While ST captures the spatial variations of multiple gene ex-
pressions, imaging methods such as histology staining can pro-
vide highly detailed anatomical features in the tissue. Combining 
ST with anatomical images could therefore improve the identifi-
cation of functional spatial features in the tissue, leading to better 
interpretability and clinical prediction. DL- based methods, such 
as Tangram [42], spaCell [43], and spGCN [44], have been suc-
cessfully applied in this area. Tangram is a method that integrates 
scRNA- seq and anatomical imaging with ST. While the mapping of 
scRNA- seq to ST maps is achieved through traditional approaches, 
the alignment of anatomical images to ST is performed using a 
Siamese network model, which is a specialized CNN to compare 
pairs of pixel maps to analyse their similarity. spaCell uses DL to 
predict disease states from histology images and corresponding 
ST maps. It uses an autoencoder model to convert the ST and hist-
ology profiles into low- dimensional latent variables and uses them 
to train a deep neural network to predict disease states. spaGCN 
integrates between ST and histological maps using GCN, leading 
to better annotation of spatial domains, such as malignant cells and 
immune niches in a tumour sample.

Besides the above examples, further application of ML in spatial 
genomics is in learning cell– cell communication using ST maps, 
such as SpaOTsc [45]. Here, the ST and paired scRNA- seq data is 
employed in an optimal transport model to derive cell– cell distance. 
Next, the cell distance matrix is used in conjunction with random 
forest models to construct space- constrained cell– cell communica-
tion networks that reflect the dynamics of cellular communication 
within the tissue.

In future, with the continuous improvement of ST technologies, 
we expect to see further expansion of ML methods, especially in the 
field of functional interpretation of spatial data. However, with the 
increase of spatial resolution and sequencing depth per spot, ML 

methods need to adapt to the increased volume of data so that a 
balance could be maintained between precision and computa-
tional time.

23.5. Application in clinical oncology

Potential applications of AI- developed signatures in clinical on-
cology span the entire cancer (Figure 23.1). Specifically, gene sig-
natures can be used for screening and early detection. Diagnostic 
tests can help determine the primary tissue of origin and classify the 
disease subtype, which is critical for clinicians to make therapeutic 
decisions. Prognostic tests can be used to assess patient risk and pre-
dict survival. During therapy, signatures can be used to predict re-
sponse or toxicity, which can guide the treatment to target cancer 
more effectively or prevent severe side effects. Minimum residual 
disease can be detected by genomic tests to identify early signs of 
recurrence. Many traditional ML and DL approaches have been ex-
ploited in these areas. We cover some examples below, with focus on 
DL models.

23.5.1. Cancer diagnosis and tissue of origin

Cancer diagnosis includes distinguishing between cancer and 
normal tissues, molecular subtypes, as well as cancer staging and 
grading. Multiple genomic data types have been used to classify can-
cers derived from different cell types.

A DL model trained on the most frequent cancer- specific point 
mutations obtained from WES profiles in The Cancer Genome Atlas 
(TCGA) can distinguish between healthy and tumour tissue with 
high accuracy but did not perform well in a multi- class classifica-
tion task to distinguish 12 cancer types [46]. Similarly, DeepCues, a 
DL model that utilizes CNNs for cancer classification, only achieved 
77% accuracy [47]. One of the reasons for this rather poor per-
formance is that most genetic aberrations are not specific to a single 
cancer type and hence cannot distinguish carcinomas of different 
origins.

In contrast, RNA- seq provides a robust, high- throughput 
transcriptomic platform that represents tumour tissue type and 
states, and therefore it is considered suitable for this classification 
task. There are numerous publications on cancer classifications 
using RNA- seq data in the past 10 years [48], and we focus on a 
few recent attempts to further improve the classification perform-
ance. In one such attempt, a stacking ensemble DL model based 
on one- dimensional CNN was able to perform a multi- class clas-
sification on the five common cancers among women with an F1 
score of over 0.99 [49]. A recent study also shows the importance 
of RNA- seq data preprocessing, including data smoothing, fea-
ture selection, and over- sampling, at building classifiers across 
22 tumour types in the TCGA database [3] . With optimized 
data preprocessing steps and random forest model, PanClassif 
achieves 100% accuracy on both binary and multi- class classi-
fication [3].

Patterns of DNA methylation and miRNA expression are cell type 
specific. This property uniquely positions these data types for cancer 
classification, especially when combined with liquid biopsy. As new 
miRNA and DNA methylation interrogation technologies become 
feasible, it will make minimally invasive approach to cancer classi-
fication a viable strategy. For example, a random forest model was 
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built with four serum miRNAs to screen for 13 cancer types and 
achieved high accuracy (AUC =  0.98) [50]. In a recent large- scale 
serum miRNomics analysis, an ensemble classifier, called the hier-
archical ensemble algorithm with deep learning model, which com-
bines seven different learners, was able to predict cancer tissue of 
origin for early- stage diseases [51]. Capper et al. demonstrated that a 
random forest classifier trained exclusively on tumour DNA methy-
lation profiles can significantly improve the prediction accuracies 
for the hard to diagnose subclasses of the central nervous system 
cancers (AUC, 0.99) [52]. In a separate study, four traditional ML 
algorithms were evaluated to detect the primary tumour in head 
and neck squamous cell cancers (HNSCs) that present as metastases 
with an unknown primary (HNSC- CUPs) using DNA methylation 
data, with an accuracy of 83– 89% [53]. DL was also used to classify 
nine different cancer types based on DNA methylation data from 
TCGA, with AUC range 0.85– 0.89 [54].

23.5.2. Cancer prognosis

Over the past 20 years, genomic features have been repeatedly le-
veraged to identify clinically useful signatures to predict prognosis 
and survival. An excellent recent review summarized the ML and 
DL models involved in providing the prognosis of cancer patients 
[55]. Due to small sample size in most studies, DL algorithm is 
rarely used, while classical ML algorithms, such as SVM and RF, 
are more popular. Many studies used various traditional ML ap-
proaches to select features before applying a risk scoring system 
to stratify patients into high or low risk. As one example, we have 
established a 4- miRNA signature to predict ccRCC metastasis 
using logistic regression [56]. SVM was used to generate a risk 
score using 32- gene that is prognostic for five- year overall survival 
of colorectal cancers and validate the risk score using three inde-
pendent datasets [57]. Recently, as TCGA and other large genomic 
database became available, DL algorithms have been explored and 
began to show the advantages over traditional ML methods. For 
example, DL- based model was applied on hepatocellular carcin-
omas to differentiate survival subpopulations of patients and then 
validated in six independent cohorts [58]. CNN- Cox model, which 
combines a special CNN framework with prognosis- related fea-
ture selection cascaded Wx, showed higher C- index values and 
better survival prediction performance across seven cancer type 
datasets in TCGA [59]. Another DL approach combining a CNN 
with stationary wavelet transform (SWT- CNN) was developed 
to predict clinical outcomes, and it overperformed the classical 
ML algorithms [60]. DeepProg is a novel ensemble framework 
of deep- learning and machine- learning approaches that robustly 
predict patient survival subtypes using multi- omic data [61]. It 
identifies two optimal survival subtypes in most cancers and yields 
significantly better risk stratification than other traditional ML 
methods [61].

Despite large number of prognostic signatures that have been de-
veloped, most of them lack large independent validation in clinical 
settings. As a result, only a handful of molecular signatures have 
been commercialized and clinically validated, such as Oncotype DX 
[62], Prolaris [63], and colon ColoPrint [64].

23.5.3. Treatment response

One important application of AI is predicting drug response 
based on molecular profiles. A recent paper provides a systematic 

review of the literature on monotherapy drug response predic-
tion including more than 70 ML methods in 13 subclasses [65]. 
Some of the more recent DL models are reviewed here. scDEAL 
transfers the model trained on bulk RNA- seq data from cell line 
to predict drug responses in six scRNA- seq datasets, achieving 
an average AUC of 0.89 [5] . MultiDCP, a DL model, can predict 
cellular context- dependent gene expressions and cell viability 
on a specific dosage [66]. The novelties of MultiDCP include a 
knowledge- driven gene expression profile transformer that en-
ables context- specific phenotypic response predictions of novel 
cells or tissues, integration of multiple diverse labelled and un-
labelled omics data, the joint training of the multiple prediction 
tasks, and a teacher– student training procedure that allows us 
to utilize unreliable data effectively [66]. One caveat for drug re-
sponse prediction analysis is that most of the models are based on 
data from cell lines or xenograph models, which do not reflect the 
in vivo conditions of human subjects. Therefore, these prediction 
models are not directly applicable to patients. There were some 
limited explorations using genomic data of clinical trials in can-
cers for response prediction purposes. For example, an attempt to 
use clinical and genotype features of patients with metastatic colo-
rectal cancer to predict the dose- limiting toxicity event after the 
first cycle of FOLFIRI plus bevacizumab treatment was conducted 
using classical ML methods, while RF showed the best accuracy 
of 84% [67]. Transfer learning was evaluated to predict treatment 
responses using several real clinical datasets pertaining to pa-
tients with breast cancer (N =  24), triple- negative breast cancer 
(N =  169), and multiple myeloma (N =  24) [68]. Future design of 
large- scale trials with therapeutic intervention along with meas-
urements at genomic scale should warrant more translational 
studies.

23.5.4. Genomics- guided clinical trials

According to the Precision Medicine Initiative, precision medicine 
is ‘an emerging approach for disease treatment and prevention that 
takes into account individual variability in genes, environment, and 
lifestyle for each person’. This approach will allow doctors and re-
searchers to make the therapeutic decisions more accurately based 
on individual patient’s genomic data. However, whether this preci-
sion medicine approach could bring true benefit for cancer patient 
had been largely under debate. To fill these gaps, NCI launched a 
number of precision medicine trials to evaluate the benefit of tai-
lored therapy by matching patients in prospective multi- arm clinical 
trials.

The Trial Assigning Individualized Options for Treatment 
(TAILORx) was designed to determine whether chemotherapy is 
beneficial for women with a mid- range recurrence score (RS) of 
11– 25, using OncoDx test that assesses the expression of 21 genes 
associated with breast cancer recurrence. Early results showed that 
adjuvant endocrine therapy and chemoendocrine therapy had 
similar efficacy in women with hormone- receptor positive, HER2- 
negative, and axillary node negative breast cancer who had a mid- 
range RS [69], which was confirmed later with longer follow- up 
time. NCI- MATCH was launched in 2015 to investigate whether 
assigning patients to targeted therapies based on tumour genomics 
would improve outcomes for patients with no standard drug op-
tions. Although 38% of the patients whose tumours were analysed 
had ‘actionable’ molecular alterations, only 18% had access to a 

   

 

 

   

 

   

 

 

 



Cancer Systems Biology240

relevant therapy through one of the thirty single- arm subprotocols. 
The overall response rates only ranged from 2% to 38%. However, 
the limited number of therapies tested in NCI- MATCH yielded a 
good response rate. One example is that 29 patients with various 
solid tumours harbouring the BRAFV600 mutation and receiving 
dabrafenib plus trametinib yielded 38% response rate [70]. Since 
launch in 2017, NIH- COG paediatric MATCH trial has recruited 
more than 1,000 patients. Analysis of these patients showed that tu-
mour sequencing was effective in finding actionable tumour muta-
tions in paediatric and young adult cancer patients. While 31% of 
tumours have actionable mutations, 28% of patients were assigned 
to a phase 2 clinical trial treatment arm of the study [71].

Other similar trials, including Adjuvant Lung Cancer Enrichment 
Marker Identification and Sequencing Trials (ALCHEMIST) for 
people with EGFR and ALK mutation and Lung- MAP trial for 
people with advanced non- small- cell lung cancer that has continued 
to grow after treatment, are still at relatively early stage and it will be 
interesting to see how these precision medicine trials turn out at the 
completion.

23.6.  Conclusions

Although genomic data is considered as high dimensional, its size is 
much smaller than other data types, e.g. imaging data and electronic 
medical records. Therefore, overfitting can become an issue with 
many ML algorithms, including DL algorithms. Robust validation, 
such as cross- validation and independent cohort validation, which 
is lacking in many studies, is needed to ensure that the developed 
ML models are reproducible. Variations and batch effects across dif-
ferent platforms and centres also contribute to the unreproducibility 
of ML models. Data harmonization, particular preprocessing steps 
that remove batch effects, is critical towards mitigating these issues.

It should be noted that a single data type such as transcriptomics 
or epigenomics seldom captures the disease- relevant signatures 
of a tumour. Multimodal measurements combining genetics, 
transcriptomics, epigenomics, proteomics, metabolomics, imaging, 
as well as phenotypes is needed to improve the performance of AI/ 
ML models. The ethnicity bias in TCGA also limits the applica-
tion of ML models to certain populations. As the cost of genomic 
analysis drops quickly, more genomic data will be generated for 
more AI/ ML application development. Interrogation of tumours at 
single- cell level and even sub- cellular levels with advanced spatial 
transcriptomics and multiplex imaging will provide more granu-
larity of tumour and TME cells. As more patients in multiple ethni-
city groups participate in AI- guided clinical trials, the ethnicity bias 
will also be alleviated. Advances in software and hardware such as 
large- scale cloud computing (powered by highspeed networks that 
enable large volume of data transfer) will enable more applications 
of DL methods in clinical genomic data.

With all the advances mentioned above, translation of AI models 
to clinical practice still requires long process of assay development, 
clinical validation, FDA approval, government regulation, and in-
surance company acceptance. These typically take several years if 
not longer. With the experience of prior genomic AI models cur-
rently used in the clinical practice and maturation of both AI/ ML 
algorithms and genome technology, it is hopeful that clinical trans-
lation of AI models will be accelerated in the foreseeable future.

REFERENCES

 1. Jiang P, Sinha S, Aldape K, Hannenhalli S, Sahinalp C, Ruppin 
E. Big data in basic and translational cancer research. Nat Rev 
Cancer. 2022;22(11):625– 39.

 2. Marx V. Method of the Year: spatially resolved transcriptomics. 
Nat Methods. 2021;18(1):9– 14.

 3. Mahin KF, Robiuddin M, Islam M, Ashraf S, Yeasmin F, Shatabda 
S. PanClassif: Improving pan cancer classification of single 
cell RNA- seq gene expression data using machine learning. 
Genomics. 2022;114(2):110264.

 4. Wood DE, White JR, Georgiadis A, Van Emburgh B, Parpart- 
Li S, Mitchell J, et al. A machine learning approach for somatic 
mutation discovery. Sci Transl Med. 2018;10(457):eaar7939:1– 16.

 5. Chen J, Wang X, Ma A, Wang QE, Liu B, Li L, et al. Deep transfer 
learning of cancer drug responses by integrating bulk and single- 
cell RNA- seq data. Nat Commun. 2022;13(1):6494.

 6. Anzar I, Sverchkova A, Stratford R, Clancy T. NeoMutate: an 
ensemble machine learning framework for the prediction 
of somatic mutations in cancer. BMC Med Genomics. 
2019;12(1):63.

 7. Poplin R, Chang P- C, Alexander D, Schwartz S, Colthurst T, Ku 
A, et al. A universal SNP and small- indel variant caller using 
deep neural networks. Nat Biotechnol. 2018;36(10):983– 7.

 8. Ramachandran A, Lumetta SS, Klee EW, Chen D. 
HELLO: improved neural network architectures and 
methodologies for small variant calling. BMC Bioinform. 
2021;22(1):404.

 9. Krishnamachari K, Lu D, Swift- Scott A, Yeraliyev A, Lee K, 
Huang W, et al. Accurate somatic variant detection using weakly 
supervised deep learning. Nat Commun. 2022;13(1):4248.

 10. Ainscough BJ, Barnell EK, Ronning P, Campbell KM, Wagner 
AH, Fehniger TA, et al. A deep learning approach to automate 
refinement of somatic variant calling from cancer sequencing 
data. Nat Genet. 2018;50(12):1735– 43.

 11. Pounraja VK, Jayakar G, Jensen M, Kelkar N, Girirajan S. A 
machine- learning approach for accurate detection of copy 
number variants from exome sequencing. Genome Res. 
2019;29(7):1134– 43.

 12. Özden F, Alkan C, Çiçek AE. Polishing copy number variant 
calls on exome sequencing data via deep learning. Genome Res. 
2022;32(6):1170– 82.

 13. Li WV, Li JJ. An accurate and robust imputation method scImpute 
for single- cell RNA- seq data. Nat Commun. 2018;9(1):997.

 14. Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, 
et al. SAVER: gene expression recovery for single- cell RNA 
sequencing. Nat Methods. 2018;15(7):539– 42.

 15. Talwar D, Mongia A, Sengupta D, Majumdar A. 
AutoImpute: autoencoder based imputation of single- cell RNA- 
seq data. Sci Rep. 2018;8(1):16329.

 16. Deng Y, Bao F, Dai Q, Wu LF, Altschuler SJ. Scalable analysis of 
cell- type composition from single- cell transcriptomics using 
deep recurrent learning. Nat Methods. 2019;16(4):311– 4.

 17. Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single- 
cell RNA- seq denoising using a deep count autoencoder. Nat 
Commun. 2019;10(1):1– 14.

 18. Gu H, Cheng H, Ma A, Li Y, Wang J, Xu D, et al. scGNN 2.0: a 
graph neural network tool for imputation and clustering of 
single- cell RNA- Seq data. Bioinformatics. 2022;38(23):5322– 5.

 19. Xu Y, Zhang Z, You L, Liu J, Fan Z, Zhou X. scIGANs: single- cell 
RNA- seq imputation using generative adversarial networks. 
Nucleic Acids Res. 2020;48(15):e85:1– 16.

 

   

 

 

 

    

   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 



CHAPTER 23 Application of artificial intelligence in cancer genomics 241

 20. Arisdakessian C, Poirion O, Yunits B, Zhu X, Garmire LX. 
DeepImpute: an accurate, fast, and scalable deep neural network 
method to impute single- cell RNA- seq data. Genome Biol. 
2019;20(1):211.

 21. Van Der Maaten L, Hinton G. Visualizing high- dimensional data 
using t- sne. J Mach Learn Res. 2008;9(26):5.

 22. Becht E, McInnes L, Healy J, Dutertre C- A, Kwok IWH, Ng LG, 
et al. Dimensionality reduction for visualizing single- cell data 
using UMAP. Nat Biotechnol. 2019;37(1):38– 44.

 23. Amodio M, van Dijk D, Srinivasan K, Chen WS, Mohsen H, 
Moon KR, et al. Exploring single- cell data with deep multitasking 
neural networks. Nat Methods. 2019;16(11):1139– 45.

 24. Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative 
modeling for single- cell transcriptomics. Nat Methods. 
2018;15(12):1053– 8.

 25. Grønbech CH, Vording MF, Timshel PN, Sønderby CK, Pers TH, 
Winther O. scVAE: variational auto- encoders for single- cell gene 
expression data. Bioinformatics. 2020;36(16):4415– 22.

 26. Plaut E. From principal subspaces to principal components with 
linear autoencoders. arXiv preprint arXiv. 2018:180410253.

 27. Alquicira- Hernández J, Sathe A, Ji HP, Nguyen Q, Powell JE. 
scPred: cell type prediction at single- cell resolution. bioRxiv. 
2018:369538.

 28. Kiselev VY, Yiu A, Hemberg M. scmap: projection of single- cell 
RNA- seq data across data sets. Nat Methods. 2018;15(5):359– 62.

 29. Li Z, Feng H. A neural network- based method for exhaustive 
cell label assignment using single cell RNA- seq data. Sci Rep. 
2022;12(1):910.

 30. Johnson TS, Wang T, Huang Z, Yu CY, Wu Y, Han Y, 
et al. LAmbDA: label ambiguous domain adaptation dataset 
integration reduces batch effects and improves subtype detection. 
Bioinformatics. 2019;35(22):4696– 706.

 31. Lieberman Y, Rokach L, Shay T. CaSTLe– classification of single 
cells by transfer learning: harnessing the power of publicly 
available single cell RNA sequencing experiments to annotate 
new experiments. PLoS ONE. 2018;13(10):e0205499.

 32. Hu J, Li X, Hu G, Lyu Y, Susztak K, Li M. Iterative transfer 
learning with neural network for clustering and cell type 
classification in single- cell RNA- seq analysis. Nat Mach Intell. 
2020;2(10):607– 18.

 33. Xu Z, Luo J, Xiong Z. scSemiGAN: a single- cell semi- supervised 
annotation and dimensionality reduction framework 
based on generative adversarial network. Bioinformatics. 
2022;38(22):5042– 8.

 34. Yuan M, Chen L, Deng M. scMRA: a robust deep learning 
method to annotate scRNA- seq data with multiple reference 
datasets. Bioinformatics. 2022;38(3):738– 45.

 35. Kimmel JC, Kelley DR. Semisupervised adversarial neural networks 
for single- cell classification. Genome Res. 2021;31(10):1781– 93.

 36. Wang T, Bai J, Nabavi S. Single- cell classification using graph 
convolutional networks. BMC Bioinform. 2021;22(1):364.

 37. Shao X, Yang H, Zhuang X, Liao J, Yang P, Cheng J, et al. 
scDeepSort: a pre- trained cell- type annotation method for single- 
cell transcriptomics using deep learning with a weighted graph 
neural network. Nucleic Acids Res. 2021;49(21):e122- e.

 38. Maseda F, Cang Z, Nie Q. DEEPsc: a deep learning- based map 
connecting single- cell transcriptomics and spatial imaging data. 
Front Genet. 2021;12:636743.

 39. Liao J, Qian J, Fang Y, Chen Z, Zhuang X, Zhang N, et al. De novo 
analysis of bulk RNA- seq data at spatially resolved single- cell 
resolution. Nat Commun. 2022;13(1):6498.

 40. Lopez R, Li B, Keren- Shaul H, Boyeau P, Kedmi M, Pilzer 
D, et al. DestVI identifies continuums of cell types in spatial 
transcriptomics data. Nat Biotechnol. 2022;40(9):1360– 9.

 41. Song Q, Su J. DSTG: deconvoluting spatial transcriptomics data 
through graph- based artificial intelligence. Brief Bioinform. 
2021;22(5):1– 13.

 42. Biancalani T, Scalia G, Buffoni L, Avasthi R, Lu Z, Sanger 
A, et al. Deep learning and alignment of spatially resolved 
single- cell transcriptomes with Tangram. Nat Methods. 
2021;18(11):1352– 62.

 43. Tan X, Su A, Tran M, Nguyen Q. SpaCell: integrating tissue 
morphology and spatial gene expression to predict disease cells. 
Bioinformatics. 2020;36(7):2293– 4.

 44. Hu J, Li X, Coleman K, Schroeder A, Ma N, Irwin DJ, et al. 
SpaGCN: integrating gene expression, spatial location and 
histology to identify spatial domains and spatially variable 
genes by graph convolutional network. Nat Methods. 
2021;18(11):1342– 51.

 45. Cang Z, Nie Q. Inferring spatial and signaling relationships 
between cells from single cell transcriptomic data. Nat Commun. 
2020;11(1):2084.

 46. Sun Y, Zhu S, Ma K, Liu W, Yue Y, Hu G, et al. Identification 
of 12 cancer types through genome deep learning. Sci Rep. 
2019;9(1):17256.

 47. Zeng Z, Mao C, Vo A, Li X, Nugent JO, Khan SA, et al. 
Deep learning for cancer type classification and driver gene 
identification. BMC Bioinform. 2021;22(Suppl 4):491.

 48. Cieślik M, Chinnaiyan AM. Cancer transcriptome profiling 
at the juncture of clinical translation. Nat Rev Genet. 
2018;19(2):93– 109.

 49. Mohammed M, Mwambi H, Mboya IB, Elbashir MK, Omolo 
B. A stacking ensemble deep learning approach to cancer type 
classification based on TCGA data. Sci Rep. 2021;11(1):15626.

 50. Chen JW, Dhahbi J. Identification of four serum miRNAs as 
potential markers to screen for thirteen cancer types. PLoS ONE. 
2022;17(6):e0269554.

 51. Matsuzaki J, Kato K, Oono K, Tsuchiya N, Sudo K, Shimomura A, 
et al. . JNCI Cancer Spectr. 2022;7(1):1– 13.

 52. Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm 
D, et al. DNA methylation- based classification of central nervous 
system tumours. Nature. 2018;555(7697):469– 74.

 53. Leitheiser M, Capper D, Seegerer P, Lehmann A, Schüller U, 
Müller KR, et al. Machine learning models predict the primary 
sites of head and neck squamous cell carcinoma metastases based 
on DNA methylation. J Pathol. 2022;256(4):378– 87.

 54. Eissa NS, Khairuddin U, Yusof R. A hybrid metaheuristic- deep 
learning technique for the pan- classification of cancer based on 
DNA methylation. BMC Bioinform. 2022;23(1):273.

 55. Deepa P, Gunavathi C. A systematic review on machine learning 
and deep learning techniques in cancer survival prediction. Prog 
Biophys Mol Biol. 2022;174:62– 71.

 56. Wu X, Weng L, Li X, Guo C, Pal SK, Jin JM, et al. Identification 
of a 4- microRNA signature for clear cell renal cell carcinoma 
metastasis and prognosis. PLoS ONE. 2012;7(5):e35661.

 57. Cheong JH, Wang SC, Park S, Porembka MR, Christie AL, 
Kim H, et al. Development and validation of a prognostic and 
predictive 32- gene signature for gastric cancer. Nat Commun. 
2022;13(1):774.

 58. Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep learning- 
based multi- omics integration robustly predicts survival in liver 
cancer. Clin Cancer Res. 2018;24(6):1248– 59.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 



Cancer Systems Biology242

 59. Yin Q, Chen W, Zhang C, Wei Z. A convolutional neural network 
model for survival prediction based on prognosis- related 
cascaded Wx feature selection. Lab Invest. 2022;102(10):1064– 74.

 60. Zhao Y, Zhou Y, Liu Y, Hao Y, Li M, Pu X, et al. Uncovering 
the prognostic gene signatures for the improvement of risk 
stratification in cancers by using deep learning algorithm coupled 
with wavelet transform. BMC Bioinform. 2020;21(1):195.

 61. Poirion OB, Jing Z, Chaudhary K, Huang S, Garmire LX. 
DeepProg: an ensemble of deep- learning and machine- learning 
models for prognosis prediction using multi- omics data. Genome 
Med. 2021;13(1):112.

 62. Cobleigh MA, Tabesh B, Bitterman P, Baker J, Cronin M, Liu 
ML, et al. Tumor gene expression and prognosis in breast cancer 
patients with 10 or more positive lymph nodes. Clin Cancer Res. 
2005;11(24 Pt 1):8623– 31.

 63. Shore N, Concepcion R, Saltzstein D, Lucia MS, van Breda A, 
Welbourn W, et al. Clinical utility of a biopsy- based cell cycle 
gene expression assay in localized prostate cancer. Curr Med Res 
Opin. 2014;30(4):547– 53.

 64. Salazar R, Roepman P, Capella G, Moreno V, Simon I, Dreezen 
C, et al. Gene expression signature to improve prognosis 
prediction of stage II and III colorectal cancer. J Clin Oncol. 
2011;29(1):17– 24.

 65. Firoozbakht F, Yousefi B, Schwikowski B. An overview of 
machine learning methods for monotherapy drug response 
prediction. Brief Bioinform. 2022;23(1):bbab408:1– 18.

 66. Wu Y, Liu Q, Qiu Y, Xie L. Deep learning prediction of chemical- 
induced dose- dependent and context- specific multiplex 
phenotype responses and its application to personalized 
Alzheimer’s disease drug repurposing. PLoS Comput Biol. 
2022;18(8):e1010367.

 67. Bedon L, Cecchin E, Fabbiani E, Dal Bo M, Buonadonna A, Polano 
M, et al. Machine learning application in a phase I clinical trial allows 
for the identification of clinical- biomolecular markers significantly 
associated with toxicity. Clin Pharmacol Ther. 2022;111(3):686– 96.

 68. Turki T, Wang JTL. Clinical intelligence: new machine learning 
techniques for predicting clinical drug response. Comput Biol 
Med. 2019;107:302– 22.

 69. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain 
KS, Hayes DF, et al. Adjuvant chemotherapy guided by a 
21- gene expression assay in breast cancer. New Engl J Med. 
2018;379(2):111– 21.

 70. Salama AKS, Li S, Macrae ER, Park JI, Mitchell EP, Zwiebel JA, 
et al. Dabrafenib and Trametinib in patients with tumors with 
BRAF(V600E) mutations: results of the NCI- MATCH trial 
subprotocol H. J Clin Oncol. 2020;38(33):3895– 904.

 71. Parsons DW, Janeway KA, Patton DR, Winter CL, Coffey B, 
Williams PM, et al. Actionable tumor alterations and treatment 
protocol enrollment of pediatric and young adult patients with 
refractory cancers in the national cancer institute- children’s 
oncology group pediatric MATCH trial. J Clin Oncol. 
2022;40(20):2224– 34.

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 



SECTION 6

Biomechanics

 24. A role for mechanical heterogeneity in the 
tumour microenvironment in driving cancer cell 
invasion 245

 Madhurima Sarkar, Asadullah, and Shamik Sen

 25. Adaptation of cancer cells to altered stiffness of 
the extra- cellular matrix 255

 Christina R. Dollahon, Ting- Ching Wang, Srinikhil 
S. Vemuri, Suchitaa Sawhney, and Tanmay P. Lele

 26. Decoding mechano- oncology principles 
through microfluidic devices and biomaterial 
platforms 265

Alka Kumari, Abhishek Goswami, and Ajay Tijore

 27. Understanding contribution of fibroblasts 
in inception of cancer metastasis from an 
evolutionary perspective 273

 Yasir Suhail, Wenqiang Du, Günter Wagner, and Kshitiz

 28. Cell competition in tumorigenesis and epithelial 
defence against cancer 283

Amrapali Datta and Medhavi Vishwakarma

      

    

 

 

 

 

 

 

 

 

 

 



 



24

A role for mechanical heterogeneity in 
the tumour microenvironment in driving 
cancer cell invasion
Madhurima Sarkar, Asadullah, and Shamik Sen

24.1.  Introduction

The tumour microenvironment (TME) comprises of the extra- 
cellular matrix (ECM), a plethora of ECM anchored growth factors 
and multiple cell types, including fibroblasts, endothelial cells, and 
immune cells. It is now increasingly appreciated that in addition 
to cancer- associated mutations in cancer cells, the spatiotemporal 
alterations in the TME actively regulate cell– matrix and cell– cell 
interactions, thereby bringing about the myriad of changes that col-
lectively enable cancer progression. These include alterations in the 
composition and organization of the ECM, breaching of the base-
ment membrane (BM) and ECM remodelling, reprogramming of 
fibroblasts and immune cells, and the development of an aberrant 
blood vessel network that satisfies the oxygen and nutrient demands 
of tumour cells and enables escape of cancer cells from their pri-
mary site.

In this chapter, we first discuss how physicochemical alterations in 
the ECM associated with cancer give rise to a spectrum of mechan-
ical cues that regulate different aspects of cancer progression. Next, 
we discuss the challenges to migration and the strategies adopted 
by cancer cells. In the third section, we highlight the role of matrix 
metalloproteinases (MMPs) in mediating cancer invasion. In the 
last section, we discuss computational studies that have contributed 
to our understanding of cancer invasion.

24.2. ECM alterations in cancer

The ECM is a three- dimensional (3D) network of proteins and poly-
saccharides which confers structural integrity to tissues and plays 
an active role in regulating cell behaviour, both in physiological and 
pathological contexts. The ECM is comprised of the BM and the inter-
stitial matrix. The BM is made up of collagen IV and laminins and is 

interconnected with the interstitial matrix through multiple proteins 
and proteoglycans [1] . The interstitial matrix, enriched in collagens 
(I, III, V, etc.), fibronectin and elastin, forms a porous 3D protein net-
work around cells interconnecting the stroma and the BM.

Remodelling of the interstitial matrix involves several biochem-
ical and biophysical changes leading to ECM stiffening and altered 
cell signalling, resulting in tumour progression and cancer me-
tastasis [2] . ECM stiffening serves as the basis for detection of tu-
mours in soft tissues using simple palpation, ultrasound, and MRI 
elastography. Tumour- associated collagen signatures (TACS) cor-
respond to alterations in collagen organization with breast cancer 
progression [3]. Collagen fibres in soft normal tissues are curly and 
positioned parallel to the epithelium layer. Interestingly, in non- 
tumorous breast tissues, high deposition of collagen inhibits tumour 
formation by the up- regulation of cell– cell adhesion genes (tumour 
suppressive genes, e.g. cell– cell adhesion) and by down- regulation 
of mesenchymal genes. In desmoplastic stroma, at the TACS- 3 stage, 
collagen fibres near the tumour boundary are linearized, oriented 
perpendicularly to the tumour boundary, and actively drive tumour 
invasion [4].

Stromal alterations are mediated by altered expression of col-
lagen I (Col I), Col III, and ECM- modifying enzymes, such as lysyl 
oxidases (LOX) and LOX- like proteins. By secreting pro- fibrotic and 
inflammatory growth factors, such as transforming growth factor 
β (TGF- α) and transforming growth factor β (TGF- β), fibroblast 
growth factor 2 (FGF2), platelet- derived growth factor, and epi-
dermal growth factor, tumour cells recruit and activate stromal cells, 
the major ECM depositors in the TME [5] . The tumour- derived 
factors also induce the differentiation of stromal cells to cancer- 
associated fibroblasts (CAFs). CAFs are from multiple origin, specif-
ically tissue- resident or bone- marrow- derived fibroblasts, and they 
can act as myofibroblasts, remodel the ECM, and support tumour 
progression [6]. In pancreatic ductal carcinoma, a direct interaction 
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of CAFs with adjacent tumour cells drive TGF- β signalling and col-
lagen deposition. CAFs that are at a greater distance are also acti-
vated by tumour cells but are unresponsive to TGF- β; instead, they 
deposit hyaluronic acid (HA) and by expressing IL- 6 establish a 
tumorigenic, pro- inflammatory environment [7].

HA can function as tumour suppressor or tumour promoter, 
depending on its molecular weight [8] . High molecular weight HA 
and CD44 signalling induce tumour suppression via cell cycle arrest. 
In several tumours, such as prostate, colorectal, and breast cancer, 
low molecular weight HA (LMM- HA) is associated with poor prog-
nosis [9]. Dysregulation of HA synthase and hyaluronidase leads to 
accumulation of LMM- HA, which interacts with cell surface recep-
tors and regulates pro- tumorigenic signalling cascades, such as gly-
colysis, and also promotes migration [10]. Signalling of LMW- HA 
through CD44 increases the resistance to cellular stress to promote 
tumour development [11,12].

24.3. Mechanical heterogeneity 
of the TME

As the tumour stroma undergoes gradual changes from a TACS- 1 
state to a TACS- 3 state [3] , the compositional and organizational 
heterogeneity of the TME provides several mechanical cues to 
cancer and stromal cells. Of these cues, matrix stiffness is the most 
widely studied [13]. Using matrix- coated hydrogels as synthetic 
ECMs, the elastic modulus of the substrate has been shown to influ-
ence cell spreading, proliferation, cell migration, and malignancy. In 
a landmark study, Weaver and co- workers showed that acinar struc-
tures formed by normal mammary epithelial cells on soft gels are 
disrupted with increase in stiffness [14]. By extending this work in 
a rat model, her group showed that breast tumorigenesis was asso-
ciated with matrix stiffening and increased integrin signalling [4]. 
Using interpenetrating networks of reconstituted BM matrix and al-
ginate that allows independent control of stiffness, composition, and 
architecture, Mooney and co- workers demonstrated that in addition 
to ECM mechanics ECM composition is also an important deter-
minant [15].

Since collagen is one of the most abundant ECM proteins whose 
expression increases during cancer progression, 3D collagen gels 
that better mimic the TME have been employed to better under-
stand biophysical properties of the TME. Collagen gels are formed 
from triple- helical strands of α1 =  α2 subunits that self- assemble to 
form collagen fibres. Rheological studies of 3D collagen gels have 
demonstrated several non- linear responses exhibited by these gels, 
including strain stiffening, viscoelasticity, and plasticity. These prop-
erties are determined by the combination of fibre density, orienta-
tion, and extent of crosslinking. Strain stiffening corresponds to 
increased resistance to deformation by collagen fibres and is attrib-
uted to strain- induced alignment of individual fibres in the direction 
of applied strain [16]. Similar to soft tissues, such as brain, adipose, 
breast, and muscle tissues, collagen gels are viscoelastic, i.e. they ex-
hibit a combination of elastic solid- like and viscous fluid- like be-
haviour. Stress relaxation and creep recovery experiments have been 
widely used for characterizing viscoelastic properties of collagen 
gels. In stress relaxation experiments, the resisting stress in response 
to a constant strain is measured over time. In creep recovery experi-
ments, the strain is measured in response to an initial step stress 

and monitored after removal of the stress [17]. Plasticity of collagen 
gels can be measured using creep recovery experiments wherein the 
degree of plasticity corresponds to the ratio of the residual strain at 
long times to that of the maximum strain [18].

In addition to ECM alterations, uncontrolled cell proliferation in 
tumours leads to increased cell density that further leads to build- up 
of confinement- induced stresses. The mechanical environment wit-
nessed by cells changes considerably from initial stages of tumour 
formation wherein tumour cells are able to divide, migrate, and pro-
liferate within the lumen in an unconstrained manner. However, 
at later stages, when luminal space decreases, dividing cells are in-
creasingly subjected to compressive stresses till the BM is breached. 
Further, the growth of tumour cells induces compression of the sur-
rounding stroma and has been shown to lead to collapse of the blood 
and lymphatic vessels [19]. This increased interstitial fluid pressure 
in turn leads to increased fluid flow away from the tumour core to 
the surrounding healthy tissues.

24.4. Mechanisms of cancer cell invasion

The spatiotemporal alterations of the ECM associated with cancer 
progression can both impede or promote cancer invasion. Increase 
in ECM density leads to reduction in average pore size of the ma-
trix, thereby hindering cancer invasion. Depending on the extent of 
epithelial- to- mesenchymal transition (EMT), cancer cells migrate as 
single cells, as loosely connected cell streams or as cell clusters with 
intact cell– cell adhesions [20]. In the mesenchymal mode of mi-
gration, cancer cells exhibit fibroblast- like elongated morphologies 
stabilized by integrin- based focal adhesions and rely on protease- 
mediated matrix degradation for generating migration paths [21]. 
Seminal work by Friedl and co- workers showed that upon inhib-
ition of proteolysis, cells transition from a protease- dependent to 
a protease- independent mode of migration characterized by rapid 
changes in cell shape and the absence of adhesions [22]. In a land-
mark study, Piel and co- workers showed that confinement and low 
adhesion can switch slow- moving mesenchymal cells to a fast- 
moving amoeboidal mode of migration suggesting that these modes 
of migration are dictated by the balance between cell protrusions, 
adhesions, and actomyosin contractility [23]. Recently, in an elegant 
study on the role of matrix plasticity in mediating cancer invasion, 
Chaudhuri and co- workers mimicked the plasticity of breast tumour 
tissue using nanoporous hydrogels wherein matrix plasticity can be 
tuned independent of stiffness. Using this system, they established 
a protease- independent mode of migration wherein cell- generated 
forces mechanically opened up migration tracks that remained open 
if the matrix was plastic [24].

Collective invasion has been reported in epithelial cancers, such 
as breast and colorectal cancer. Clusters of circulating tumour cells 
have also been found to be present in circulation in several cancers 
and have been associated with higher colonization efficiency [25]. 
The presence of such clusters suggests that instead of undergoing 
complete EMT, cells undergoing partial or hybrid EMT might be 
fitter in countering the multitude of different stresses associated 
with cancer metastasis [26]. Apart from EMT, another determinant 
of collective invasion may be ECM organization. The crosslinked 
and highly linearized collagen fibrils oriented perpendicularly to 
the tumour periphery serve as contact guidance tracks for cells to 
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disseminate [3] . This has been corroborated by intravital imaging 
studies using breast cancer models wherein motile cells were local-
ized close to the collagen bundles and migrated in directions par-
allel to the collagen fibres [27]. Similar to the topography- guided 
migration by collagen fibres, cancer cells also exhibit fast collective 
migration along muscle fibres, nerves, and perivascular spaces. In 
contrast, adipose tissue drives single cell migration. High collagen 
density has also been shown to induce a switch from single cell to 
collective migration in breast cancer and melanoma cells when em-
bedded in dense collagen matrices [28].

Cancer invasion through 3D matrices requires constant deform-
ation of the cell body and the nucleus— the largest (≈5– 15 µm) and 
stiffest organelle of the cell. Nuclear translocation through pores 
is the rate limiting factor for cancer cell invasion through 3D ma-
trices [29]. In the absence of matrix proteolysis, the migration rate 
decreases with decreasing pore size with the nucleus capable of 
being deformed up to 10% of its undeformed size [29]. For medi-
ating nuclear deformation during 3D migration, forces are trans-
mitted to the nucleus through the linker of nucleoskeleton and 
cytoskeleton (LINC) complex [30]. Nuclear translocation through 
confined spaces is mediated by a combination of pulling from 
the cell front and pushing from the cell rear. While pulling from 
the cell front is primarily mediated by non- muscle myosin IIA 
(NMMIIA)- containing actomyosin bundles by binding to nesprin- 3 
of the LINC complex [31,32], pushing from the cell rear is medi-
ated by perinuclear localized non- muscle myosin IIB (NMMIIB) 
that squeezes the nucleus [33]. In an elegant study, Robinson and 
co- workers showed that among the numerous actin binding pro-
teins, NMMIIA and NMMIIB are two mechanoresponsive proteins 
that exhibit enriched localization at sites of physical stress [34]. 
Intriguingly, the actin crosslinking protein α- actinin- 4, which is also 
mechanoresponsive and exhibits nucleocytoplasmic shuttling, has 
been shown to regulate NMMIIB expression transcriptionally and 
associates with NMMIIA at the cell periphery, thereby modulating 
focal adhesion turnover [35]. Compartmentalization of the nucleus 
during confined migration gives rise to osmotic pressure differences 
due to water permeation; polarized distribution of ion channels/ 
aquaporins on the plasma membrane at the front and back of the 
cell can drive nuclear translocation [36].

Mechanical properties of the cell nucleus are collectively deter-
mined by properties of the nuclear lamina and the chromatin. The 
nuclear lamina corresponds to the meshwork of proteins that line 
the inner nuclear membrane and is composed of type A lamins (A, 
C, and C2) and type B lamins (B1 and B2), which form independent 
non- overlapping networks and serve distinct nuclear functions 
[37]. While B- type lamins are present in all cells, Lamin A expres-
sion has been correlated with cell- fate determination. Sub- type- 
specific post- translational modifications including farnesylation, 
phosphorylation, SUMOylation, and glycosylation further alter as-
sembly and dynamics of lamin sub- types that collectively determine 
the bulk properties of the nucleus [38,39]. Seminal work by Discher 
and co- workers showed that the Lamin A:Lamin B ratio scales with 
tissue stiffness with stiffer tissues possessing higher Lamin A levels 
[40]. Micropipette aspiration of nuclei suggests a stronger impact of 
Lamin A/ C on nuclear stiffness, cells with lower Lamin A/ C being 
more deformable and more migratory in confined spaces. Consistent 
with this, the loss of Lamin A/ C as well as LINC complex proteins 
reported in multiple cancers enables cancer cells with increased 

invasiveness. In MDA- MB- 231 and HT- 1080 cells that exhibit 
mesenchymal- to- amoeboidal transition upon inhibition of matrix 
proteolysis, nuclear softening mediated by increased phosphoryl-
ation of Lamin A/ C necessary for sustaining non- proteolytic migra-
tion highlights tuning of nuclear properties depending on the mode 
of invasion [41]. Moreover, nuclear stiffness is also a determinant of 
migration- induced DNA damage in cancer cells, with greater extent 
of DNA damage in cells with higher Lamin A levels [42]; interest-
ingly, nuclear softening has been shown to limit the extent of DNA 
damage [43]. In addition to alterations in lamin levels and/ or phos-
phorylation, nuclear stiffness is also dictated by the euchromatin- 
to- heterochromatin levels. Increase in euchromatin levels induced 
by treatment with the deacetylase inhibitor trichostatin A (TSA) in-
duces nuclear softening [44]. Interestingly, mechanical stretch has 
also been shown to confer mechanoprotective properties to the cell 
by nuclear softening mediated by loss of H3K9me3- marked hetero-
chromatin [45].

24.5. MMPs in cancer invasion

After breaching the BM, cancer cells must manoeuvre through the 
surrounding collagen- rich stroma that provides substantial steric 
hindrance. This is achieved by matrix degradation mediated by a 
wide array of matrix degrading enzymes that generate paths amen-
able for cell migration; in addition, the ECM fragments also support 
cell adhesion by engaging cell surface integrins. MMPs represent one 
of the most prominent family of proteinases associated with cancer 
progression [46]. All MMPs contain an N- terminal signal peptide, a 
pro- domain that interacts with the active site, and a catalytic domain 
with a zinc ion at the active site. In addition, some MMPs have a C- 
terminal hemopexin domain that is linked to the catalytic domain 
through a flexible hinge. Based on their substrate specificity, 24 dif-
ferent types of MMPs discovered in humans are broadly classified as 
collagenases, gelatinases, stromelysins, matrilysins, or membrane- 
anchored MMPs. Secretory MMPs are synthesized in the latent form 
and become functional upon proteolytic activation by serine pro-
teases, membrane- anchored MMPs, or by other activated MMPs. 
In addition to degrading abundant ECM proteins, such as collagen, 
fibronectin, and laminin, MMPs are also capable of cleaving cell sur-
face receptors involved in growth factor signalling. Newer intracel-
lular roles of MMPs are also being discovered [47].

MMPs can broadly be divided into secreted MMPs and membrane- 
anchored MMPs. Of the four membrane anchored MMPs, MT1- 
MMP (or MMP14) is one of the most widely studied MMPs and 
plays a key role at different stages of cancer metastasis. Though cells 
express a wide range of MMP molecules, the importance of MT1- 
MMP in cancer invasion can be appreciated from studies wherein 
MT1- MMP silencing failed to induce the transition from ductal 
carcinoma in situ to invasive phenotype in a tumour xenograft 
model [48]. MT1- MMP- mediated ECM degradation in cancer cells 
is mediated by actin- rich protrusions at the cell periphery known 
as invadopodia. In cells cultured on 2D ECM- coated substrates, 
invadopodia assemble on the ventral surface and can be detected by 
the formation of punctate degradation spots that colocalize with F- 
actin and actin regulatory proteins, such as cortactin, cofilin, and N- 
Wasp. In a landmark study, Weaver and co- workers demonstrated the 
importance of matrix stiffness in regulating invadopodia formation 
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and dynamics, with both the number and size of invadopodia being 
larger on stiffer substrates [49]. Another recent study showed that 
during confined migration through pores smaller than 7 µm2, nu-
clear deformation drives invadopodia- mediated matrix degradation 
by triggering recycling of MT1- MMP from endosomes to the inva-
sive front [50].

In comparison to membrane- anchored MMPs, soluble MMPs 
secreted out diffuse through the extra- cellular space and mediated 
matrix degradation. Of the soluble MMPs, MMP- 2 and MMP- 9 
are gelatinases that are involved in further processing of collagen- 
rich matrices after initial processing by other MMPs, including 
MT1- MMP and MMP- 1. Interestingly, sampling of conditioned 
media from non- invasive MCF- 7 cells, metastatic MDA- MB- 231 
breast cancer cells, and HT- 1080 fibrosarcoma cells cultured on 
collagen- coated soft and stiffpolyacrylamide gels revealed a prom-
inent stiffness- dependent increase in MMP- 9 activity in invasive 
cancer cells [51]. Elimination of stiffness- dependent increase in 
MMP activity by the actomyosin inhibitor blebbistatin illustrates the 
importance of stiffness sensing in the regulation of MMP activity. 
Treatment with the broad spectrum inhibitor GM6001 abolished 
the prominent mesenchymal phenotype observed on stiff surfaces 
highlighting the importance of MMP- mediated remodelling in sus-
taining cancer invasion. Together, MMP- 2 and MMP- 9 are capable 
of degrading other ECM proteins, such as type III, IV, V, VII, X and 
XI collagens, laminin, and fibronectin. In addition, MMP- 2 and 
MMP- 9 regulate different aspects of cancer invasion by cleaving a 
gamut of growth factors, including insulin- like growth factor, vas-
cular endothelial growth factor, FGF, TGF- β, and tumour necrosis 
factor α. While MMP- 2 is activated by MT1- MMP, MMP- 9 can in 
turn be activated by activated MMP- 2 highlighting the close coord-
ination between membrane- anchored MT1- MMP and the soluble 
MMPs. It is likely that degradation at sites of invadopodia is achieved 
through stepwise activation of soluble MMPs at the vicinity of the 
invadopodia that then diffuse into the surrounding space, degrade 
the matrix, and contribute to invadopodia stabilization and growth. 
Consistent with this line of thought, degradation of invadopodia 
was near completely abolished by both the soluble MMP- 2/ MMP- 
9 inhibitor SB3- CT and the MT1- MMP inhibitor NSC405020 [52].

MMP- mediated matrix degradation can be visualized using mi-
croscopy by culturing cells on substrates coated with fluorescently 
labelled ECM proteins wherein zones lacking fluorescence corres-
pond to degradation spots. Intriguingly, the degradation zones often 
span several microns across. For achieving such large yet focused 
degradation, MMPs must preferably be packaged together and se-
creted as extra- cellular vesicles (EVs). EVs correspond to vesicles 
of different sizes that traffic bioactive molecules (proteins, glycans, 
metabolites, DNA, RNA, and miRNA) between cells and include 
microvesicles, exosomes, and exomeres. In a recent study, ECM stiff-
ness was shown to be a regulator of exosome composition and se-
cretion in breast cancer cells, with an increase in stiffness leading to 
increased secretion, mediated by stiffness- dependent activation of 
the YAP/ TAZ pathway [53]. Both MMP- 2 and MMP- 9 were found 
to be present in these exosomes and exhibited stiffness- dependent 
packaging in exosomes. MMPs were activated by thrombospondin- 
1 (THBS1) that exhibited exclusive exosomal localization; cell in-
vasiveness was markedly reduced in the presence of exosomes 
harvested from THBS1 knockdown cells. The presence of both 
integrins and fibronectin in exosomes raises the possibility that 

integrin– fibronectin binding across exosomes may serve as a mech-
anism to concentrate exosomes locally, thereby mediating focused 
MMP- mediated degradation.

Apart from their matrix remodelling function, MMPs regu-
late cancer invasion in part by regulating integrin dynamics. In an 
elegant study, Bissell and co- workers showed that even in sparse 
collagen matrices that do not require matrix remodelling, the trans-
membrane/ cytosolic domains of MT1- MMP are essential in driving 
mammary branching morphogenesis by stabilizing β1 integrins at 
the cell surface [54]. Similarly, in invasive MDA- MB- 231 breast 
cancer cells and HT- 1080 fibrosarcoma cells, loss of focal adhesions 
and stiffness- dependent spreading abolished by the broad spec-
trum MMP inhibitor GM6001 are attributed to reduction in levels 
of β1 integrins. Increased recycling of membrane- bound integrins 
confirmed that using an AFM- based adhesion assay suggests that 
MMP proteolytic activity stabilizes integrin at the cell membrane, 
thereby preventing its internalization and degradation [51]. This sta-
bilization might be driven by MMP- mediated matrix remodelling 
exposing cryptic domains for integrin engagement as observed with 
laminin- 5 and collagen IV cleavage. In addition to this, MMPs might 
provide direct binding sites for integrins, thereby restricting their 
dynamics. Indeed, MMP- 2 has been shown to regulate invasiveness 
of endocardial cells by binding αvβ3 integrins via its hemopexin do-
main [55]. Similarly, in chronic lymphocytic leukaemia (B- CLL), 
hemopexin domain of MMP- 9 has been shown to engage α4β1 integ-
rins [56]. Apart from the hemopexin domains, the fibronectin type 
II inserts present in the catalytic domains of MMP- 2 and MMP- 9 
may also participate in anchoring integrins onto the cell membrane.

24.6. Cancer invasion: insights from  
computational modelling

Cancer invasion is a multiscale phenomenon collectively determined 
by physicochemical attributes of the ECM, the spatiotemporal kin-
etics of MMP- mediated ECM remodelling, alterations in cell– cell 
adhesions brought about by EMT, crosstalk between distinct cell 
types within the TME, and cell migration that involves nuclear de-
formation. These factors are in turn dependent on heterogeneity in 
protein expression and localization across different cell types. Given 
the differences in timescales and length scales associated with these 
processes, it may not be possible to study all these processes within 
the same experimental framework or experimentally measure one 
or more of these processes. Computational studies pave the way to 
study the individual and collective contributions of disparate elem-
ents of the complete TME as it provides better control of the param-
eters. In this section, we present some of the computational studies 
that have contributed to our understanding of cancer invasion.

 1. Invadopodia growth, dynamics, and function: The dependence 
of ECM fibre density and crosslinking on invadopodia dy-
namics was probed in an elegant study by Alissa Weaver and 
co- workers using a combination of experiments and simula-
tions [57]. The authors simulated the dynamics of invadopodia 
penetration into a fibrillar matrix using a rule- based cellular 
automata model that accounted for preferential invadopodia 
growth as well as retraction and lateral sliding depending on 
the extent of crosslinking. Their model predicted reduced 
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invadopodia penetration as well as shorter invadopodia time-
scales with increase in matrix crosslinking. In a separate work, 
by coupling actin dynamics, EGFR signalling, MMP synthesis 
and delivery, and ECM degradation using a set of non- linear 
partial differential equations, Suzuki and co- workers were able 
to successfully recapitulate the formation of micron- long pro-
trusions with maturation timescales of ≈ 1 h [58]. In another 
study combining experiments and simulations, two distinct 
FRAP timescales (≈ 30 s and ≈ 260 s) of MT1- MMP recovery 
at invadopodia were attributed to vesicular transport and MT1- 
MMP turnover with rapid turnover essential for matrix degrad-
ation. MT1- MMP is known to activate soluble MMP2 that in 
turn activates MMP9 [59]. To parse the relative contributions of 
membrane- bound MT1- MMP and soluble MMPs in mediating 
matrix degradation at invadopodia, a discrete cellular automata 
model was integrated with reaction– diffusion dynamics [60]. 
Assuming an ECM density- dependent MMP secretion profile, 
this model was able to recapitulate the experimental observa-
tion of increased matrix degradation at higher ECM densities 
and established the role of soluble MMPs in mediating matrix 
degradation after activation by MT1- MMP. Further, by mod-
elling multiple invadopodia, it was shown that optimal inter- 
invadopodia spacing led to the formation of degradation zones 
or pores amenable for cell invasion. By accounting for the cross-
talk between the branched actin network within invadopodia 
and the fibrillar ECM network, as well as cytoskeletal con-
nections to the nucleus, Asada and co- workers showed that 
invadopodia growth is collectively determined by actin bund-
ling and MMP- mediated matrix degradation, both of which 
are dependent on ECM stiffness [61]. The study also identified 
myosin turnover time as a critical parameter regulating nuclear 
movement towards the leading edge.

 2. Cell– matrix interactions in cancer invasion: While computational 
modelling invacdopodia dynamics provides insight into early 
stages of cancer invasion, the timescales of cell migration are 
much longer and involve dramatic alterations in cell shape with 
biophysical properties of cells being an important determinant of 
invasion efficiency. In this context, the Cellular Potts Modelling 
(CPM) framework has emerged as a simple yet attractive frame-
work for studying complex multicellular behaviour integrating 
phenomena across different timescales and length scales [62]. 
In this framework, cells, sub- cellular organelles, and ECM can 
be modelled as domains with preferred sizes, shapes, and bio-
physical properties. In the CPM framework, spatiotemporal 
evolution of the simulation lattice is based on minimization of a 
generalized energy given by the following equation:
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In the above expression, σ(i) and τ(σ) represent the ID of pixel i and 
the cell type, respectively. The first term in the energy expression (i.e. 
Jτ τ1 2, ) represents the boundary energy per unit length between cells 
of type τ1 and τ2, and is indicative of the adhesion energy between 

two cells. By assigning different interfacial energies to cell– cell and 
cell– matrix interactions, it is possible to study the process of EMT. 
The second term represents the energy associated with change in 
area of a given cell from its preferred area (a0), with the area con-
straint (λa) representing the bulk stiffness or inverse compressibility 
of the cell. Thus, this energy term penalizes for large variations in cell 
size. Similarly, the third term accounts for variation in cell perimeter 
from its preferred perimeter (p0), with the perimeter constraint (λp) 
reflective of line tension. Thus, this energy term penalizes for large 
variations in cell perimeter. The fourth energy term (ω(σ)) is asso-
ciated with active motility of a cell and is typically given by the ex-
pression ω σ µ( ) = − 0 p

^, where μ0 represents the strength of motility 
and p

^
 represents the extent of cell polarization. The last term in the 

energy expression models chemotaxis of cells, with μ representing 
the effective chemical potential, and υ(target) and υ(source) repre-
senting the concentrations of chemoattractant at target and source 
pixels, respectively.

The ease of integrating the CPM framework with physical pro-
cesses such as reaction diffusion kinetics makes it particularly at-
tractive to study cancer invasion. By assigning different interfacial 
energies to cell– cell and cell– matrix interactions to mimic different 
extents of EMT, the MMP secretion rate and ECM density/ organ-
ization were shown to collectively regulate the patterns of single- cell 
and collective cell invasion [63]. Interestingly, collective invasion 
was found to require less ECM degradation compared to single- cell 
invasion. While higher MMP secretion rates were required to sus-
tain invasion through dense matrices, matrix proteolysis was not re-
quired for invasion through aligned matrices, wherein cells squeeze 
in between the ECM fibres. By incorporating MMP interactions 
with tissue inhibitors of metalloproteinases and matrix secretion by 
cancer cells and two distinct layers of ECM networks, Bhat and co- 
workers showed that when both cell– cell and cell– matrix adhesions 
are intact, cells invaded collectively [64].

While insightful, the importance of cell mechanics was not ad-
dressed in these studies. However, the importance of cell properties, 
particularly stiffness, has been implicated in enhancing confined 
migration through small pores. In a recent study, we probed the 
importance of biophysical heterogeneity by first mapping cell size 
and cell deformability distributions of MCF- 7 and MDA- MB- 231 
breast cancer cells. To assess the functional relevance of such hetero-
geneity in cancer invasion, we developed a CPM- based formalism 
wherein we tracked invasiveness of a cell cluster (cells shown in 
pink) surrounded by a fibrillar matrix (blue lines indicate fibres) 
(Figure 24.1A, inset) [65]. Cell scattering was mediated by MMP 
molecules secreted by cells that diffuse into the surrounding matrix 
and degrade matrix fibres, thereby creating migration paths. To as-
sess the importance of phenotypic heterogeneity, simulations were 
performed both for a homogeneous cell cluster with cells having 
identical size and deformability and for a heterogeneous cell cluster 
with size and deformability distributions approximated as Gaussians 
with mean sizes and deformabilities set to that of the homogeneous 
cluster (Figure 24.1B). These simulations were performed in the ab-
sence of any chemokine gradient, i.e. the last term in Equation (24.1) 
was not accounted for. Different extents of EMT were simulated by 
choosing different values of cell– cell adhesion energies (Jcc) with 
Jcc =  1 simulating collective migration and Jcc =  40 simulating scat-
tered single- cell migration (Figure 24.1C). Interestingly, tracking 
of end- to- end distance (D) travelled by cells revealed increased 
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Figure 24.1. Effect of phenotypic heterogeneity on cancer invasiveness. (A) Schematic of cancer invasion model. Invasion was simulated by 
studying scattering of a cell cluster (pink pixels) positioned at the centre of a 2D space mimicking the extra- cellular matrix (ECM) 11 mm2 in size 
(inset). The ECM consists of randomly positioned ECM fibres (blue lines). ECM degradation is mediated by cell- secreted MMP molecules that 
diffuse and degrade ECM fibres. (B) Simulations were performed for a homogeneous cell cluster, i.e. all cells were of the same size and deformability, 
and a heterogeneous cell cluster. For the heterogeneous cluster, cell size (A) and cell deformability (or area constraint) were approximated as 
normal distributions with means corresponding to the cell size and deformability of the homogeneous cell cluster. (C) Time- dependent invasion of a 
homogeneous and a heterogeneous cell cluster for three different values of cell– cell adhesion energy (Jcc =  1, 16, 40). (D) Quantification of average 
cell invasion of homogeneous and heterogeneous cell clusters measured by end- to- end distance distances (D) travelled by cells. (E) Directed 
migration of cancer cells was simulated by doing simulations in the presence of a stable chemokine gradient (highest concentration at the rightmost 
edge). Simulations were stopped at time t =  t*, i.e. when the first cell reaches the right edge in a given simulation. (F) Quantification of δ for two 
different values of chemotactic strength μ. δi corresponds to the distance of ith cell from right edge at t =  t*. (G) Plot of cell size versus deformability 
for cells at the invasive front (i.e. δ ≤ 50 m at t =  t*). Grey dotted lines correspond to (Ā ± σA)/ (λ ± σλ) and allow the population to be segregated into 
none subpopulations based on size and deformability. (H) Percentage enrichment of individual subpopulation at the invasive front relative to the 
whole population. Source: Adapted from Asadullah et al. [65].
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population- level invasion for the heterogeneous cluster for all values 
of Jcc (Figure 24.1D).

To probe how cells of varying size and deformabilities get posi-
tioned during invasion, simulations were performed in the presence 
of a stable chemokine gradient for different values of chemotactic 
strength (µ) (Figure 24.1E). In the presence of this gradient, cells 
migrated towards the right side, i.e. side with higher chemokine 
concentration. Simulations were stopped at time t =  t* at which the 
first cell reached the right boundary of the lattice. At this time point, 
the distribution of cell size and deformability were determined for 
cells that reached within 50 µm from the right edge, i.e. δ ≤ 50 µm,  
where δi corresponds to distance of ith cell from right edge at t =  t* 
(Figure 24.1F and G). By performing enrichment analysis, i.e. com-
parison of proportion of cells of a given subpopulation at the in-
vasive front in comparison to that in the entire population, three 
distinct cell subpopulations of increased invasiveness were identified 
(Figure 24.1H). These include small cells of varying deformabilities, 
small and intermediate sized soft cells, and intermediately stiff cells 
of varying cell sizes. By doing further experiments, we showed that 
small and soft cells at the invasive front correspond to cancer stem 
cells. In addition to establishing phenotypic heterogeneity as an en-
abler of cancer invasion, these results illustrate how by combining 
systems- level computational modelling with experiments we can 
obtain novel insights into the mechanisms of cancer invasion.

 3. Nuclear mechanics in cancer invasion: Several experimental 
studies have established the importance of nuclear properties 
in regulating cancer invasion. In an earlier work, we had devel-
oped a CPM formalism wherein both cell and nucleus proper-
ties were taken into account [66]. For this case, the expression 
for the generalized energy (Etotal) was modified from the earlier 
energy term (E0) as follows:
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In these simulations, to make sure the nucleus remains within 
the cytoplasm, high positive interface energies were assigned for 
nucleus– matrix and nucleus– fluid interfaces, while high negative 
values were assigned to cytoplasm– cytoplasm, cytoplasm– nucleus, 
and nucleus– nucleus interfaces. In the second term, kc c1 2, , dc c1 2, , and 
rc c1 2,  represent the strength of connectivity between the compart-
ments c1 and c2, the desired distance between the compartments, 
and the Euclidean distance, respectively. This term was added to 
eliminate the possibility of cell fragmentation by constraining the 
inter- compartment distance between two neighbouring compart-
ments. By simultaneously accounting for cell and nuclear stiffness, 
we showed that both cell and nuclear softening are necessary for 
migrating through sub- nuclear- sized channels with confinement 
history another determinant of invasion efficiency.

While insightful, these models are unable to capture several com-
plex behaviour of nuclei including strain stiffening and plasticity. In 
this context, continuum mechanics and molecular dynamics models 
that account for distinct mechanical properties of nuclear lamins 
and chromatin better recapitulate the response of nuclei to physiolo-
gically relevant forces. We addressed this question in an earlier work 
wherein we probed the importance of nuclear and tissue properties 
in dictating the dynamics of confined cell migration by accounting 

for properties of the cell membrane, cytoplasm (Ec), and nucleus (En) 
[43]. The cell membrane, cell cytoplasm, nuclear membrane, and 
tissue (ET) were modelled as viscoelastic Kelvin– Voigt materials; for 
these materials, the stress in the system depends on the strain (ε) and 
strain rate (ε) and is given by the equation σ ηεε= + +K  , where K 
corresponds to the solid stiffness and η represents the fluid viscosity. 
The nucleus was assumed to be an elastoplastic (σ =  a +  bɛn) solid 
to model the collective behaviour of the nuclear membrane and the 
chromatin fibres. Nuclear translocation was mediated by protrusive 
forces at the front edge of the cell (Figure 24.2A). For Ec =  1 Pa, En =  1 
kPa, and 0.5 ≤ ET ≤ 2 kPa, forces required for pore entry were mostly 
dependent on the ratio of the undeformed nucleus size (D0) to pore 
size (ϕ), with entry into small pores (i.e. D0 / ϕ =  1.67) requiring 
higher forces (Figure 24.2B). A parameter study over a wider range 
of nuclear to tissue stiffness (0.1 ≤ En / ET ≤ 10) revealed sharp drop 
in nuclear circularity (i.e. D / L) for moderately stiff nuclei (En =  1 
kPa) and En / ET < 2 (Figure 24.2C). This can be attributed to nuclei 
undergoing plastic deformation as apparent from the build- up of 
plastic strain for specific parameter combination of nuclear stiffness, 
tissue stiffness, and extent of confinement (Figure 24.2D and E). In 
addition, plastically deformed nuclei exhibited kink formation at the 
front edge indicative of nuclear rupture. Collectively, these simula-
tions establish a physical basis for nuclear rupture during confined 
migration. The absence of kink formation in softer nuclei suggests 
that cells may dynamically soften their nuclei by Lamin A/ C phos-
phorylation as a strategy to minimize nuclear rupture.

Similar to nuclear softening achieved by modulation of Lamin 
A/ C levels, nuclear softening via TSA- induced chromatin 
decondensation also leads to faster confined migration and is as-
sociated with lesser force required for pore entry [67]. A molecular 
dynamics simulation set- up comprising of an inner crosslinked 
polymer (i.e. chromatin) surrounded by a polymer shell (i.e. lamina) 
was able to capture strain- stiffening behaviour of isolated nuclei as 
well as buckling of the nuclear lamina in the absence of chromatin 
[68]. While initial models of nuclear blebbing identified Lamin 
A:Lamin B levels and their spatial separation as important deter-
minants of blebbing, a recent computational model suggests that 
blebbing occurs at sites of chromatin tethering to the nuclear lamina 
at lamin- associated domains [69].

24.7. Conclusion

Cancer invasion is a highly complex process dictated by multiple 
aspects of the ECM, the extent of cell– cell adhesion, and genetic/ 
phenotypic heterogeneity. Successful recapitulation of the complex 
TME is expected to be incorporated in lab- on- chip systems amen-
able for high- throughput assays. While engineered systems that 
control one or more aspect of ECM properties have contributed 
significantly to our understanding of cancer invasion, these reduc-
tionist approaches fail to capture the complex interactions between 
distinct cell types within the TME that is now increasingly under-
stood to play key roles in driving cancer progression. With single- cell 
RNAseq technologies being more accessible and rapid integration 
of AI/ ML- based approaches for spatiotemporal mapping of genetic 
heterogeneity and epigenetic reprogramming, incorporation of this 
information within CPM modelling formalisms can make powerful 
predictions pertaining to the nature of cancer invasion and identify 
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signalling nodes that may be explored for therapeutic targeting of 
cytoskeletal, matrix remodelling, and immune evasion pathways.
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Adaptation of cancer cells to altered 
stiffness of the extra- cellular matrix
Christina R. Dollahon, Ting- Ching Wang, Srinikhil S. Vemuri, Suchitaa Sawhney, 
and Tanmay P. Lele

25.1.  Introduction

Cancer is a complex disease that involves changes not only to the 
biochemical properties of cells and tissues but also to the mechan-
ical properties of tissues. For example, palpation of tissue for vari-
ations in mechanical stiffness has been used in clinical diagnosis of 
different types of cancer for a long time [1– 5]. Quantitative meas-
urements of mechanical stiffness with techniques such as atomic 
force microscopy (AFM) have revealed a general ‘stiffening’ of tissue 
in cancer (Table 25.1). While cancer tissues tend to be stiffer than 
their normal counterparts, cancer cells themselves tend to be softer 
[21]. Instead, mechanical stiffening of tissue is caused in part by in-
creased deposition of extra- cellular matrix (ECM) proteins in the 
tumour microenvironment and subsequent crosslinking of ECM 
fibrils and networks [22– 27]. Importantly, cells in tissues sense 
and respond to the stiff tissue microenvironment in a way that en-
hances their growth rate and their migratory potential [28]; both 
these phenotypes contribute to disease progression [22,29,30]. As 
such, an increasing number of studies are beginning to focus on the 
mechanisms for stiffening of tumour tissue and the resulting cellular 
responses.

That cells can differentiate between mechanically soft and stiff 
extra- cellular microenvironments was demonstrated through 
studies starting in the late 1990s from the groups of Wang and 
Dembo [28,31– 33]. One of the first papers on this topic reported 
imaging of motile fibroblasts on polyacrylamide hydrogels that were 
conjugated covalently with the matrix protein type I collagen [34]. 
Fibroblasts crawled faster on soft polyacrylamide substrates than on 
stiff polyacrylamide substrates. Epithelial cells seeded on the gels did 
not migrate much, but the examination of the dynamics of epithelial 
cell focal adhesion assembly on these gels revealed that vinculin- 
labelled focal adhesions underwent rapid turnover on soft but not 
stiff gels. These studies demonstrated that cell phenotype was sensi-
tive to the mechanical stiffness of the underlying substrate.

These initial discoveries motivated many studies that have con-
tinued to this day (Figure 25.1), which seek to address the underlying 

causes for cellular sensitivity to the mechanical stiffness of substrates, 
to identify in vivo contexts in which cellular sensitivity to matrix 
stiffness could be potentially important [33,35], and to understand 
the role of tissue stiffness in human diseases [36]. It is now known 
that many cell types, including fibroblasts [34], endothelial cells 
[37], neurons [38], epithelial cells [34], cardiomyocytes [39], mesen-
chymal stem cells [40], and, important for this chapter, cancer cells 
[41– 43], are profoundly affected by substrate stiffness. These studies 
span a range of cellular responses in in vitro model systems that have 
been developed over the years to present controlled mechanical sub-
strate stiffness to cells, in vivo studies in animal models, and emer-
ging approaches to quantify changes in tissue mechanical stiffness 
in humans [44].

This chapter examines the emerging role of ECM mechanical stiff-
ness in the context of cancer. We describe some of the model systems 
that can be used to study cancer cell responses to ECM stiffness. We 
present an overview of the impact of changing mechanical stiffness 
on cancer cell phenotypes, such as migration and proliferation, and 
the molecular mechanisms that mediate sensing of ECM stiffness.

25.2. Cellular response to model 
substrates of controlled stiffness

25.2.1. Cellular response to 2D substrates

Polyacrylamide gels that were used in early studies by the Wang 
group have remained the workhorse for the field of ECM stiffness 
sensing. Polyacrylamide gels can easily be synthesized through the 
polymerization of acrylamide with bis- acrylamide. High ratios of 
bis to acrylamide result in stiff hydrogels, while low ratios result in 
soft hydrogels. Hydrogel stiffness is commonly quantified in terms 
of the Young’s modulus, which is a ratio of the extensional stress 
applied to a hydrogel block divided by the strain at steady state. The 
resulting hydrogels must be covalently conjugated with matrix pro-
teins of choice, such as fibronectin or collagen, in order to allow 
cells to adhere and spread on these substrates [45]. Despite some 
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Table 25.1. Comparison of tissue stiffness in cancer.

Species of origin Diagnosis Parametera Method Reference

Human Control colon tissue (collagen- rich regions) EM =  0.8 ± 0.4 kPa AFM [6] 

Colon carcinoma (collagen- rich regions) EM =  2.40 ± 1.83 kPa

Human Normal colon tissue SM =  1.52 kPa Strain rheometry [7] 

Cancerous colon tissue SM =  9.60 kPa

Human Benign breast lesion YM =  28 kPa Shear wave elastography (SWE) [8] 

Ductal breast carcinoma in situ YM =  76 kPa

Lobular breast carcinoma in situ YM =  82 kPa

Invasive breast cancer YM =  140 kPa

Human Healthy fibroglandular breast tissue SS =  7.5 ± 3.6 kPa Magnetic resonance elastography (MRE) [9] 

Breast tumour SS =  33 kPa

Human Adjacent healthy bladder tissue YM ≈ 3 kPa AFM [10]

Newly diagnosed bladder cancer tissue YM ≈ 8 kPa

Recurrent bladder cancer tissue YM ≈ 13 kPa

Mouse xenograft Non- mesenchymal ovarian tumours YM ≤ 60 kPa SWE [11]

Ovarian cancer YM =  120– 140 kPa

Human Benign prostate tissue YM =  74.9 ± 47.3 kPa Shear wave imaging (SWI) [12]

prostate intraepithelial neoplasia/ atypia YM =  83.3 ± 38.6 kPa

Prostate cancer YM =  133.7 ± 57.6 kPa

Human Normal prostate tissue CYM =  15.9 ± 5.9 kPa Stress relaxation tests [13]

Prostate cancer CYM =  40.4 ± 15.7 kPa

Human Non- tumour brain gliosis YM =  10– 180 Pa AFM [14]

Lower grade glioma YM =  50– 1,400 Pa

Glioblastoma YM =  70– 13,500 Pa

Human Normal brain tissue YM =  7.3 ± 2.1 kPa SWE [15]

Meningioma YM =  33.1 ± 5.9 kPa SWE [15]

Low- grade glioma YM =  23.7 ± 4.9 kPa

High- grade glioma YM =  11.4 ± 3.6 kPa

Brain metastases YM =  16.7 ± 2.5 kPa

Human Normal liver tissue SS =  2.3 ± 0.3 kPa MRE [16]

Normal liver tissue S =  2.1 kPa [17]

Fibrotic liver tissue SS =  5.9 ± 2.5 kPa [16]

Benign liver tumour SS =  2.7 ± 0.4 kPa

Malignant liver tumour SS =  10.1 ± 3.6 kPa

Well/ moderately differentiated hepatocellular 
carcinoma (HCC)

S =  6.5 ± 1.2 kPa [18]

Poorly differentiated HCC S =  4.9 ± 1.2 kPa

Human Normal pancreatic tissue SS =  2.47 ± 0.11 kPa MRE [19]

Pancreatic cancer SS =  6.06 ± 0.49 kPa

Human Lymph node without metastasis S =  1.23 ± 0.50 g/ cm Tactile sensor [20]

Lymph node with metastasis S =  3.35 ± 1.57 g/ cm

aEM: elastic modulus; SM: storage modulus; YM: Young’s modulus; SS: shear stiffness; CYM: complex Young’s modulus; S: stiffness.
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controversy about whether polyacrylamide gel stiffness can be con-
trolled independently from ligand tethering and porosity [46], we 
and others have shown that cells do indeed sense stiffness in this 
system [47,48].

When cultured on soft and stiff polyacrylamide hydrogels, the 
canonical response of most normal cell types (with the exception 
of neutrophils [49] and Schwann cells [50]) is that they spread less 
on the soft gels and more on stiff gels [40,42,49,51– 56]. Higher 
spreading on stiff substrates compared to soft substrates was also 
observed in different cancer cell lines, including MDA- MB- 231 cells 
(breast cancer), HN and BHY cells (oral squamous cell carcinoma), 
A549 cells (lung cancer), BxPC- 3 and PANC- 1 cells (pancreatic 
cancer), HT- 1080 cells (fibrosarcoma), and multiple glioblastoma 
cell lines [41,57,58] (see Figure 25.2 for an example with MDA- MB- 
231 human breast cancer cells). There are exceptions to this rule. For 
example, the prostate cancer cell line PC- 3 spread equally well on 
both soft (150 Pa) and stiff (4,800 Pa) substrates, while the pancreatic 

cancer cell line mPanc- 96 did not spread well on either soft or stiff 
substrates [41]. Likewise, H- ras- transformed NIH 3T3 fibroblasts 
spread the same on substrates of Young’s moduli ranging from  
14 to 33 kPa, unlike normal NIH 3T3 fibroblasts [32]. The H- 
ras- transformed cells did begin to spread less once the substrate 
stiffness was lowered to 10 kPa.

The motor- clutch model proposed by Mitchison and Kirschner 
[59], Chan and Odde [60], and later refined by Roca- Cusachs and 
co- workers [61] explains cell spreading in general, and more specif-
ically explains why cells tend to spread less on soft ECM and more 
on stiff ECM. In the motor- clutch model, myosin motors generate 
force by binding to F- actin filaments newly assembled at the leading 
edge of the cell. Matrix– protein- bound transmembrane integrin re-
ceptors act as the molecular clutches that transmit this force to the 
compliant substrate’s ECM proteins, which deform in response to 
the force. On stiff substrates, talin unfolds before the integrin– ECM 
bonds dissociate. This exposes its cryptic binding sites for further 

Figure 25.1. Left: Results of a search at https:// pub med.ncbi.nlm.nih.gov/  with keywords ‘ “ECM stiffness” OR “matrix stiffness” ’ OR “matrix 
rigidity” ’. Right: Results of a search at https:// pub med.ncbi.nlm.nih.gov/  with keywords ‘ “ECM stiffness” OR “matrix stiffness” OR “matrix rigidity” 
AND “cancer” ’.

Figure 25.2. MDA- MB- 231 human breast cancer cells seeded on polyacrylamide gels coated with collagen I of 1 kPa (5% acrylamide and 0.1% bis- 
acrylamide; top panel) and 308 kPa (15% acrylamide and 1.2% bis- acrylamide; bottom panel). Cells were fixed after three days of culture and stained 
with Hoechst 33342 and Phalloidin. Scale bar is 20 µm.
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F- actin and vinculin binding and reinforcement, crosslinking the 
cytoplasmic integrin tails. This crosslinking reinforces adhesion and 
therefore increases cell spreading. On soft substrates, the integrin– 
ECM protein bond dissociates before talin can unfold and expose 
its binding sites. Thus, the motor- clutch model predicts less traction 
stress on softer ECM compared to stiffer ECM, which correlates with 
decreased spreading.

Traction force microscopy was developed in the 1990s to quantify 
the traction stress cells exert on the underlying substrate [31,62– 64]. 
The technique involves culture of cells on soft polyacrylamide gels 
of a known Young’s modulus containing sub- micron- sized fluores-
cent beads. Computational analysis of the motion of gel- embedded 
beads when cells migrate or spread on the gel allows the calcula-
tion of spatially distributed, cellular traction stress on the substrate. 
Alternative methods have been developed and refined over the years 
that directly measure the force of deformation by culturing cells on 
a bed of vertical pillars made of compliant poly- di- methoxy- silane 
(PDMS) or of flexible nanowires [65– 68]. The top and bottom of 
the micropillars can be imaged with fluorescence microscopy (or 
scanning electron microscopy in the case of nanowires) and deflec-
tion of the pillar quantified. Knowledge of the Young’s modulus and 
the geometry of the pillar allow calculation of the force applied by 
cells on top of the pillars. Another technique images deformations 
in fibronectin- printed patterns on a substrate of known area and 
modulus to calculate traction forces [69]. Such techniques have re-
vealed that cancer cells exerted lower traction on soft substrates, 
and higher traction on stiff substrates, consistent with the motor- 
clutch model [70,71]. H- ras- transformed NIH 3T3 fibroblasts were 
an exception to this rule as they exerted roughly the same amount 
of traction force on soft (14 kPa) and stiff (33 kPa) substrates [32]. 
Furthermore, when presented with a gradient of ECM stiffness, 
cancer cells migrated towards the ECM stiffness that allows them to 
generate maximal traction, which is also predicted by the computa-
tional motor- clutch model [72].

The way traction force varies between healthy, less metastatic, 
and more metastatic cancer cells is still unclear. Conflicting results 
have been reported in studies that compare traction forces exerted 
by healthy and cancerous cells. One study found that MDA- MB- 231 
breast cancer cells, PC3 prostate cancer cells, and A549 lung cancer 
cells exerted more traction force than healthy cells independent of 
substrate stiffness [71]. Other studies have found that MCF7 breast 
cancer cells, transformed cells, and H- ras- transformed NIH 3T3 
fibroblasts exerted less traction force on the substrates [73,74]. There 
are also conflicting reports regarding differences in traction force 
exerted by cancerous cells of different metastatic abilities. When 
murine breast cancer cells of varying metastatic potential were com-
pared, the more metastatic cell lines exerted less traction force than 
the less metastatic cell lines [75]. Contrary to this finding, MDA- 
MB- 231 cells transferred more strain energy on micropatterned de-
formable substrates than the less metastatic MCF- 7 cell line [69], in 
alignment with other studies [71,73].

Correlated with the inability of cells to spread on soft substrates, 
cells proliferate less on soft gels compared to stiff gels [41,76– 79]. 
Proliferation is insensitive to substrate stiffness in cell lines in which 
spreading is insensitive to substrate stiffness [41]. Again, there are 
exceptions to the rule. For example, Schwann cells proliferated the 
most on an intermediate stiffness (7.45 kPa), which is where they 
also spread best [50]. Furthermore, the proliferation of cancerous 

and transformed cells was less affected by substrate stiffness than the 
corresponding normal cells [73].

Other two- dimensional (2D) model systems to study cell re-
sponses include PDMS, 2D collagen gels, hyaluronic acid, and azo-
benzene gels. The stiffness of PDMS can be controlled by varying 
the crosslinking ratio of vinyl- terminated base to methyl hydrogen 
siloxane and using different curing methods, achieving a range of 
stiffnesses from 0.1 kPa to 10 MPa [46,80]. Collagen gel stiffness 
can be controlled by synthesizing gels that have low concentra-
tion of collagen (e.g. 1 and 3 mg/ ml corresponding to 124 ± 8 and 
502 ± 48 Pa stiffness, respectively) [81]; however, this method also 
changes the density of collagen molecules that are presented to cells. 
Another approach is to change substrate stiffness by varying the 
height of PDMS microposts because shorter posts are stiffer to hori-
zontal traction forces generated by cells [65,82]. In these systems 
also, similar responses have been observed as with polyacrylamide 
gels— cells in general spread more on stiff substrates compared with 
soft substrates and proliferated more on stiff substrates compared 
with soft substrates [82– 84].

25.2.2. Cellular response to 3D substrates

While 2D substrates have proven invaluable in fundamental studies 
of cellular sensing and response to stiffness, cells in vivo rarely see flat 
2D surfaces. Instead, cells inhabit complex microenvironments that 
present three- dimensional (3D) cues to cells. Recognizing this limi-
tation of 2D substrates, numerous studies over the past two decades 
have developed 3D gels of controlled stiffness (reviewed in [85]).

Early studies used 3D collagen gel models in which the con-
centration of collagen was altered systematically to stiffen the gel. 
Culture of human mammary epithelial cells in 3D basement mem-
brane/ collagen gels of low stiffness (167– 170 Pa) resulted in hollow 
acinar structures, which are typical of glandular structures in vivo. 
However, culture of these cells in stiffer gels (170– 1,200 Pa) led to 
a loss of the lumen in the acinar structures, and at the highest stiff-
ness values, disrupted the cells’ basal polarity [86]. One drawback of 
using collagen gel models is that increasing collagen concentration 
to increase gel stiffness can have unintended effects on the extent of 
integrin binding to the gel [86]. To avoid this problem, basement 
membrane– polyacrylamide gels were used with a stiffness range 
from 150 to over 5,000 Pa, with similar results [86]. These results 
are compatible with measurements of mice mammary tumours and 
healthy mouse mammary glands revealing higher elastic moduli of 
the cancerous tissue and surrounding stroma [86].

Stiffening of 3D gels can switch cells between differentiation or 
proliferation. For example, breast epithelial cells cultured in ‘floating’ 
gels, which are unattached to the underlying substrate and permit 
deformation of the gel (effectively acting as soft ECM), assembled 
tubules, reflecting a differentiated phenotype [87]. When cultured 
in adherent gels, the cells did not assemble tubules but proliferated. 
Thus, stiffening of the ECM may promote a loss of tissue structure 
and uncontrolled proliferation that can contribute to tumorigenesis.

Alternative approaches to tune stiffness of 3D culture systems 
include 3D hyaluronic acid gels crosslinked with genipin [88], gel-
atin methacryloyl (GelMA) gels stiffened by nanoparticles [89,90], 
poly(ethylene glycol) (PEG)- based gels, and alginate gels. 3D gels 
can also be made of synthetic compounds [91,92]. Experiments with 
cancer cells seeded in 3D gels have revealed that cancer cells often 
respond differently to stiffness than on 2D gels. A study culturing 

 

 

 

 

   

 

 

 

 

 



CHAPTER 25 Adaptation of cancer cells 259

MDA- MB- 231 breast cancer cells in 3D GelMA hydrogels observed 
more cell spreading in softer gels (1– 3 kPa) compared to stiffer gels 
(10– 15 kPa) [58]. Other studies showed that cancer cells proliferated 
more in soft 3D gels, contrary to results in 2D gel studies [93,94]. 
For example, when U87 glioblastoma cells were cultured in 3D 
PEG- based hydrogels of different stiffnesses, cell proliferation and 
spreading was greater in the softer gels [92]. In addition to increased 
proliferation, cancer cells invaded softer gels at a faster rate [95]. 
However, Huh7- transformed cells were found to proliferate more 
in stiffer gels, suggesting that cancer cell response to 3D gel stiffness 
may be dependent on cell type [96].

While most studies of cancer cell interactions with substrates of 
tunable stiffness have focused on static stiffness values, methods 
have emerged to dynamically tune stiffness. These studies are mo-
tivated by the fact that the stiffness inside a developing tumour in 
vivo undergoes a gradual change over time. In one such approach, 
mammary epithelial cells were seeded on partially crosslinked 2D 
methacrylated glycosaminoglycan hyaluronic acid (MeHA) hydro-
gels of tunable stiffness, coated with collagen [97]. After seeding, the 
cells were covered in Matrigel, which polymerizes around cells, al-
lowing their development into 3D acinar structures. Next, exposure 
to UV light and free radical donors was used to stiffen the gels dy-
namically. This caused the acinar structure to lose its integrity with 
dissociation of spheroids into individual cells. When a 3D alginate– 
Matrigel model system was used to dynamically tune stiffness, breast 
epithelial cells became more invasive and proliferated more in a 
stiffened substrate [98]. Another system used azobenzene hydrogels 
stiffened dynamically with UV light to investigate the response of 
MCF7 breast cancer cells to stiffening in 2D culture. The cells were 
cultured on gels stiffened at different timepoints after seeding: cell 
aggregates grew more on gels stiffened 12 h after seeding and re-
duced on gels stiffened 36 h after seeding [99].

Studies that tune the stiffness of 3D hydrogels can be complicated 
by additional effects of gel stiffening in three dimensions, including 
a smaller pore size, changes to the matrix accessibility of ECM pro-
teins, and the degradability of the matrix [55,88,100,101]. Also, 
emerging studies show that viscoelasticity is an additional variable 
present in many tissues in vivo which impacts cell spreading and 
proliferation [102]. For example, MDA- MB- 231 and MCF7 breast 
cancer cell spheroids, as well as HT- 1080 fibrosarcoma spheroids, 
grew larger in fast- relaxing (less viscous) 3D gels [103]. The impact 
of viscoelasticity can be seen in 2D culture as well as 3D: U20S osteo-
sarcoma cells spread significantly differently on viscoelastic sub-
strates than purely elastic substrates of the same Young’s modulus 
[104]. Huh7 liver cancer cells spread more on viscoelastic substrates 
than purely elastic ones, in contrast to normal hepatocytes [105].

25.3. A systems biology perspective 
of cellular adaptation to ECM stiffness

As mentioned above, the most robust and canonical response of 
cells to stiffness in 2D model systems is that they spread less on soft 
ECM and more on stiff ECM. The lack of spreading, caused by an 
inability to exert sufficient traction on the ECM, can be explained 
by the motor- clutch model. Particularly relevant to cancer is the fact 
that cancer cells tend to proliferate less when less spread in other-
wise identical 2D systems. Cell behaviour also varies on soft and 

stiff substrates in terms of differentiation. For example, stem cells 
differentiate into neuronal lineages on soft ECM, muscle cells on 
intermediate stiffness, and bone cells on the stiffest substrates [40]. 
All this occurs in a constant soluble environment of growth factors, 
cytokines, and nutrients.

Because differences in cell spreading on soft and stiff ECM are a 
robust and reproducible response in normal and cancer cells, it is 
likely that cell shape is a major mediator of the effect of ECM stiff-
ness on cell behaviour, including differentiation and proliferation. 
For example, it has been shown in other contexts that controlling 
the degree of cell spreading can switch cells between different fates. 
Ingber and co- workers demonstrated this principle by culturing 
endothelial cell shapes on square fibronectin- coated patterns that 
forced them to spread less in area or allowed them to spread more 
[78]. Endothelial cells that were spread less underwent apoptosis, 
while cells that spread more proliferated more. Again, all this oc-
curred in an otherwise identical soluble environment of growth 
factors and cytokines. Likewise, Chen and co- workers found that 
human mesenchymal stem cells differentiated to adipocytes when 
forced to spread less on micropatterned islands, while they differen-
tiated to osteoblasts when allowed to spread more [106].

How might controlling cell shape regulate cell fate? The motor- 
clutch model holds that cell shape is established by F- actin polymer-
ization pushing on the cell membrane when the F- actin filaments 
engage with the integrin receptor clutches. Integrin engagement, 
recruitment of adhesion proteins to integrins, and eventual stable 
assembly of focal adhesions can trigger signalling pathways in cells. 
This is because focal adhesions are themselves extremely complex 
assemblies of more than 50 different proteins, many of which are 
enzymes that can modulate signalling pathways [107]. For example, 
breast epithelial cells in floating collagen gels initially contract the 
floating (soft) gels, but the contraction results in smaller adhesions 
with decreased phosphorylation of focal adhesion kinase, and de-
creased Rho and ROCK activity, resulting in an eventual decrease 
in contractility and tubulogenesis [87]. Conversely, cells cultured  
in adherent (hence stiff) collagen gels had an increased phosphor-
ylation of focal adhesion kinase and associated high Rho– ROCK- 
mediated contractility, which promoted proliferation [87]. As 
another example, when mouse embryonic fibroblasts were cultured 
on stiff matrices, focal adhesion kinase was activated, which in turn 
activated Rac, and Cyclin D1, triggering the cell cycle and associated 
proliferation [108].

Cell shape can also modulate cell fate independently of adhe-
sion assembly. Ingber and co- workers micropatterned spread or 
unspread/ round morphologies of cells while keeping the adhesive 
area constant [78]. Spread cells still proliferated while round cells 
did not, which led them to propose that cell shape alone can control 
cell proliferation. Because controlling cell shape also modulates the 
polymerization of F- actin, and its bundling into actomyosin stress 
fibres, it is possible that these changes may mediate the effect of cell 
shape on cell proliferation [109,110]. Another consequence of cell 
shape control is the control of nuclear shape because nuclear shape 
generally conforms to cell shape [111,112]. Changes in nuclear 
shape can also alter chromatin conformation that can in turn alter 
gene expression [113– 116].

Cell spreading can induce nuclear translocation and activation 
of the transcriptional co- activator yes- associated protein (YAP) 
independently of the Hippo pathway [117]. This phenomenon, 
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first reported by Dupont et al. [117], has been extensively studied. 
Different mechanisms have been proposed to explain YAP sen-
sitivity to mechanical cues. In one proposed mechanism, talin- 
depleted mouse embryonic fibroblasts spread on stiff ECM have 
compressed nuclei with stretched nuclear pores, which contributes 
to increased nuclear import of YAP [118]. Tension in the nuclear en-
velope has been suggested to cause YAP nuclear localization in mes-
enchymal stem cells in 3D methacrylated hyaluronic acid (MeHA) 
hydrogels [119].

In an alternative mechanism, cell spreading on stiff ECM pro-
motes YAP nuclear localization by increasing the availability of 
unphosphorylated, cytoplasmic YAP for import by the nuclear trans-
port receptor importin- 7 (Imp7) [120]. Cortical actomyosin structures 
assemble in spread cells on stiff ECM and inhibit the Hippo kinases 
MST1/ 2 that normally phosphorylate YAP [120], or sequester Amot, a 
protein that phosphorylates YAP [121]. Shifting the balance of cortical 
actin to cytoplasmic actin results in phosphorylation of YAP, preventing 
its nuclear entry [121]. YAP mechanosensing is also observed in diverse 
cancer cell lines with YAP being present in cells cultured on stiff, but 
not soft, hydrogels [58]. YAP mechanosensitivity is abrogated in these 
cancer cell lines upon depletion of Lamin A/ C, through mechanisms 
that are not fully understood. A loss of nuclear YAP caused by a decrease 
in Lamin A/ C has also been shown to occur in embryonic development 
[121]. The loss of Lamin A/ C may promote YAP phosphorylation by 
modulating the balance of cortical versus cytoplasmic f- actin filaments 
[121]. Since Lamin A/ C is down- regulated in some cancers, it may 
modulate cell fate by perturbing YAP mechanosensing in these con-
texts [122].

As the foregoing discussion shows, the mechanisms by which cell 
shape control alters cell fate are diverse and complex. The expression 
of many hundreds of genes can become altered when cells are cul-
tured on soft ECM compared to stiff ECM [123]. These alterations 
are reflective of the modulation of many diverse signalling pathways. 
And yet, alterations in so many variables result in ECM stiffness- 
mediated switching between relatively few cell fates: proliferation, 
differentiation, or apoptosis. This is consistent with the concept that 
cell fates may be attractors in cell regulatory networks [124,125]. 
That is, cell fates correspond to minima of potential energy in an 
N- dimensional potential energy landscape, where N refers to the 
number of independent variables that describe regulatory networks 
(gene expression, enzyme activity, protein states, etc.). In this con-
ceptual picture, cell shape has been proposed to be a physical par-
ameter that selects between different potential energy minima. Such 
a ‘systems- level’ understanding of the relation between cell shape 
and cell fate may be useful because cell shape control can switch 
between cell fates, and cell fates correspond to large differences in 
protein levels and signalling pathways [124]. Cell shape as a con-
trol parameter appears to override inputs from soluble factors in the 
environment as well. As such, this property of cells influences the 
integration of the biochemical signalling machinery that ultimately 
determines fate.

25.4. Cancer heterogeneity and 
response to ECM stiffness

Cancer is fundamentally a genetic disease [126]. Proliferating cancer 
cells in a growing tumour have remarkable heterogeneity in genetic 

makeup [127]. Yet, studies examining the role of ECM stiffness in 
cancer have not accounted for genetic tumour heterogeneity, repre-
senting a crucial knowledge gap because individual genetic variants 
might respond to ECM stiffness differently from the responses re-
ported from population- level studies.

Selection of individual tumour cell clones has been observed in 
tumours [128] both due to selection pressure from the changing 
microenvironment and pressure imposed by drug treatment [129]. 
It is therefore reasonable to expect that changes in the ECM stiffness 
in a growing tumour can result in selection of genetic clones from the 
growing, heterogeneous population of tumour cells. Likewise, the 
selection of clones on soft ECM may occur in vivo when cells migrate 
from a stiff tumour to tissues that are softer than the tissue of origin, 
such as cells that migrate from the stiffer breast to the soft brain or 
from stiff bone to softer lung. Selection in the new microenviron-
ment could lead to functional consequences, such as comparable cell 
proliferation even in the new tissue with distinct mechanical prop-
erties from the tissue of origin. Selected metastatic cells may also ex-
hibit differential responses to pharmacological targeting. However, 
such possibilities are invisible in population- level studies of cancer 
cell responses to ECM stiffness, which focus on average properties 
and do not account for clone- to- clone genetic variations.

The possibility of evolution of cell populations due to selec-
tion by changes in ECM stiffness is supported by our recent study 
that demonstrated evolution of genetically variable fibroblast and 
myoblast populations [130]. We found that not all cells exhibit ca-
nonical phenotypic plasticity on soft vs. stiff ECM. Instead, some 
mutant clones within populations of fibroblasts exhibit phenotypic 
plasticity behaviours opposite those of the overall cell population, in 
which clones spread and proliferate well on soft ECM but poorly on 
stiff ECM (Figure 25.3). Our studies established two new concepts. 
(1) Mutation reverses the phenotypic plasticity of cells in response to 
ECM stiffness. (2) Soft ECM consistently selects deviant clones that 
‘do the wrong thing’, resulting in cell populations with plasticity and 

Figure 25.3. Reverse plasticity in the cellular response to ECM 
stiffness. Mutant clones depicted in red spread less on stiff ECM and 
more on soft ECM, which is opposite from the canonical plasticity 
of the average population (blue). The red clones proliferate more on 
soft ECM than blue clones due to increased spreading and eventually 
outcompete blue clones, giving rise to a population dominated by 
deviant clones that drive tumour behaviours.
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cellular behaviours opposite those found in the canonical pattern. 
We observed similar selection in two cancer cell lines: MDA- MB- 
231 cancer cells and HT- 1080 fibrosarcoma cells in another recent 
study [131] although we did not observe reverse plasticity in these 
cells. Instead, selected cells spread equally well on both soft and stiff 
ECM. Overall, these results indicate that future studies of cancer cell 
behaviour on soft and stiff ECM should take into account the gen-
etic heterogeneity of starting cell populations, and that laboratory 
evolution is a useful technique for such studies. It is important to 
understand the relationship between genotype and cancer cellular 
plasticity in response to ECM stiffness, if we are to fully understand 
the impact of mechanical changes in the progression of cancer, and 
in the development of new therapies [132,133].
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Decoding mechano- oncology principles 
through microfluidic devices and 
biomaterial platforms
Alka Kumari, Abhishek Goswami, and Ajay Tijore

26.1.  Introduction

Cancer is one of the leading causes of death across the world [1] . In 
particular, cancer metastasis (tumour spread from primary tumour 
sites to other body parts) is the major reason behind cancer- associated 
mortality. Historically, oncogenes and biochemical cues have been 
considered the drivers of cancer due to their significant role in tu-
mour development [2,3]. However, recent studies have shown that 
the mechanical properties of tumour cells and tumour microenvir-
onment (TME) substantially contribute to tumour development 
and progression [4– 6]. Interestingly, it is now possible to measure 
the mechanical properties of tumour cells, including stiffness and 
contractility, in vitro and in vivo due to the availability of techniques, 
such as traction force microscopy, atomic force microscopy, optical 
tweezers, micropillar platforms, elastic modulus Pen, and real- time 
elastography [7– 9]. These techniques thus enable the diagnosis of tu-
mours with aberrant mechanical stiffness and the spatial distribution 
of tumour markers using palpation and imaging [7,10].

Traditionally, conventional tumour models have been used to 
study tumour development and progression. For instance, in vitro tu-
mour models, such as trans- well assays, wound healing assays, and 
chemotaxis assays, were used [11]. However, these tumour models 
cannot recapitulate the complexities of TME, including different 
types of mechanical forces generated within TME (stretch, compres-
sion, and fluid shear stress) and extra- cellular matrix (ECM) stiffness 
(Figure 26. 1A) [12,13]. On the other hand, animal- based tumour 
models provide an excellent platform to mimic in vivo complexities 
of TME. But these models have their disadvantages, e.g. the require-
ment of immunodeficient animals, long tumour latency, difficulty 
in monitoring individual steps of metastasis, expensive, and time- 
consuming [14]. Recent advancements in the field of biomaterials, 
tissue engineering, and microfabrication, as well as an increase in the 
basic understanding of cancer biology, have contributed to the devel-
opment of complex in vitro tumour models that recapitulate TME by 
incorporating different cell types, vasculature, and ECM composition 

along with spatiotemporal control on biochemical growth factor add-
ition [15]. This has led to the development of a wide range of models 
ranging from tumour spheroids, tumour organoids, tumour vascu-
lature models and complex tumour- on- chip models mimicking in 
vivo TME, and normal physiological conditions. These 2D and 3D 
in vitro tumour models have enabled the real- time monitoring of 
critical steps involved in cancer cell progression, including primary 
tumour formation, invasion, intravasation, extravasation, and sec-
ondary tumour formation at the distant organ (Figure 26.1B) [16]. 
Tumours are known for their heterogeneity, and this feature makes it 
difficult to find common treatments against different tumour types. 
Thus, precision medicine has increasingly become popular in which 
patient- specific in vitro tumour models have been developed to as-
sess clinical treatment efficacy and management [17].

In this chapter, we broadly categorize contemporary in vitro tu-
mour models based on their applications to study the major steps 
of tumour progression. Also, we summarize the mechano- oncology 
principles of these tumour models, which will serve as the guide-
line for selecting tumour models to study the involvement of various 
mechanobiology principles in tumour progression and develop an 
effective cancer treatment.

26.2. Decoding tumour cell progression 
and survival using microfluidic platforms

Metastasis of tumour cells involves five major steps: invasion, 
intravasation, circulating tumour cell formation, extravasation, and 
colonization at the distant organ [18]. It has been well established 
that the ECM and TME play a critical role in the tumour progres-
sion [16]. Here, we describe in vitro microfluidic and biomaterials 
platforms that mimic in vivo TME architecture and different types of 
mechanical forces experienced by tumour cells and are used to study 
tumour metastasis steps and tumour cell survival during metastasis 
(Table 26.1).
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Figure 26.1. Schematic showing (A) steps involved in tumour cell metastasis and different types of mechanical forces generated by the 
TME contributing to the metastasis and (B) microfluidic/ biomaterial platforms used to systematically study the steps involved in metastasis by 
mimicking TME.

Table 26.1. The list of microfluidic devices/ biomaterials to study tumour progression.

Cancer type Cell line Microfluidic/ biomaterial platforms and their 
application

Study outcome(s) Reference

Breast cancer MDA- MB- 231 A PDMS- based microchannel platform to study the 
effect of fluid shear stress on cell intravasation.

Mechanosensitive receptor TRPM7 is 
activated by fluid shear stress and reverses 
the direction of cell migration.

[19]

Breast cancer MDA- MB- 231, 
MCF7

The concentric three- layered hydrogel- based 
microfluidic device to explore cell invasion, 
intravasation, and angiogenesis.

Several signalling cytokines involved in 
invasion, intravasation, and angiogenesis 
were identified.

[20]

Breast cancer MDA- MB- 231 PDMS- based microchannel platforms with varying 
channel widths to study cell invasion.

Narrow channels promoted mesenchymal to 
ameboid transition.

[21]

Breast cancer MDA- MB- 231 Collagen– alginate hydrogel- based microchannel 
platform to study confined cancer cell migration.

Confinement and stiffness jointly promoted 
mesenchymal to ameboid transition

[22]

Breast cancer MX- 1,
MCF7

PDMS- based 3D microfluidic device used to study 
cancer cell migration and invasion.

Real- time observation of cancer cell 
migration was carried out to monitor 
metastasis in the presence of drugs.

[23]

Breast cancer MDA- MB- 231 PDMS- based microchannel platform to illustrate 
the physiological significance of the Osmotic 
Engine Model in confined cell migration.

Polarization of NHE1 and SWELL1 at the 
leading and trailing edge respectively 
controlled cell volume and confined 
migration.

[24]

Oral cancer HN12, HN13, 
HN30, CAL27

Chitosan- based microfluidic arrays used for the 
quantitative analysis of metastatic biomarker, 
desmoglein 3 in head and neck cancer.

Development of a microfluidic- based single- 
cell analysis technique for cancer biomarker 
detection.

[25]

Colorectal cancer SW620 Single- channel microfluidic- based chip to measure 
the pharmacokinetic profile of drugs.

Development of a tumour- on- chip model to 
provide an alternative to the animal model.

[26]

Colorectal cancer Cancer stem cell 
(CSC)

Alginate hydrogel with droplet microfluidic device 
to capture and propagate cancer stem cells.

Isolation of cancer stem cells to develop 
personalized CSC- targeted therapy.

[27]
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26.2.1. Tumour cell invasion

Cancer cells secret several enzymes, such as matrix metalloproteinases 
and lysyl oxidases, which remodel the ECM, create 3D microchannel 
tracks, and increase matrix stiffness that promotes the invasion [37]. 
Traditionally, 2D chemotaxis assays, trans- well assays, and 3D in-
vasion wound healing assays have been used to study the invasion. 
However, these methods do not mimic complex 3D TME that ac-
commodates the effect of different types of mechanical forces, fluid 
shear stress, and the vasculature [13,38].

In recent years, micro- engineered physiological systems, in-
cluding 3D microfluidic devices, have emerged rapidly to study 
mechanical aspects of tumour invasion along with associated TME 
parameters having both spatial and temporal control [39,40]. Cell 
morphological phenotype is a simple but promising biomarker 
for tumour diagnosis. The cell size and shape deformability can 
be a label- free marker that can give information about the mech-
anisms of invasion. Still, the primary constraint in developing the 
device using cell phenotypic characters is the lack of standardiza-
tion and throughput. Recently, researchers have developed a single- 
cell microfluidic system based on the quantitative deformability 
cytometry principle and machine- learning algorithm by which the 
analysis of tumour cell invasion was performed [41]. Next, the de-
gree of cellular deformability or plasticity varies between less inva-
sive to highly invasive tumour cells. However, the measurement of 
the plastic deformation ability of tumour cells is limited due to the 
lack of quantitative methods. To address this problem, Yan Z. et al. 
developed a microfluidic device that can precisely impose cyclic 

deformation on the cells, resulting in the significant accumulation 
of more deformable and highly invasive late- stage lung cancer cells. 
At the same time, less plasticity was observed in the early- stage, less 
invasive cell lines [42]. Transformation in tumour cells disrupts cells’ 
mechanical and electrochemical properties. Recently, a microfluidic 
chamber- based ‘dielectrophoretic stretch assay’ has been developed 
to investigate the correlation between dielectric properties and the 
mechanical response of the cells. A significantly different stretch 
pattern was observed in cancer and normal cells. This platform pro-
vides a promising tool to detect micro- invasion in the tissue sample 
without the need to label them [43].

Highly invasive tumour cells have been seen to secrete large 
amounts of protons during glycolysis or acidosis pathways to their 
surrounding ECM which further activate the NF- kB pathway in 
neighbouring stromal cells. However, the correlation between meta-
bolic pathways and metastasis has not been well understood. Recently, 
researchers using the 3D microfluidic system showed that acidosis 
activated IL6 and MSC, further promoting osteosarcoma invasive-
ness [44]. Neutrophils have both tumour- promoting and tumour- 
limiting properties. 3D tumour- immune microenvironment- on- chip 
device was recently developed to better understand the intercellular 
dynamic and different modalities between neutrophils and tumour 
cells (Figure 26.2A). In brief, both the chemotaxis and formation 
of neutrophil extra- cellular traps (NETs) induced the response of 
neutrophils towards the tumour spheroid. It was further reported 
that the location- dependent mechanism of NETosis was respon-
sible for the induction of collective invasion of ovarian tumour cells 
(Figure 26.2A) [45]. Cancer- associated fibroblast (CAF) functions 

Cancer type Cell line Microfluidic/ biomaterial platforms and their 
application

Study outcome(s) Reference

Colon cancer HT29-  MTX- E12 3D tumour spheroid model combined with a 
PDMS- based microfluidic chip to study the uptake 
of nanoparticles.

Development of a novel platform to test the 
efficacy of nanoparticle- based drug delivery.

[28]

Glioblastoma U87MG,
HUVECs

Silver nanowire and collagen I- based electro- 
responsive hydrogel for photothermal therapy 
application.

Development of hydrogel system for 
nanomaterial delivery and photothermal 
therapy application.

[29]

Glioblastoma G55 PDMS- based microchannel platform to test the 
response of chemotherapeutic drugs during the 
invasion– metastasis process.

Confined cells showed drug resistance and 
cancer stem cell- like properties.

[30]

Prostate cancer LNCaP PDMS- based cluster wells to detect circulating 
tumour cells (CTCs).

Isolation of CTC cluster from unprocessed 
whole blood.

[31]

Melanoma Murine B16,
Human MP- 1

PDMS- based microfluidic system to isolate 
soft and stiff populations of cancer cells from 
heterogeneous cell population.

Soft cancer cells were isolated and found that 
softness is an intrinsic characteristic of cancer 
stem cells.

[32]

Lung cancer Patient- derived 
organoid

PDMS- based one- stop microfluidic devices to 
mimic in vivo conditions for drug testing.

Developed 3D organoids to check the 
efficacy of the chemotherapeutic drug.

[33]

Lung cancer SCLC PDMS- based multi- flow microfluidic system to 
detect CTCs.

Successful isolation of patient- derived CTCs. [34]

Lung cancer- liver 
metastasis

A549 and HFL- 1 PDMS- based 3D multiorgan microfluidic device to 
induce hypoxia condition in vitro.

The device provides an alternative to animal 
models and used as drug screening platform 
under hypoxic condition.

[35]

Pancreatic cancer Blood from cancer 
patient

Combination of magnetic field and microfluidic 
device to isolate cancer generated exosomes 
with magnetic nanoparticle- tagged exosome 
antibodies.

Successful isolation of exosomes from 
cancer patient’s blood.

[36]
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as a tumour ECM remodelling machine and facilitates tumour cell 
invasion. Cancer- cell- derived exosomes have been reported to pro-
mote endothelial cell differentiation into CAF. To explore this differ-
entiation mechanism, a 3D microfluidic model was developed for 
real- time monitoring of CAF development in the presence of tumour- 
cell- derived exosomes at the tumour invasion site [46]. Several ECM 
proteins present in TME can alter tumour cell migration. However, 
developing the heterogeneous ECM proteins composition in vitro is 
challenging. A research group recently developed a microfluidic de-
vice in which ECM heterogeneity can be regulated and reported that 
fibronectin- rich ECM induced highly invasive breast tumour cell mi-
gration and observed the presence of cell micro- track within the ECM 
[47]. E- cadherin is a cytoskeleton protein that helps in cell– cell adhe-
sion and plays a significant role in tumour invasion. The expression 
level of E- cadherin determines the invasion mode of tumour cells. 
A microfluidic approach (micro- fibrous polycaprolactone mesh in the 
chip with stable chemotactic gradient) was used to study the invasion 
mode and found that highly invasive tumour cells showed single- cell 
migration. In contrast, less invasive tumour cells showed collective 
cell migration by maintaining their E- cadherin expression level [48]. 
Bacteria, too, are a component of TME and exert a significant effect on 

tumour progression. To study the impact of extra- tumoural bacteria, 
researchers developed a microfluidic device that provides access to 
evaluate the effect of extra- tumoural bacteria on cancer progression. 
It was observed that biofilms formed by bacteria increased tumour 
progression, viability, and cancer stem cell population [49].

26.2.2. Tumour cell intravasation 
and extravasation

Due to the enhanced invasive capability, the metastatic tumour cells can 
infiltrate through the walls of the blood vessels or the lymphatic vessels. 
This process is known as intravasation. It is a crucial step in the metastatic 
cascade as it enables the tumour cells to enter the circulatory system and 
disseminate to (often distant) secondary tissue sites in the body. The 
vessel diameter has been identified as one of the critical parameters af-
fecting the tumour cell intravasation [50]. Once the cancer cells enter 
circulation, they are termed circulating tumour cells (CTCs) [51,52]. 
The CTCs in the blood vessels are subjected to mechanical stresses and 
haemodynamic shear forces. The tumour cells in the bloodstream are 
also susceptible to anti- tumour cell responses of the immune system 
[53]. It has been found that zones of reduced fluid flow, which results in 

Figure 26.2. (A) Image showing in vitro TIME chip used to check neutrophil invasion in tumour spheroid embedded within the hydrogel and the 
collagen matrix. Bright- field image shows the distorted invasion domain of collective cell migration induced by NETosis. Red arrows show the original 
undistorted periphery of the spheroid before the invasion. (B) Schematic shows a CRC- on- chip platform for studying intravasation of CRC tumour 
cells. The bar diagram shows the rate of trans- endothelial migration of the tumour cells with and without peristalsis and quantified by determining the 
invasion ratio (number of tumour cells in endothelial channel per number of tumour cells in epithelial channel). (C) Schematic of microfluidic platform 
for investigating trans- endothelial migration of tumour cells, having an endothelial monolayer on a porous membrane and a cell collection chamber 
underlying the porous membrane. The bar diagram shows percentage of breast cancer cells (MDA- MB- 231) and normal breast epithelial cells (MCF- 
10A) collected after subjecting cells to varying shear stress in the overhead flow channel. Sources: Part (A): Adapted with permission from [45], IOP 
Publishing, Ltd. Part (B): Adapted with permission from [59], Elsevier. Part (C): Adapted with permission from [61], AIP Publishing.
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and their survival in the bloodstream [51]. The surviving tumour cells 
eventually exit the circulatory system by migrating across the endothe-
lium to reach the underlying secondary tissue site. This process is known 
as extravasation, resulting in tumour growth in a secondary tissue site in 
the body [53]. Studies have reported that physical and mechanical cues, 
such as diameter and architecture of the vessel/ capillary and shear stress 
experienced by the CTCs due to blood flow, are important determinants 
of the location of extravasation of the tumour cells in the body [54,55].

 In vitro models, ranging from comparatively simple Boyden cham-
bers to complex 3D microfluidic devices, have been deployed to study 
metastasis mechanisms, including tumour cell intravasation and ex-
travasation [56,57]. However, a major drawback of simplified models 
such as the Boyden chamber is that it is difficult to analyse complex 
tumour- cell– endothelial- cell crosstalk in such systems. Several 3D 
microfluidic platforms have been used to investigate the role of phys-
ical and biomechanical factors in influencing the intravasation and 
extravasation of tumour cells [16]. Wu et al. fabricated a 3D vessel- 
on- a- chip microfluidic device with reconstituted blood vessels that 
could recapitulate the crosstalk between CTCs and blood vessels in 
vitro [58]. The morphology of blood vessels in this microfluidic model 
was fine- tuned to remodel blood vessels of various geometries, such 
as aneurysm, stenosis, and bifurcation. In another study, researchers 
fabricated a microfluidic device with a set of parallel collagen- coated 
microchannels of varying widths to migrate cells between two orthog-
onal media channels in which shear stress was produced by regulating 
the fluid flow [19]. In particular, it was found that the activation of 
the mechanosensitive channel, TRPM7, under fluid shear stresses al-
lowed Ca+ 2 entry inside the cell, which resulted in the reversal of the 
direction of normal cell migration. In contrast, fibrosarcoma cells, 
due to low expression of TRPM7, displayed 10- fold lower sensitivity 
to shear stress during intravasation. In another study, Strelez et al. in-
vestigated the role of physical forces in the intravasation of colorectal 
cancer (CRC) using a CRC- on- chip platform [59]. The CRC- on- 
chip platform comprised two channels, an epithelial channel and an 
endothelial channel, with an intervening porous membrane (Figure 

26.2B). The authors found that the tumour cell intravasation across 
channels was markedly enhanced in conditions mimicking peristalsis.

Follain et al. developed a microfluidic platform to decipher how blood 
flow influences the phenomena of CTC arrest, adhesion to the endothe-
lium, and extravasation to the underlying tissue at the site of metastasis 
[55]. Decreased flow profiles with optimal CTC adhesion were found 
to facilitate the stable CTC attachment to the endothelium. Also, it was 
observed that the fluid shear stresses were important for remodelling 
the endothelium, which stimulates the extravasation of CTCs. Jeon 
et al. established a microfluidic platform having a monolayer of endo-
thelial cells for extravasation studies, using which they noted cancer 
cell extravasation within 24 h of introducing cancer cells to the system 
and a significant rise in the permeability of endothelial monolayer in 
the presence of cancer cells [60]. In a different study, Jeon et al. con-
figured a microfluidic platform to study the extravasation of metastatic 
breast cancer cells in a bone- mimetic microenvironment under fluid 
shear stresses [56]. A significant reduction in tumour cell extravasation 
and vascular permeability was observed in the presence of fluid shear 
stresses. However, an increase in the migration distance of the extrava-
sating tumour cells in the surrounding ECM was noted. In another 
study, Cui et al. established a microfluidic platform for extravasation 
studies (Figure 26.2C) [61]. Using this set- up, the authors demon-
strated that trans- endothelial migration of tumour cells was facilitated 
by lower shear stress (2.5 dyne/ cm2) and significantly impeded at higher 

shear stress (10 dyne/ cm2). Mei et al. recently designed a microfluidic 
device to investigate the osteocyte- mediated mechano- regulation of 
bone metastasis to the breast tissue [62]. The microfluidic set- up con-
tained two adjacent microchannels, one having tumour cells in a lumen 
lined with endothelial cells and the other cultured with osteocyte- like 
MLO- Y4 cells, with an intervening hydrogel matrix. The oscillatory 
fluid- flow- mediated mechanical stimulation (1 Pa, 1 Hz) of osteocytes 
resulted in a significant decline in the percentage of extravasating cancer 
cells and the distance migrated by the extravasating cells.

26.2.3. Tumour cell survival

In recent years, a growing body of literature has suggested that external 
mechanical forces can influence tumour growth and survival. In par-
ticular, the latest studies found that physiologically relevant mechanical 
forces promote tumour cell apoptosis or inhibit tumour cell growth. 
For example, a microfluidic platform was used to develop fluid shear 
stress generated during exercise conditions [63]. These high- shear 
stresses caused the significant killing of metastatic and drug- resistant 
tumour cells. This study highlighted the benefits of exercise in gener-
ating high- shear stress that can prevent metastasis. In another study, the 
cone and plate viscometer- generated fluid shear force induced TRAIL 
death receptor- mediated tumour cell apoptosis [64]. Takao et al. found 
that dynamic compressive forces generated using a mechanical stress- 
loading device caused tumour cell necrosis [65]. Basu et al. showed 
that cytotoxic T- cell killing of tumour cells was potentiated using stiff 
hydrogel compared to a soft hydrogel platform [66].

In support of mechanical force- induced tumour cell killing 
(mechanoptosis), we recently observed selective tumour cell 
mechanoptosis in many tumour types after cyclic stretch applica-
tion using a cell stretching device [67]. In addition, low- frequency 
ultrasound- mediated mechanical forces were used to promote se-
lective mechanoptosis in tumour cells, tumour organoids, and CAM 
models without damaging normal cells [68–72]. Mechanistic mo-
lecular studies demonstrated the mechanism of mechanoptosis that 
depends on mechanosensitive Piezo1 channel activation that allows 
calcium entry inside cells upon mechanical activation and initiates 
mitochondria- mediated apoptosis. In general, these studies indicate 
that mechanical forces can be harnessed to develop a mechanical 
force- based tumour treatment [73, 74].

26.3. Conclusions and future directions

With the advent of microfabrication and an increase in the fun-
damental understanding of tumour biology, the development of 
microfluidic- based in vitro tumour models recapitulating TME has 
become possible. The microfluidic platforms significantly contrib-
uted to studying the effect of mechanical forces on tumour progres-
sion and deciphering the mechanobiological principles involved in it. 
While microfluidic platforms will continue to evolve to be better in-
dicators of in vivo biophysical forces, we envision that combining the 
state- of- the- art microfluidic platforms with existing tumour models 
will develop more realistic in vitro tumour models to further probe 
the effect of mechanical forces at molecular levels. Due to tumour het-
erogeneity, nowadays, precision medicine has become popular with a 
focus on developing patient- specific in vitro tumour models for clin-
ical assessment and treatment. Similarly, in the future, microfluidic 
platforms could help to develop patient- specific mechanical- force- 
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Understanding contribution of fibroblasts 
in inception of cancer metastasis from an 
evolutionary perspective
Yasir Suhail, Wenqiang Du, Günter Wagner, and Kshitiz

27.1.  Introduction

In recent years, our understanding of cancer as a disease of prolif-
erating tumour cells acquiring mutations leading to metastasis has 
undergone significant revision [1– 3]. It is now widely appreciated 
that the progression of many cancers towards metastasis is an out-
come of both cancer autonomous changes [4,5,6] and the cancer’s 
interaction with its microenvironment [3,7,8]. Cancer cells exist in 
a continuum of states within the metastatic cascade; the breach of 
basal lamina and the stromal trespass constituting the earliest steps 
towards distal metastasis [1] . Fibroblasts are the most abundant 
cells in the stroma and respond to the injury to basal lamina by acti-
vating the wound healing response, repairing the disrupted extra-
cellular matrix, and facilitating wound resolution [9– 13]. However, 
as cancer is a perpetual wound that never heals, the physiological 
wound healing response is taken over by a more inflammatory 
stromal reaction, benefiting metastatic progression [14]. Although 
evidence is building upon the role of stromal microenvironment in 
regulating and predicting early dissemination and onset of metas-
tasis [15,16], little is known about the mechanisms by which fibro-
blasts either assist or resist metastatic initiation.

Stromal response to the collective invasion of epithelial- like 
cells is not only limited to cancer metastasis but also occurs in 
other physiological contexts, notably placental invasion during 
pregnancy. Analogies between cancer and placentation have been 
drawn for nearly a century, largely centred around the invading 
cells, either trophoblasts or cancer cells, respectively [17– 19]. 
Indeed, there are many parallels drawn between the transformed 
epithelial invasion into the surrounding stroma, and the tropho-
blasts invasion into the maternal stroma [20,21]. Evolution has re-
sulted in a remarkable diversity of placentation phenotypes across 
mammals, presenting a wide phenotypic landscape to understand 
invasive processes in a physiological context. In the past few years, 
we have identified parallels between the contribution of stromal 
fibroblasts to both placental invasion and early stages of cancer 

metastasis. This has led to the development of an evolutionary 
framework to elucidate selected stromal mechanisms contributing 
to cancer metastasis. Here, we explain this framework and our 
developing understanding of how the selected fibroblast- specific 
genetic and molecular factors may also play a role in the metastatic 
transition of human cancers.

27.2. Evolution of stromal control of  
placental invasion in mammals

Pregnancy and reproduction, due to their essentiality in transferring 
life across generations, are obviously under very high selective pres-
sure in evolution. In mammals, the foetus develops within a con-
fined maternal cavity, the uterus, and interfaces with the maternal 
tissue through placenta, an organ of extra- embryonic origin. While 
the developing foetus is dependent on maternal life to continue its 
development and nutrition, greater foetal growth at some cost of ma-
ternal health can be to its advantage. The maternal– foetal interface 
(MFI), due to, firstly, the genetic distinctiveness of the foetus and the 
maternal tissues and, secondly, both their competing and coopera-
tive interests, is also the site of continuous evolution and maternal– 
foetal conflict [22,23]. This is most famously represented in genetic 
imprinting, wherein the maternal and paternal lineage of epigen-
etics would favour growth- limiting and growth- enhancing pheno-
types, respectively [22,24,25]. Theoretically, cell proliferation of the 
developing foetal tissue, invasiveness of the placental trophoblasts, 
and any associated energetic or nutritional demands should all be 
under competing selection of matrilineal and patrilineal expressed 
genes. Interestingly, a large fraction of genes found to be differen-
tially imprinted between the two lineages are expressed in placenta, 
suggesting the centrality of implantation and placental invasion 
in this conflict [26]. While the sites of genetic imprinting are con-
centrated in the imprinting control regions that are CpG- rich [27], 
the imprinted genes are phenotypically enriched for fetoplacental 
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growth [28]. One of the earliest described imprinted genes was IGF2 
in mice and is associated with placental growth [29,30].

However, the maternal– foetal cooperation and competition, 
which we term as ‘coopetition’ in the game- theory parlance [31], 
plays out not only in fetoplacental growth but also in the placental 
invasion as a phenotype. The distinct genetic make- up of the tissues 
constituting the MFI, and the resulting coopetition, has resulted in 
a large evolutionary solution space presenting an immense diver-
sity at every biological scale: genetic, signalling, and tissue constitu-
tion to anatomical [32]. The MFI has been anatomically classified in 
three distinct categories with large variations within each category 
[33,34]. Towards one extreme are epitheliochorial species, wherein 
the chorion is juxtaposed to the maternal endometrial epithelium. In 
these species (e.g. pig, cow, dugong, etc.), the nutrient transfer at the 
MFI primarily occurs via diffusion. To note, placentation in cattle 
is described as a distinct sub- category, called synepitheliochorial, 
wherein the epithelium on the maternal endometrium is digested 
by the placenta, but there is no invasion at the MFI. Towards the 
other extreme is hemochorial placentation, characterized by deep 
invasion of placental trophoblasts into the maternal stroma. This 
type of placentation occurs in rodents and primates, including the 
humans, and is most similar to the early stages in cancer metastasis. 
Among primates, placental invasion is particularly invasive, led by 
specialized extravillous trophoblasts (EVTs), which not only invade 
into the stromal compartment but also digest the smooth muscle 
surrounding the high- resistance spiral arteries in the endometrium 
and take over control of the blood supply to the foetus [35]. Again, 
there are parallels here with cancer metastasis where cancer cells 
can undergo endothelial transformation called vascular mimicry. 
Endotheliochorial placentation that is present in carnivores stands 
phenotypically in between the two, characterized by moderate 
stromal invasion, but no direct placental access to maternal blood.

While parallels exist in tumour growth and fetoplacental growth 
related to genetic imprinting, comparative differences in placental 
invasion also show a remarkable correlation with the extent of cancer 

malignancy. D’Souza and Wagner showed in 2014 that multiple tu-
mour types compared across species showed a much higher fre-
quency of malignancy in mammals with invasive placentation using 
a dataset of 8,500 tumours in a cohort of 200,000 animals [36,37]. 
It was posited that the increased invasion among hemochorial spe-
cies (including in humans) is attributed to more invasive tropho-
blasts [19,38]. However, recent genomic phylogenetic construction 
has shown that contrary to the prevailing anthropocentric view that 
invasive hemochorial placentation is older, it is the non- invasive 
placentation that has evolved more recently [39]. Indeed, the inva-
sive hemochorial placentation is present in the stem lineage of the 
placental mammals. Non- invasive placentation has evolved mul-
tiple times independently, suggesting that there may be a selective 
advantage to reduced placental invasion [32]. Wagner, Levchenko, 
and our group therefore proposed to explain these findings in an 
evolutionary framework, termed ‘Evolved Levels of Invasibility 
(ELI)’, which posits that it is the endometrial stromal fibroblasts that 
have evolved to resist trophoblast invasion in certain mammals [40] 
(Figure 27.1). Secondary acquirement of these resistive character-
istics in stromal fibroblasts of other tissues has resulted in reduced 
chances of cancer metastasis.

27.3. Quantitative tools to measure 
‘stromal invasibility’ as a phenomenon

As the role of stromal components regulating invasion is being 
more appreciated, new methods have been developed to quanti-
tatively measure the phenomenon. These include invasion of tu-
mour explant or spheroid stromal environment, which may be 
either composed of matrix or cells from the connective tissue, in 
2D (Figure 27.2A) or in 3D (Figure 27.2B). Boyden chambers with 
pre- seeded layers of fibroblasts and cancer cells, or microfluidic 
chambers to spatially define stroma– cancer interface, have also 
been increasingly used (Figure 27.2C and D). We have ourselves 

Figure 27.1. Evolved Levels of Invasibility (ELI). Recent evolution of non- invasive epitheliochorial placentation in cows is an outcome of increased 
resistance in endometrial stromal fibroblasts. Increased resistance is conferred in secondary tissues, resulting in decreased cancer malignancy.
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used stencil- based cell patterning [41] to create interface of cancer 
cells and fibroblasts, allowing live cell microscopy to observe dy-
namics of invasive processes. However, the process of stromal 
invasion is very slow, taking days to establish measurable differ-
ences across well- established models (e.g. benign and metastatic 
cancer cells). Introducing aligned nanostructured ridges on the 
surface, orthogonal to the initial direction of the interface aligns 
the actomyosin assemblage of cells. This topographical feature ac-
celerates the process of invasion, specifically by aligning the mi-
gratory movement of cells in a single direction— orthogonal to the 
interface (Figure 27.2E). We were able to establish measurable and 
large phenotypic differences across benign WM35 and malignant 
1205Lu melanoma cells [40]. This platform is called Accelerated 
Nanopatterned Stromal Invasion Assay (ANSIA), consisting of an 
anisotropic nanofabricated substratum created using polyurethane, 
or poly- ethylene glycol and its derivatives, or any other UV- curable 
biomaterial using capillary force lithography. Either of the two cell 
types could be genetically perturbed prior to patterning allowing 
stromal- specific mechanisms to be investigated. Furthermore, 
image analysis of the pattern of collective invasion can potentially 
provide plausible mechanisms driving stromal invasion [42]. As 
noted earlier, stromal invasion of cancer is a complex phenotype 
and can be a composite outcome of many sub- processes, each likely 
driven by different signalling mechanisms. These include increased 
migration (e.g. through chemotactic mechanism towards stromal 

fibroblasts), changes in matrix production, degradation or remod-
elling of extracellular matrix, mechanical pull or push force gen-
eration by the stromal fibroblasts, and coupled fibroblast– cancer 
displacement driven by covalent cell– cell adhesions. Even image 
analysis without any perturbation can potentially provide oppor-
tunities to constrain the possible mechanisms driving stromal in-
vasion in a given experiment, allowing more focused hypothesis 
generation that can then be experimentally tested [42].

27.4. Identifying genes correlating with  
stromal invasibility

We have already shown experimentally that it is the identity of 
the endometrial fibroblasts from different species that determine the 
extent of invasion of EVTs, more so than the trophoblasts. It is per-
tinent to point out that we thus label this phenomenon invasibility 
(i.e. the propensity or opposition of the stromal fibroblasts to allow 
invasion by another cell population), in contrast to the more well- 
known concept of invasiveness (the ability of the invading cell popu-
lation to invade the stroma). As we have demonstrated that stromal 
invasibility itself is a selected phenotype, and has therefore evolved 
among mammals to prevent excessive placental invasion, the ob-
vious question is whether it is possible to identify genes associated 
with invasibility.

Figure 27.2. Methods to measure stromal response to invasion. (A) Representative differential interference contrast (DIC) and pseudocoloured 
confocal fluorescence images of ability of vehicle-  or AREG- treated CL31 cell clusters expressing red fluorescent protein (RFP) to clear a mesothelial 
monolayer expressing green fluorescent protein (GFP) at the indicated time points. Scale bar: 50 μm [4] . (B) Overview of 3D tumour– tissue invasion 
model and fabrication system. (i) Schematic of 3D tumour– tissue invasion model and (ii) a representative image of tumour cells (Panc- 1) invading 
into the surrounding matrix. Image represents 16 fields of view, each of which is a maximum projection of a 400 μm z- stack (20 μm step; 21 slices) 
after 5 days of culture; green: actin (phalloidin); blue: nuclei (Hoechst 33342); and red: fibrillar collagen (confocal reflectance). Scale bar: 400 
μm [10]. (C) Trans- well invasion of tumour cells mixed with cancer- associated fibroblasts (CAFs) [12]. (D) Spatial organization of ECM and cells in a 
microfluidic chip. The tumour region is represented by the red colour and the stroma is represented by the green. The depth of the channels is 200 
μm [20]. (E) Schematic showing set- up to measure stromal invasibility, Accelerated Nanopatterned Stromal Invasion Assay (ANSIA); fluorescently 
labelled cancer cells are patterned with stromal fibroblasts to create a collective interface between the two orthogonal to the underlying anisotropic 
nanopatterned fibre direction; cancer invasion is measured for 24 h using live cell fluorescent microscopy. Here, invading cancer cells are the 
constant, while the invaded fibroblasts are perturbed with CRISPR/ Cas9- mediated gene silencing [21].
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Transcriptomic profiling of the stromal fibroblasts from the endo-
metrium of a number of eutherian (i.e. placental) mammals has af-
forded an opportunity to explore the genetic and transcriptional basis 
of the modulation of stromal invasibility [43]. This approach limits the 
identification of genes that are selected within mammalia to prevent 
trophoblast invasion. It is likely that there are many more genes, and 

potentially other mechanisms, which may explain stromal contribu-
tion to cancer malignancy. But the strong selective pressure during 
pregnancy, and which has resulted in innovation of this particular 
phenotype (a large increase in stromal resistance), gives confidence 
that the genes we identify through this approach are more likely to 
be connected to the phenotype of stromal invasibility (or resistance).

Figure 27.3. Identifying the transcriptional regulators explaining variation in stromal invasibility across mammals. (A) Hierarchical phylogenetic 
representation of transcripts of endometrial fibroblasts from various mammalian species with varying degrees of placentation invasion (ranked 0– 3). 
(B) Correlation of individual gene expression with invasibility evaluated using the linear model described; the x- axis shows p- value for linear model, 
while the y- axis shows it for a phylogenetic linear model. (C, D) Gene expression of top ELIup and ELIdn genes in the analysed species. (E) Schematic 
showing the model explaining change in downstream gene expression in mammalian fibroblasts based copy number of transcription factor 
binding sites in the cis- regulatory region. (F) Scatter plot showing transcription factors whose binding sites affect expression of downstream gene 
expression for ELI- related genes. The x- axis shows the effect size, beta, while the y- axis shows statistical significance (significant TFs are coloured 
green). Source: Adapted from Suhail et al. [11].
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Wagner group has collected transcriptomic data from skin and 
endometrial fibroblasts from various mammals with differing extent 
of placental invasion [44]. We used these transcriptomic data com-
prising of fibroblasts from mammals with invasive (rabbit, guinea 
pig, rat, and humans) and less invasive (cat, horse, sheep, dog, and 
cow) placentation (Figure 27.3A). Based on well- understood ana-
tomical presentation of placentation (rs  for species s), we identified 
stromal genes likely involved in modulating the degree of invasibility 
by fitting the linear model r es g g s g s= ⋅ + ∈γ , , , relating the expression 
eg s,  of gene g  to the placental invasibility index rs , of species s. In this 
model, the fitted parameter γ g  denotes the causality of gene g  to the 
stromal invasibility. In addition to the magnitude and sign (positive 
for pro- invasable genes, and negative for anti- invasable genes), the 
p- value of the fit gives the statistical confidence in the correlation of 
gene g  to stromal invasibility (Figure 27.3B).

The most likely causal genes (based on the p- value of the correl-
ation and the sign of effect size γ g ) were thus labelled as ELIup (if 
putatively pro- invasable) and ELIdn (if putatively anti- invasable). 
This approach has provided us with a putative ELI score for each 
gene. Figure 27.3C and D shows examples of genes regressively 
changing in expression along with the placental invasion index. 
Without any validation, one would hypothesize that ELIup genes are 
likely to promote stromal invasibility, while ELIdn genes are likely to 
promote stromal resistance in endometrial fibroblasts. ELI frame-
work also posits that these gene to phenotype relationships are likely 
to be maintained in fibroblasts from other tissues, including in the 
skin. These genes are good candidates to test for their potential to 
affect changes in stromal invasibility, both to cancer or trophoblast 
invasion.

As noted earlier, stromal invasibility is a composite phenom-
enon, and it is not our case that evolution of placental invasion is 
the only framework to observe and investigate the phenomenon. 
From a human disease perspective, it is also possible that these 
evolved mechanisms may not be the primary mechanisms involved, 
although evidence is building that these genes are causal in regu-
lating stromal invasibility in human cancers too (see next sections). 
However, ELI sets this question in a sharp relief, vastly reducing 
the phenotypic landscape to study the particular phenomenon of 
stromal contribution to epithelial invasion, and if not to explain it, 
then to identify strategies to modulate human stromal environment 
increasing its resistance to invasion by a metastasizing cancer.

27.5. Identifying transcriptional 
correlates and their genetic regulators 
explaining stromal invasibility

Having identified genes that are correlated to stromal invasibility 
phenotype across mammals, it is a logical question to ask if there 
are transcriptional regulators explaining the phenomenon. Species- 
specific information should be primarily encoded in the genomic 
sequence (ignoring epigenetic regulation). Gene regulatory network 
databases do not exist for non- standard eukaryotic species to infer 
transcriptional regulation with gene expression changes and then 
linking them to the invasibility phenotype. We therefore have used 
transcription factor (TF) binding sites (TFBS) in the cis- regulatory 
regions of the genes as a proxy to the strength of a given TF- mediated 
transcriptional regulation. By connecting number of TFBS in the 

cis- regulatory region of each gene, in each observed species with the 
gene expression values, we could identify key TFs contributing to 
changes in ELI genes.

Specifically concentrating on the binding of the TFs in the pro-
moter regions of genes, we hypothesized that gain or loss of TFBS 
proximal to the gene of interest encodes differences in transcrip-
tional levels across species. While these genomic changes should af-
fect all cell types, the tissue- specific transcriptional levels would be 
set using the gene expression of transcriptional factors in this model.

In order to mitigate the baseline variation in expression among 
genes, we first shrink the gene expression eg s,  of gene g  in species 
s in transcripts per million using a square- root transform to obtain 
scaled expression hg s, :

 h e
N

eg s g s

species s
g s, , ,= − ∑

1

′

′
 

The scaled gene expression matrix (for each gene X species) is 
then fitted using a linear model on the number of transcription 
factor binding sites nt g s, ,  for transcription factor t  in the promoter 
region of gene g  in the genome of species s,

 h ng s t t g s g s, , , ,= +β   

Here, βt represents the effect on (scaled) gene expression hg s,  from 
each additional occurrence of a binding site of transcription factor t . 
The sign of the coefficient βt represents the direction of the effect, i.e. 
positive for enhancers and negative for repressors.

A total of 572 known eukaryotic TFBS motifs were downloaded 
from JASPAR, and genomic sequences of the eutherian mammals 
were downloaded from Ensembl. The genomic region 5kb upstream 
of the translation start site to 1 kb downstream was considered as 
the promoter region for our purpose. The occurrences of the TFBS 
sequences were counted in these promoters using the MEME suite 
to fit the model. A model is fitted independently for each motif t ,  
allowing identification of 187 TFs (FDR < 0.05) significantly ex-
plaining inter- species differences in whole transcriptome in the 
stroma. A preliminary analysis showed that there are many TFs that 
exhibit an antagonistic species- wide effect on stromal genes related 
to invasibility (Figure 27.3F). These TFs present attractive targets for 
stromal screening to establish their functional effect on regulating 
stromal integrity.

We surmise that many of these TFs may be central players in regu-
lating fibroblast activation or fibroblast- mediated transformation of 
cancer into a metastatic disease. We identified GATA2 and TFDP1 
as two major TFs showing an enhancer effect on pro- invasible 
(ELIup) genes. Effect of both these TFs in the target gene expression 
was demonstrated, and their role in regulating stromal resistance 
was also demonstrated using ANSIA.

27.6. Signature of evolved stromal resistance  
in human cancers

While we have identified gene expression changes that occur in par-
allel to the evolved phenotypic changes in endometrial resistance, we 
have advanced the ELI framework to essentially explain the reported 
differences in cancer malignancies across mammals. A key question 
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is whether the differences in endometrial stromal invasibility has 
any bearing in human cancers.

The answer is not obvious and is also quite difficult to answer 
without fibroblast- specific data in large numbers. Firstly, picking on 
the obvious part of argument, it is rational to argue that endomet-
rial changes in stromal resistance to placental invasion, even if it is 
paralleled in skin fibroblasts against melanoma, may be quite un-
important in humans. Humans are not cows, and therefore, it is not 
obvious to expect that stromal fibroblasts in humans may behave 
similar to mammals with epitheliochorial placentation. The vari-
ation in human stromal transcriptome may occur at axes different 
from the ELI axis we have identified through natural evolution 
in stromal resistance. Secondly, to test these hypotheses requires 
fibroblast- specific data in human cancers, correlated with a pheno-
type related to early stages of metastasis. Single- cell sequencing data 
is only now beginning to be collected in large numbers to allow suf-
ficient large statistical power to test these hypotheses directly.

We therefore resorted to the second best approach, using what data 
is currently available, to test if the evolutionary changes in stromal 
resistance have any purchase in human biology of cancer. The largest 
central database of gene expression in tumour samples is The Cancer 
Gene Atlas (TCGA). We downloaded the tumour gene expression 
data from TCGA for all cancer types and compared the expression to 
tissue- matched normal samples from the Genotype Tissue Expression 
database. ELIup genes, i.e. whose greater expression is associated with 
hemochorial placentation, were prominently up- regulated in tu-
mour samples for a number of cancer types, including PAAD, ESCA, 
HNSC, LIHC, etc. (Figure 27.4A). Conversely, the putatively anti- 
invasable ELIdn genes were prominently down- regulated in SKCM 
(melanoma) tumours compared to normal skin (Figure 27.4B). This 
is indicative of a statistical confirmation that many genes correlated 
with placental invasion in the endometrial fibroblasts are also associ-
ated with cancer invasion (Figure 27.4C).

As humans have hemochorial placentation, we investigated 
whether the ELIdn genes (for which humans would have low expres-
sion) are associated with increased resistance. Does higher expres-
sion of these genes confer epitheliochorial- like resistance to invasion? 
We looked deeper in the melanoma dataset and investigated the 
inter- patient variation in gene expression of ELIdn genes. Collating 
the gene expression with patient clinical data (specifically, the years 
survived after diagnosis), we found that patient survival significantly 
correlated with increased expression of ELIdn genes. Indeed, loss of 
ELIdn genes was associated with decreased survival in patients of mel-
anoma (Figure 27.4D). Effectively, it means that the more cow like a 
human melanoma fibroblast are (presumably ELI genes are mostly 
expressed in fibroblasts that are mixed with cancer cells), more likely 
it is for the patient to survive. These correlative analyses have only 
become possible now with the availability of new transcriptomic data 
for a large number of patients. It is also remarkable that evolutionarily 
selected changes are reflected in human diseases.

Although a large amount of patient data is not existent in single- 
cell sequencing (wherein any signal could be correlated to a broader 
phenotype like survival), moderate- sized data with cancers in dif-
ferent stages of metastasis ia beginning to be available. We chose 
pancreatic cancer, as it is the most rich in stromal fibroblasts, and 
is also incidentally, as one of the deadliest cancers. Interestingly, 
even within stromal component, pancreatic ductal cell carcinoma, 
the most deadliest of pancreatic cancers, there is remarkable 

heterogeneity [9,45]. As single- cell RNA sequencing allows direct 
measurement of gene expression within fibroblasts, we assessed the 
changes associated in fibroblasts and stellate cells at each stage of 
cancer [9] . A remarkable finding emerged. In pre- metastatic pan-
creatic ductal adenocarcinoma cancer (PDAC) samples, fibroblasts 
showed remarkable homogeneity, expressing markers associated 
with fibroblast activation (Figure 27.4E and F). This is akin to the 
classic wound healing response, wherein fibroblasts undergo rapid 
proliferation in response to an injury, increase their contractile ma-
chinery, and produce matricellular proteins. However, when we fo-
cused on the transition of cancer from pre- metastatic to an early 
metastatic stage, where only one or two proximal lymph nodes are 
infiltrated, we found a sudden burst of heterogeneity in fibroblasts 
(Figure 27.4F). While the activated fibroblasts nearly disappeared, 
many new clusters of fibroblasts emerged, both associated with in-
flammation and others. However, one of the largest subpopulation 
was the one associated with higher enrichment of ELIup genes 
(Figure 27.4G). Effectively, the onset of metastasis and stromal tres-
pass was associated with a dramatic increase in fibroblast subtypes 
with relative pro- invasive phenotype.

27.7.  Conclusions

Our understanding of cancer metastasis has been focused on tumour 
cells and their transformation into highly mesenchymal, invading, 
extravasating cell types. Although there is an increased appreciation 
for the role of non- cancer cells, and certainly cancer fibroblasts in 
contributing to cancer metastasis, there is no thematic or systems 
understanding of why and how fibroblasts may contribute to cancer 
metastasis. It appears that continually new markers are discovered 
for cancer- associated fibroblasts, with new stromal genes identified 
which could confer in fibroblasts the capability to enhance metas-
tasis. We consider that for such systems- level phenotype, a single 
marker or a single gene may never be found (unlike in cancer, where 
driver mutations may be possible to identify). Instead, it may be 
worthwhile considering if fibroblasts are contributing (or resisting) 
to metastasis by changes in their phenotype, which may have a basis 
in multiple genes and pathways.

There are many potential ways to approach this problem beyond 
evolution. Early events in development where embryonic mesen-
chymal cells are crucial agents in determining many invasive pro-
cesses (e.g. gastrulation) may provide us with occasions to study, 
which are likely repeated in cancers. Similarly, wound- healing re-
sponse, both scarless and regenerative, can provide other themes 
to explore. We have thematically explored a remarkable change in 
collective invasion that has occurred in mammals, to extrapolate 
mechanisms for human diseases. As these changes in mammalian 
placentation were also correlated with rates of cancer malignancy in 
these mammals, hinting that the ELI framework we have advanced 
may have a thing or two to say about cancer metastasis.

Why is it important to study the evolutionary history of the 
stromal control of invasion in pregnancy? Tracing the evolutionary 
trajectories of selected phenotypes of interest can provide a powerful 
and focused approach to investigate the genetic basis of the same 
phenotypes in humans. The genetic basis of evolved phenotypes may 
be similar, or dissimilar in either cases, but these generated hypoth-
eses could be tested against well- designed experiments measuring 
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these phenotypes. However, if there are commonalities in the mech-
anisms between evolved phenotypes and the pathological presen-
tation of these phenotypes, it could provide a focused approach to 
look for signal amid much noise. If genes that have changed in cor-
relation with increased stromal resistance to invasion among mam-
mals are implicated in their contribution to keeping metastasis in 
check, it could provide many new orthogonal opportunities to target 
cancer metastasis.
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Cell competition in tumorigenesis and 
epithelial defence against cancer
Amrapali Datta and Medhavi Vishwakarma

28.1.  Introduction

Cells reside within our body as structured communities abiding 
by the rules that allow them to carry out relevant physiological 
functions. Mutations allowing cells to break free from these re-
gulations often lead to uncontrolled proliferation of cells, giving 
rise to the pathology of cancer. This cell- intrinsic ability of unre-
stricted growth, e.g. by evading cell cycle control or growth restric-
tions imposed by cellular damage, is considered to be an important 
hallmark of cancer progression. Most of our knowledge on cancer 
is built on research from advanced stages of cancer, and thus the 
events governing the onset of tumorigenesis remain obscure. In 
this respect, an obvious but less well- recognized aspect is that tu-
mours grow into space that is already occupied by other cells. Are 
tumour cells just relying on slow tissue turnover to take advantage 
of space being freed or are they able to clear their way in an active 
manner? Increasing evidence suggests that an incipient tumour’s 
fate is largely determined by the complex cellular interactions [1] . 
Such interactions are often competitive in nature, allowing host cells 
to kill misfit tumour cells, thereby providing a defence mechanism 
against cancer [2] [Figure 28.1]. Conversely, when tumour is fitter 

than the host, similar interactions could lead to host- cell death, al-
lowing for tumour growth and expansion [1,3] Therefore, while cell 
competition in healthy tissue functions as a surveillance mechanism 
for inspecting and eliminating the aberrant members, the flip side 
seems to be exploited by cells with oncogenic mutations that ex-
pand at the expense of their neighbours, marking the initiation of 
tumours. Hence, understanding how cells compete will not only ex-
pand our understanding of how tumours manifest into the host but 
will also allow exploration into new routes of cancer therapeutics 
involving tumour– host interactions.

28.2. History of cell competition

In the multi- cellular community, cells with different properties 
often compete with each other for survival and space. This process is 
named cell competition and was originally discovered in Drosophila 
melanogaster. Through cell competition, cells that are relatively less 
fit or those that harbour certain detrimental mutations are elim-
inated and hence called ‘losers’, when in the vicinity of fitter cells, 
termed ‘winners’. This results in the progressive elimination of the 

Figure 28.1. Cell competition. Cell competition is a form of cell– cell interaction that acts as a quality control mechanism by selectively eliminating 
less fit or ‘loser cells’, upon their interaction with fitter or ‘winner cells’. Elimination of loser cells by mechanisms, such as apoptosis or extrusion, is 
subsequently followed by compensatory growth of winner cells to replace them and take over the tissue.
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population of loser cells and their replacement through active tissue 
colonization by winner cells [Figure 28.1]. A key defining feature 
of cell competition is that the elimination of loser cells is context 
dependent, as these cells are viable on their own. The first reports 
describing cell competition studied cells carrying heterozygous 
mutations in the Minute gene (mutations in ribosomal protein syn-
thesis) in Drosophila [4,5]. In a series of landmark articles, it was 
shown that while homozygous mutant flies did not survive due to 
lack of functional ribosomes, heterozygous mutants, despite their 
slow growth rate, developed and reached near normal body sizes. 
Remarkably, these heterozygous mutants were eliminated when sur-
rounded by wild- type neighbours demonstrating context- dependent 
elimination of mutants [4,5]. Interestingly, a similar type of competi-
tion was subsequently also observed in mouse embryonic [6]  as well 
as adult cells [7] indicating that it is conserved across species and 
exists across the lifespan of the individual. Following Minute, several 
other mutations affecting pathways of basic survival functions have 
also been shown to trigger competition, e.g. cell growth (mutations 
affecting Hippo pathway) [8– 10], cell polarity (mutations in disc 
large, scribble, or lethal giant larvae) [10– 14], cell anabolism (Myc, 
RasV12, and v- Src mutations) [15– 17], endocytosis (Rab5 muta-
tions) [18], and cell cycle (p53 mutations) [19,20], all lead to the 
elimination of less fit when fitter neighbours were in proximity. Thus, 
cell competition acts as a quality control mechanism for maintaining 
tissue health by elimination of unfit cells from the tissue.

28.3. Cancer cells as super- competitors

Initial studies had attributed the role of cell competition to identi-
fying and correcting developmental defects [4,21,22]; however, the 
active participation of cells to compete for resources and space in 
a tissue is also very relevant to tumour progression. Discoveries in 
the past few decades identifying the involvement of several proto- 
oncogenes in cell competition [8,9,23,24] have fuelled the hypoth-
esis that cell competition acts as a key driver of tumorigenesis by 
allowing cancer cells to expand at the expense of the host and sug-
gested that competitive interactions foster expansion of prema-
lignant cells much before morphological alterations are clinically 
detectable, and hence play a major role in the onset of tumorigenesis 
[23,25– 29].

28.3.1. Oncogenes providing super- competition 
status to cells

The first proto- oncogene discovered in the context of cell 
competition— Myc, encoded by the diminutive (dm) gene, is a 
functionally conserved transcriptional regulator that promotes cell 
growth and metabolism [30–  32] and is de- regulated in many human 
cancers [33]. Mutants expressing low copies of Myc show phenotypic 
similarity with Minute mutants and are therefore eliminated from 
the tissue by cell competition [30]. Interestingly, slight elevation of 
Myc levels in mosaic tissues had a striking effect of causing death 
in nearby wild- type cells, thereby turning Myc overexpressing cells 
into ‘super- competitors’ [23,24]. Cell competition driven by Myc 
activity is also shown to exist in mammalian systems— in mouse 
embryonic stem cells [6,34] and adult tissues [35]— demonstrating 
Myc competition is conserved across species. The super- power of 

myc overexpressing cells stems from their enhanced translational 
capacity and increased growth potential [30,36] and is beneficial for 
the tumour to grow and invade into a tissue. Intuitively, then, more 
pathways involved in cell growth control, such as Hippo pathway, 
Wingless/ Wnt signalling, and JAK/ STAT pathway, were explored 
for their role in conferring cells with a super- competitor status. 
Hippo pathway is a growth regulatory mechanism that restricts cel-
lular growth by preventing nuclear accumulation of transcriptional 
coactivator Yorki (Yki/ Yap for mammals) through a phosphoryl-
ation cascade [37,38]. When Hippo pathway is de- regulated, Yki 
translocates to the nucleus and turns cells into super- competitors 
by enhancing growth and proliferation [8,39,40] [Figure 28.2B]. 
Interestingly, Yki overexpression alone is sufficient for turning cells 
into super- competitors [40], and myc, being a transcriptional target 
of Yki, is expressed downstream and facilitates overgrowth of mu-
tants [8,40]. Both myc overexpression and yki nuclear accumula-
tion are frequently observed in human cancers [33,41], suggesting 
cancer cells are super- competitors. Interestingly, mutations directly 
affecting myc or Hippo pathway are infrequent and are not known 
cancer driver mutations, indicating that they mainly act in concert 
with other oncogenic mutations and help an originally transformed 
cell to acquire a super- competitor status and establish its territory 
within the host [33,42]. For example, neoplastic transformation 
by activating epithelial growth factor receptor (EGFR) mutations, 
which are known to drive many types of human cancer [43], is medi-
ated by conferring super- competitor status to mutants by increased 
myc levels [44] [Figure 28.2B]. Similarly, Hippo pathway activity 
is perturbed through crosstalk with other signalling pathways that 
frequently harbour oncogenic mutations, e.g. defects in Wnt signal-
ling, transforming growth factor b- bone morphogen protein signal-
ling (TGFb- BMP), Notch signalling, insulin pathway, and mTOR, 
all facilitate Yki nuclear translocation and are frequently mutated 
in different human cancers [45– 47] indicating the involvement of 
Hippo pathway downstream of several oncogenic mutations. Other 
super- competitors genes include those encoding regulators of Wnt/ 
Wingless signalling- Axin and Adenomatous polyposis coli (APC) 
and genes involved in JAK/ STAT pathway. Similar to myc compe-
tition, local differences in Wg signalling also trigger competitive 
interactions wherein cells with high Wg signalling adapt a super- 
competitor phenotype [48]. These local differences can arise be-
tween wild- type cells and clones harbouring mutations, such as Axin 
or APC, causing hyperactivation of the Wnt pathway [49,50] where 
neoplastic transformation of these mutants is regulated by hippo 
pathway [3] . In parallel, JAK/ STAT pathway, which is persistently 
activated in many cancers, is also involved in cell competition— cells 
with hyper- activated STAT become super- competitors and kill sur-
rounding cells in a manner independent of Myc or Hippo pathway 
[51] [Figure 28.2B].

Another important gene that is frequently misregulated in many 
types of human cancers is tumour suppressor p53 [52]. Although, 
mutations in p53 are mainly observed in the mid/ late stages of tu-
mour and are therefore considered to be a product of other onco-
genic mutations that precede de- regulation in p53 during tumour 
formation [52,53]. Recent studies however also show the involve-
ment of p53 in the initial stages of tumorigenesis, more specific-
ally in squamous cell carcinoma, commonly known as skin cancer. 
Clones lacking p53 in human skin show a competitive advantage 
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over wild- type cells but only in skin irradiated with UV light [46], 
suggesting that it is the p53 elevation upon irradiation that makes 
wild- type clones susceptible to competitive elimination by p53 
lacking mutants. Mechanistically, p53 elevation make cells hyper-
sensitive to compaction, leading to apoptotic elimination upon 
compression [54] [Figure 28.2B]. In consensus with these experi-
ments, another study showed that loss of function p53 mutation 
confers loser status to Madin– Darby canine kidney (MDCK) epithe-
lial cells [55], unless, preceded with an existing oncogenic mutation 
(Ras V12), thereby showing that the pre- existing RasV12 transform-
ation affects the cell competition- mediated eradication of mutant 
p53- expressing cells [55]. In contrast, RasV12- expressing cells were 
shown to be eliminated from either normal or p53 mutant epithelia, 
suggesting that the order in which oncogenic mutations occur dir-
ects the outcome of cell competition [55]. Such death induction in 
wild- type cells suggests that super- competitors actively clear space 
for their growth by killing their neighbours and facilitating tumour 
formation. Excitingly, this has recently been directly demonstrated 
in the Drosophila intestine where tumours driven by APC muta-
tions actively kill surrounding cells for their own growth, and by 
protecting wild- type clones from death, tumour growth could be 
contained. Therefore, the ability of tumours to metastasize seems to 

be linked with the initial success in cell competition that confers a 
Darwinian advantage to the primary tumour and sets off the stage 
for cancer to progress.

28.4. Epithelial defence against cancer

Carcinogenesis initiates with the transformation of a single cell 
within the organized epithelia. However, if cancer is driven and 
dominated by oncogenic mutations [56], then the individual’s gen-
etic susceptibility [57] topped with damage from environmental 
factors (such as smoking, pollution, radiation, obesity, and ageing) 
increases the number and frequency of these mutations, so much 
that probability favours getting cancer much more than not getting 
it. Yet, a majority of people live cancer- free for decades. Why are 
we not getting more cancer? [58]. The pioneering work by Bissell 
and co- worker [59] first asked this question when wings of chicken 
embryo injected with Rous sarcoma virus (RSV) developed cancer 
free in vivo but developed tumour in vitro. Thus, by demonstrating 
the power of tissue microenvironment to override the ability of 
oncogenes, they suggested that a related defence mechanism against 
cancer exists in our body. Whether a single transformed cell is 

Figure 28.2. Cell competition as a driver of tumorigenesis vs. epithelial defence against cancer (EDAC). (A). Mutations initiating competitive 
interactions within the cells. Certain mutations lead to extrusion of cells harbouring those mutations via EDAC, while other mutations confer super- 
competitor status to cells leading to tumorigenesis. Mechanisms that are known to be involved in cell competition leading to tumorigenesis (B, left 
panel) or cell competition leading to EDAC (C, right panel).
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sufficient to drive cancer progression is majorly dependent on what 
happens at the interface between the transformed cell and the sur-
rounding normal cells during this process.

28.4.1. Initial studies demonstrating EDAC 
in epithelial tissues

Cell competition experiments with wild- type and RasV12- 
transformed and with wild- type and Src- transformed MDCK epi-
thelial cell lines have provided insights into the fate of transformed 
cells when surrounded by wild- type cells [15,16]. These studies have 
revealed that the transformed cells are apically extruded from the 
epithelial monolayer when surrounded by normal cells but are vi-
able when they are cultured alone, indicating that the elimination 
of transformed cells is context dependent and requires the presence 
of wild- type cells. Similar results were obtained when other types 
of transformed cells interacted with their wild- type counterparts 
in an epithelial monolayer. For example, single cells expressing 
constitutively active form of Cdc42 [60], and constitutively active 
Yes- associated protein (YAP) [61] within a monolayer of normal 
epithelial cells, are apically extruded from the epithelium. These 
studies highlighted the fact that in epithelial tissues, normal cells can 
sense and actively eliminate the neighbouring transformed cells by 
a process known as epithelial defence against cancer [62]. This de-
fence mechanism of epithelial tissues against tumorigenesis works 
on competitive cellular interactions such that the host epithelial cells 
act as ‘winner cells’ and oncogenic mutants as ‘loser cells’ [Figure 

28.2A] [1,2]. On the flip side, when oncogenic cells become fitter 
than the host, EDAC is impaired, thus leading to tumour growth and 
expansion [Figure 28.2] [1] .

28.4.2. Mechanisms behind EDAC

Recent research have started to provide a mechanistic under-
standing of the signalling pathways involved in EDAC. For instance, 
interaction of Src- transformed cells with wild- type cells in a mono-
layer was shown to activate myosin- II and focal adhesion kinase in 
the transformed cells, leading to activation of the MAPK pathway 
[16]. MAPK pathway was also shown to be involved in the apical 
extrusion of the RasV12- transformed cells when surrounded by 
wild- type cells. The fate of RasV12 cells is majorly influenced by 
ROCK- dependent activation of myosin- II in RasV12 cells and by 
drastic cytoskeletal changes in both transformed cells and wild- 
type cells [15]. Accumulation of cytoskeletal protein filamin in 
wild- type cells recruits the intermediate filament protein vimentin 
at the basal side of cell– cell contacts, and these vimentin filaments 
generate contractile forces to provide wild- type cells with the mech-
anical strength for squeezing out the transformed cells into apical 
lumen [63] [Figure 28.2C]. Recently, it has been discovered that a 
matrix stiffness- dependent differential localization of filamin de-
termines the success or failure of EDAC on soft versus stiff matrix 
and revealed that pathological matrix stiffening, which happens 
during fibrosis, leads to a failed EDAC, and sets the stage for tu-
mour to grow at the initial stage of oncogenesis [64]. In addition, 
cell’s metabolic machinery is also shown to have an influence on 
elimination of these transformed cells. For instance, accumula-
tion of EPLIN in Ras- transformed cells leads to increased levels of 
phospho- dehydrogenase kinase- 4, which leads to decreased mito-
chondrial potential, increased aerobic glycolysis, and cell death [65] 
[Figure 28.2C]. This effect is similar to the conventional Warburg 

effect that is usually observed in advanced stages of tumour in adap-
tation to the harsh environment and genetic insults, and is known 
to promote tumour progression. At the initial stages, however, it 
seems to act against tumorigenesis by aiding in removal of trans-
formed cells from the epithelium. Such apical extrusion is suggestive 
of cancer preventive because the direction is opposite from basal 
invasion that is required for cancer metastasis [2,58]. Diet has also 
been shown to affect EDAC, and it was shown that a high- fat diet 
results in substantial attenuation of the frequency of apical elimin-
ation of RasV12- transformed cells from intestinal and pancreatic 
epithelia [66]. A phenomenon similar to EDAC was also observed 
in three-  dimensional (3D) organotypic culture system of mammary 
breast acini, demonstrating that upon de- regulation of cell– cell ad-
hesions, oncogenic cells that were otherwise contained within the 
epithelia are translocated into the apical lumen of mammary acini 
suggesting that active cellular communication between wild- type 
and oncogenic mutants determines the fate of oncogenic mutants 
[67]. A recent study has also found that epithelial cells recognize 
the RasV12- transformed cells via interaction between leukocyte 
immunoglobulin- like receptor B3 (LILRB3) expressed on non- 
transformed epithelial cells and major histocompatibility complex 
class I (MHC class I) expressed on transformed cells. This MHC 
class I– LILRB3 interaction generates the required mechanical force 
for extruding the precancerous cells from the epithelia via SHP2- 
ROCK2 pathway mediated by filamin accumulation in [68]. Mutants 
defected in cell polarity, such as scribble, lgl, and dlg, also undergo 
apoptotic death in the presence of wild- type cells, and studies show 
that their elimination can be mediated by both mechanical signals 
and by ligand– receptor interactions [8,10,14,54,69]. Nevertheless, 
common to all these systems is that transformed cells alone survive, 
over- proliferate, and develop into large masses of tumours, empha-
sizing that elimination of these mutants is contextual and the pres-
ence of surrounding normal cells is necessary for eliminating them. 
Excitingly, similar defence mechanism has recently been reported in 
mouse skin— using intra- vital imaging of entire skin tissue. It was 
shown that the growth of mutated cells (Wnt/ B- catenin/ Hras muta-
tions) and of structurally deformed cells is shown to be suppressed 
by surrounding normal skin in a differentiation- dependent manner 
[70]. Wild- type cells actively eliminate these aberrant cells, revealing 
unanticipated plasticity of the adult skin epithelium when faced with 
mutational and non- mutational insults.

28.4.3. Aneuploid cells are extruded out to 
prevent cancer initiation

Implications of cell competition in EDAC can also be appreciated 
in the classical Minute competitive environments when cells de-
fective in ribosomal protein genes interact with wild- type cells. 
Since genes expressing ribosomal proteins are scattered across the 
chromosome, genomic rearrangements and aneuploidy will lead to 
ribosomal imbalance that shall induce a loser- like state. Apoptosis 
of these Minute mutants mainly occur by JNK pathway activation 
in loser cells mediated by ligand– receptor interactions. Since more 
than 90% of advanced stage tumours are shown to be aneuploid [71], 
removal of aneuploid cells by cell competition is suggestive to be tu-
mour preventive [71,72]. This was demonstrated in experiments on 
mouse haematopoietic stem cells showing that the fitness of induced 
aneuploid cells is reduced over time and hence tumour formation 
was prevented [72]. It is now increasingly realized that signals from 
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the tissue microenvironment strongly dictate the strength and dir-
ection of EDAC [73]. Such a crosstalk between extra- cellular matrix 
and cell– cell interactions is yet to be explored in the context of cell 
competition and is important for a comprehensive understanding 
of ‘epithelial defence against cancer’. Nevertheless, it can be stated 
that as long as the microenvironment is tumour suppressing and the 
architecture of tissue homeostasis is controlled, cell competition ap-
pears to be a clean way of providing defence against cancer without 
the involvement of the immune system.

28.4.3.1. Role of tissue microenvironment in cell competition

How do stimuli, such as smoking, high- fat diet, tissue fibrosis and 
others, tune the tissue microenvironment to break the tissue homeo-
stasis and set off cancer in the first place? Can the tissue microenvir-
onment shape the strength and direction of cell competition? Can 
we modulate microenvironment of our tissue to boost EDAC and 
prevent cancer progression? Excitingly initial studies focusing on 
this aspect suggest that tissue microenvironment influences the fit-
ness of transformed cells already from the initial genetic hit and play 
a major role in determining the fate of tumour. For example, study 
in MDCK cells show that extrusion of RasV12- transformed cells 
from the tissue is impaired when the substrate is fibrotic [64], indi-
cating that fibrosis may act as a pre- cancer condition by supporting 
the growth of oncogenic mutants. Additionally, recent mice in vivo 
study demonstrates how inflammation and metabolic changes 
caused by high- fat diet change the direction of cell competition to 
facilitate tumour formation [Figure 28.3]. Mice fed with high- fat 
diet demonstrate impaired defence against cancer in their intestinal 
and pancreatic epithelia, leading to tumour formation [66]. RasV12- 
transformed cells, which are normally eliminated due to their low 
mitochondrial potential in the presence of wild type, cannot be 
eliminated upon high- fat diet treatment— excess fatty acids are con-
verted to acetyl- CoA, restoring mitochondrial potential in RasV12- 
transformed cells and protecting them from elimination. EDAC 
is further attenuated when fatty acid diet that induces chronic 

inflammation is introduced and is partially rescued upon treatment 
with anti- inflammatory drugs such as aspirin [66]. Inflammation 
likely promotes tumour growth by recruiting tumour- promoting 
cytokines [74]; however, it is not clear how they impact on cell com-
petition to attenuate EDAC [Figure 28.3]. Studies now reveal the 
involvement of Toll- related receptors (TRR) in initiating death in 
loser cells when cytokine ligand Spatzle released from neighbouring 
cells bind to TRR— do inflammatory cytokines released in tumour 
microenvironment participate in similar interactions to eliminate 
wild- type cells? While this needs to be tested, recent studies indi-
cate involvement of reactive oxygen species in cell competition and 
show that activation of oxidative stress pathway turn cells into losers 
[75]. Since tumour microenvironments are well established to have 
large amounts of reactive oxygen species [76,77], it is tentative to 
speculate that by simply activating oxidative stress response in the 
host tissue, cancer cells actively kill the host cells. Reciprocally, acti-
vation of oxidative stress in tumour cells could be an Achille’s heel to 
be exploited for therapy. It is therefore becomes clearly understood 
that cancer evolution is governed by both occurrence of oncogenic 
mutations and selection of mutants. While it is undebatable that mu-
tations caused by individual’s genetic susceptibility and regulated by 
environmental factors initiate the phenotypic diversification of tu-
mours, much less attention has been paid to the selection for mu-
tants. In a tumour- promoting microenvironment, it seems that the 
selection of tumour cells is mediated by cell competition through 
which tumour cells actively kill their neighbours and establish their 
territory in the host.

28.4.3.2. Cell competition in cancer therapeutics

Concepts of cell competition demonstrate that both primary and 
metastasizing tumours actively kill the host tissue cells to expand, 
indicating that therapies that negatively interfere with the ability of 
tumour cells to kill the host tissue, or those that revert cell compe-
tition in the favour of host tissue, could be sufficient to contain the 
growth of tumour. This kind of approach is especially relevant for 

Figure 28.3. Tissue microenvironment modulates cell competition. Tumour- promoting microenvironment, such as oxidative stress, high- fat diet, 
or tissue fibrosis, leads to impaired EDAC and subsequently allows for tumour growth and expansion.
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patients with familial polyposis, whose genetic predisposition gives 
them a virtually 100% chance of developing cancer. Initial efforts re-
vealed intriguing findings, e.g. Drosophila intestinal tumours, caused 
by mutations in APC genes, compete with and induce death in sur-
rounding cells [44]. Importantly, tumour growth was dramatically 
reduced upon preventing cell competition by apoptosis inhibitors. 
Furthermore, partial inhibition of hippo signalling had a remark-
able effect blocking tumour growth [Figure 28.4]. Considering that 

Hippo signalling is a tumour suppressor, this is a rather counter- 
intuitive result and is shown to be mainly due to the protective effect 
of hippo signalling on the host tissue, thus suggesting the rather pro-
vocative hypothesis that low- dose hippo signalling inhibition might 
actually contain tumour growth [44]. On a similar line of thinking, 
targeting regulators of STAT, e.g. protein inhibitor of activated STAT 
(PIAS) may also be protective towards host tissue— since persistent 
activation of STAT is a hallmark of various human cancer [78], giving 

Figure 28.4. Exploiting cell competition as an anticancer therapy. (A) Modulating the strength and direction of cell competition could be 
harnessed as a therapeutic strategy to contain tumour growth and progression. (B) On the basis of current knowledge of cell competition, different 
therapeutic strategies could be designed that could contain or delay tumour growth either by augmenting tumour- suppressive cell competition or 
by curtailing the ability of tumour cells to kill host cells.
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tumour cells a status of super- competitor [51], low- dose inhibition 
of PIAS rendering slight activation of STAT might protect the host 
cells from being outcompeted by the tumour. Inhibiting apoptosis of 
p53 driven tumours also seem to restrict tumour growth, suggesting 
again that protecting wild- type cells from cell competition- mediated 
death can stop tumours to grow and expand. Indeed, apoptosis in-
hibition would be a rather crude and pleiotropic treatment, but 
identifying downstream effectors of cell competition could lead to 
the identification of novel anticancer drug targets. For example, by 
attacking the pathway that makes wild- type cells with elevated p53, 
hypersensitive to compaction in the presence of p53 mutants [54], 
we might be able to stop p53 mutants from killing the wild- type cells 
and prevent or revert tumour growth [Figure 28.4]. Additionally, 
reduced mitochondrial potential and increased oxidative stress re-
sponse both are shown to potentially turn cells into losers in a com-
petitive environment [75] suggesting an approach that target these 
basic bioenergetic pathways might induce death in tumour cells. 
Cancer cells turn their metabolism into well- known ‘Warburg effect’, 
i.e. by reducing oxidative phosphorylation and shifting their meta-
bolic pathway to directly ferment glucose into lactate (aerobic gly-
colysis) [79], they cope with the harsh tissue microenvironment and 
regulate their high- paced proliferation. Anti- Warburg strategies, 
such as fast mimicking diets (FMDs), that reduce glucose availability 
and impair metabolism of cancer cells have recently been suggested 
in combination with other therapies to enhance treatment efficiency 
[Figure 28.4]. Interestingly, lack of glucose during FMD shifts me-
tabolism in cancer cells towards oxidative phosphorylation, leading 
to increased ROS production and high oxidative stress response 
[80]. Since increased oxidative stress response is linked with loser 
status [75], excitingly, such a strategy enhances the death of tumour 
cells by also involving surrounding healthy cells. In addition, neigh-
bouring cells further potentiate this effect by themselves relishing on 
antioxidant effects due to their protective metabolic shift in the pres-
ence of FMD [81,82]. Notably, it is likely that cancer cells can acquire 
resistance to FMD by circumventing metabolic changes; it therefore 
becomes more important to use this approach in combination with 
increases in fitness of wild- type cells, thereby enhancing their com-
petitive ability to fight against the tumour cells. Meanwhile, another 
important aspect that requires attention is the high toxicity of many 
existing cancer treatments that cause widespread cell death in host 
tissue and therefore, from a cell- competition perspective, could have 
an undesired effect of further promoting tumorigenesis.

28.5. Conclusions

In conclusion, changes in the tumour microenvironment may in-
fluence the strength and direction of cell competition (i.e. host kills 
tumour versus tumour kills host) and hence the likelihood of a 
cancer to grow. On the basis of recent provocative findings, we sug-
gest that modulating cell competition could provide an orthogonal 
therapeutic strategy to contain the growth and spread of tumours. 
With the acknowledgement of many remaining unknowns, we be-
lieve that the idea of harnessing cell competition in cancer holds 
huge promise towards exploration into new routes of therapeutics 
because the fundamental strength of this concept, ‘protecting host 
tissue cells from being killed by tumour’ [Figure 28.4], is undeni-
able. Philosophically, by employing such an approach, we could 

potentially revert the Darwinian advantage that the tumour has over 
the host tissue, and by combining such an approach with an ideal 
tissue microenvironment, cell competition brings hope not only to-
wards cancer treatment but also towards cancer prevention.
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Modelling cell population dynamics 
during chimeric antigen receptor  
T- cell therapy
Philipp M. Altrock, Guranda Chitadze, Arne Traulsen, and Frederick L. Locke

29.1. The use of mathematical modelling of  
cancer and the immune system

Mathematical models of biological systems, such as cancer, can inte-
grate mechanistic assumptions with prior knowledge and new data, 
e.g. building on the theoretical frameworks of dynamical systems 
theory and applied probability theory. Many such models are in 
the form of agent- based modelling, where a general analysis is no 
longer feasible and large- scale computer simulations are necessary 
[1] . Much like experimental model systems, mathematical models of 
biological systems spread over multiple scales, including molecules, 
cells, populations of cells, tissues and organs, organisms, popula-
tions of organisms, and population systems. Mathematical models 
of cell populations are of particular significance to modelling the 
dynamics of complex tissue phenomena, such as haematopoiesis, 
immune system dynamics, inflammation or malignant tumours, 
anti- cancer treatment, and cancer evolution [2– 4]. These theoret-
ical models can quantify how a biological system works. They allow 
us to abstract biological phenomena to a desired degree, explore 
the influence of certain mechanistic or technical assumptions on a 
system’s kinetics or dynamics, train model parameters, and enable 
validation or testing of models in the light of available experimental 
or clinical data [5,6]. Note that there is a distinction between kin-
etics and dynamics. Kinetics describes the system over time without 
knowing the underlying forces or mechanisms. In contrast, the term 
dynamics implies that some knowledge or assumptions cause the 
observed temporal behaviour in a mechanistic way, e.g. within a 
theoretical model. Finally, theoretical models allow comparison of 
underlying theories.

One example of comparing underlying theories is the analogy be-
tween predator– prey systems in theoretical ecology and immune- 
cell– target- cell systems in theoretical immunology [7– 9]. The adaptive 
immune system provides an effective defence against infectious agents, 

such as viruses, bacteria, and fungi [10– 12], and plays a major role in 
discriminating self from non- self [13]. It has long been recognized that 
the immune status changes with cancer development [14,15]. While 
there are commonalities in how adaptive immune cells target and 
eliminate infected or cancer cells, there are also key differences. On 
the one hand, stimulated immune cells act as predators that identify, 
bind to, and kill target cells. On the other hand, the life cycles, evo-
lutionary dynamics, and collective dynamics of predators and im-
mune cells, or of prey and target cells, can be very distinct [8] . Thus, 
existing predator– prey dynamics rarely directly describe the dynamics 
of cancer– immune- system interactions (Figure 29.1A), and novel or 
adapted theories and models are needed.

A holistic understanding of the evolutionary dynamics of cancer 
in the context of an ageing immune system is still in its early stages. 
The need for deeper understanding is fuelled by the recent rise and 
diversification of immunotherapies and the increase in the funda-
mental importance of immuno- oncology. Mathematical modelling 
has succeeded in contextualizing and abstracting some existing 
knowledge in logical frameworks and is thus key to formulating 
novel hypotheses. It has been understood that cancer follows a non- 
linear evolutionary process that mainly occurs during somatic evolu-
tion in multicellular organisms [16,17]. The importance of immune 
system interactions has increasingly been recognized in cancer and 
cellular therapy [18]. During organismic development and somatic 
evolution, tissue generation and maintenance are not error- free, but 
stochastic events lead to potentially heritable aberrations that can 
manifest in cell populations [19]. Hereby, multiple processes impose 
strong negative selection against aberrant cells that naturally emerge 
due to genetic or epigenetic alterations. The immune system pro-
vides tight control mechanisms; innate and adaptive immune sys-
tems play a pivotal role in cancer elimination. In addition, spatial 
tissue structure and hierarchical tissue organization ensure tissue 
function and serve as checks and balances on somatic abnormalities 

   

 

 

 

      

 

 

 

 

 



Cancer Systems Biology296

such as cancer [1] . As a result, cancer is a complex dynamical system 
that evolves through multiple bottlenecks and adaptations, resulting 
in substantial within-  and across- cancer heterogeneity [20,21]. This 
heterogeneity can be decisive for cancer evolution and treatment 
response [22– 24]. Current efforts in mathematical modelling seek 
to quantify the underlying non- linear and stochastic processes of 
cancer evolution and progression and their roles at different dis-
ease stages in the light of a temporally changing complex immune 
environment. In this complex ecological- evolutionary context, we 
attempt to understand the failures and successes of the rapidly de-
veloping field of immunotherapy.

Chimeric antigen receptor (CAR) T- cell therapy has greatly 
advanced personalized anti- cancer immunotherapy [25]. In 
this adoptive immune cell therapy approach, a patient’s own (or 

a donor’s) T-cells are extracted by leukapheresis and genetically 
engineered to express a synthetic receptor that binds a tumour 
antigen. After this manufacturing process, the CAR T-cells are ex-
panded and infused back into the patient. They can then attack 
and destroy cancer cells (Figure 29.1 B). Some of the most remark-
able clinical improvements have been observed in the setting of 
CAR T- cell therapy of B- cell malignancies, such as acute lympho-
blastic leukaemia and diffuse large B- cell lymphoma [26– 31]. CAR 
T-cells ‘are one of the first successful examples of synthetic biology 
and personalized cellular cancer therapy to become commercially 
available’ [25].

Complex ecological processes drive cancer dynamics; the im-
mune system heavily influences this ecology. At the cellular level, 
variation is provided by phenotypic plasticity and genotypic 

Figure 29.1. From T-cells to CAR T-cells to fight tumours. (A) Interactions of tumours and T-cells of the host immune system. (B) CAR T-cell timelines 
of the patient (bottom) and ex vivo manufacturing (top). (C) An example conceptual modelling framework involving CAR T- cell phenotypes (central 
memory, called ‘memory’ and effector memory, called ‘effector’), tumour, and host immune factors (e.g. normal host lymphocytes) [38].
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diversification [32,33]. The selection emerging from this vari-
ation can be cell- autonomous (cell- intrinsic factors) [16] or 
non- cell- autonomous [34]. In the case of autonomous mechan-
isms, fitter subtypes experience positive selection independent 
of the (changing) composition of the diverse cancer cell popu-
lation and potentially independent of the complex environment 
[35,36]. Non- autonomous mechanisms imply variable selective 
forces depending on the population composition and the envir-
onment. These mechanisms can emerge from cell- to- cell inter-
actions, paracrine (short distance), or endocrine (long distance) 
interactions (via soluble factors) not only among cell cancer types 
but also between cancer and stromal (fibroblasts, myeloid- derived, 
or lymphoid- derived adaptive cells) [37]. The heterogeneous re-
sponses to adoptive cancer immunotherapies must be understood 
in the context of patient- specific complex tumour ecosystems. This 
‘ecology’ gives rise to complex interactions that must be accounted 
for to model the therapy- disease dynamics (Figure 29.1 C). The 
ecological predator– prey dynamics that drive tumour killing, CAR 
T expansion, and exhaustion occur in the context of the complex 
tumour- immune microenvironment.

29.2. Pharmacokinetic and pharmacodynamic 
modelling of adoptive T- cell therapies

Pharmacometrics traditionally relies on the principle of mass bal-
ance [39,40], in which the output of a drug is a linear function of 
the input (dose) and accumulation. Adoptive CAR T kinetics 
do not necessarily follow this principle; increasing the dose of 
the cellular therapy does not necessarily increase the exposure to  
the drug. Pharmacokinetics (PK) and pharmacodynamics (PD) 
are the traditional disciplines that are concerned with the kinetics 
of drugs or other substances once they enter the body (e.g. by ab-
sorption, distribution, and metabolic changes) and the dynamics of 
a drug’s actions and effects on or off target (e.g. acting cytostatically 
or cytotoxically).

PK/ PD modelling has been the cornerstone of quantitative model-
ling to translate pre- clinical evidence into clinical practice and charac-
terize drug dosing, efficacy, and safety based on available biomarkers 
[41]. For adoptive immune cell therapies, the drug is a diverse set of 
cells that has the potential to proliferate, differentiate, and expand. 
Classical PK/ PD descriptions cannot capture the mechanisms under-
lying these processes because these processes do not directly follow the 
classical PK schematics of absorption, distribution, metabolism, and 
excretion [42,43]. At the same time, the PD of adoptive T- cell ther-
apies involves immune stimulation and especially targeted cell killing, 
e.g. cytotoxicity via perforin [44]. The dynamical processes involved 
in the action of cellular drugs require new mechanistic modelling ap-
proaches of complex immune- cell– target- cell interactions [45] and 
immune predation [46]. The field of mathematical models based on 
these observations has rapidly expanded in recent years [5,43]. There is 
a current sparsity of studies that have been able to compare data from 
different trials, institutions, or countries and an absence of centre- 
overarching data standards. Thus, qualitative and quantitative assess-
ments of pan- study model performance and pan- cohort ranking of the 
predictive capabilities and mechanistic assumptions of specific models 
result in modelling lagging behind the rate of innovation in molecular 
drug design.

29.3. Descriptive modelling of CAR T- 
cell population kinetics in patients

Chaudhury et al. have nicely summarized the mathematical mod-
elling of cellular kinetics and pharmacodynamics up to 2020 [43]. 
Patient conditioning before CAR generally leads to a temporary de-
cline in the absolute lymphocyte count (Figure 29.2 A). Near the 
nadir of this dip in the adaptive host immune cell density, the CAR 
T-cells are injected, after which they may expand, peak, and contract 
(Figure 29.2 B). Consequently, the tumour burden declines due 
to the CAR’s cancer- directed cytotoxicity (Figure 29.2 C). Figure 

29.3 summarizes a few essential ways to model these non- linear dy-
namics mathematically, e.g. involving CAR T expansion, ry, tumour 
killing by CAR T-cells, k, CAR T exhaustion, e. In the following, we 

Figure 29.2. Qualitative dynamics. (A) Absolute lymphocyte count as 
a reaction to pre- CAR T conditioning chemotherapy (lymphodepletion, 
LD). (B) Typical qualitative dynamics of CAR T with expansion, peak, 
early fast contraction, and later slow contraction. (C) Assumed tumour 
dynamics as a consequence of CAR T killing.
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focus on three studies highlighting the descriptive abilities of math-
ematical models of these processes.

What basic features of cellular drug kinetics are important? 
One of the first published analyses of the kinetics of CAR T-cells 
in patients was developed by Stein et al. [50], which focused on 
the kinetics and expansion of CAR T- cell therapy against B- cell 
acute lymphatic leukaemia (ALL) and the impact of therapies for 
treating cytokine release syndrome (CRS). Next to immune effector 
cell- associated neurotoxicity, CRS not only comprises acute symp-
toms, such as chills, tiredness, nausea, pain, and fever persisting 
for multiple days but also manifests with other features of a sys-
temic inflammatory response, such as organ dysfunction that can 
result from the direct effects of cytokine release. The effects of CRS 
are preventable or reversible in most patients if caught early [51]. 
Stein et al. addressed the three characteristic and clinically neces-
sary phases: expansion, initial decline at a fast rate, and terminal 
decline at a slow rate. These three phases can be explained by ef-
fector and memory CAR T- cell compartments with a dynamic con-
version between them; expansion is driven by effector CAR T- cell 
proliferation, initial decline by a phasing out of this expansion due 
to activation- induced cell death, and slow long- term decline by 
conversion from effector to memory CAR T-cells. Using a random 

effects statistical modelling approach based on CAR transgene copy 
concentration in the periphery (90 patients, over 800 time points 
in total [31]), this study was able to relate important CAR T- cell 
product characteristics, such as maximum concentration and area 
under the curve (AUC) to the relation of rapid contraction due to 
programmed apoptosis of activated effector CAR T-cells and the 
gradual decline of CAR T memory cells. Memory CAR T-cells 
may persist for years or even decades [30], especially in CAR   
T- cell therapies approved for paediatric and adult relapse refractory 
ALL. This pioneering modelling study confirmed the importance 
of peak expansion and AUC in a semi- mechanistic fashion. Yet, it 
did not show that treating CRS significantly impacts outcomes, but 
that mathematical modelling based on longitudinal data collected 
from blood samples is generally possible and useful. Such model-
ling can, e.g., leverage the dynamic number of CAR gene copies or 
the estimated number of CAR T-cells per volume in concert with 
other clinical covariates to characterize and stratify the complex 
drug kinetics across patients and address open questions related to 
efficacy, toxicity, and long- term response.

What is the role of the T- cell population structure, often called 
the CAR T- cell phenotype? A modelling approach of early survival 
prediction characterized the dynamics of four different CAR T- cell 
subtypes and tumour burden in 19 B- cell lymphoma patients [49], 
using a quantitative systems pharmacology approach that combines 
differential equations with broader statistical modelling involving 
clinical covariates (characteristics related to patients, therapies, or 
the CAR T- cell product). This study highlighted the importance of 
the differential kinetics of the various T- cell phenotypes concerning 
patient survival (see also Figure 29.3D). Based on a non- linear 
mixed- effects approach, the ‘most important’ modelling parameters 
describing product expansion were translated into a clinical com-
posite score. This score led to a survival prediction based on the drug 
kinetics and the baseline metabolic tumour volume. In this way, 
complex characteristics of the cellular drug and intra- patient vari-
ability can be recapitulated using retrospective analyses based on 
a few patients. Such descriptive models rely on longitudinal meas-
urements and, e.g., granular CAR T- cell phenotype information or 
tumour entity- dependent differences regarding CAR T- cell pheno-
types and densities at the periphery and at the (solid) tumour site. 
Importantly, such modelling frameworks should adhere to stand-
ards and quality criteria that are only currently being defined for the 
rapidly developing field [52].

What is the role of patient- intrinsic fluctuations in the T- and 
tumour cell kinetics? To address the question of whether patient 
variability or intrinsic fluctuations due to small cell population 
size are important in treatment evasion [1,53], Kimmel et al. [47] 
devised a hybrid compartment modelling approach that switches 
gears from a deterministic (ordinary differential equation based) 
mode into a stochastic mode (e.g. numerically solved using the 
Gillespie algorithm [54]). This approach could simultaneously ad-
dress the non- linear dynamics of T- and CAR T-cells and the sto-
chastic nature of small tumour dynamics (Figure 29.4A and B). The 
benefit of such hybrid modelling lies in describing a probability of 
cancer elimination as a probabilistic event without needing a long- 
term stable state of elimination by persisting CAR T-cells. Thus, a 
tumour can be below detection levels for a long time or even go 
extinct, only driven by a temporary spike of CAR T-cells and the 
resulting killing. The nature of the probabilistic outcome is that a 

Figure 29.3. Capturing the ecological dynamics of CAR T– tumour 
interactions in mathematical models. Overview of a few typical 
modelling approaches with schematic on the left and ordinary 
differential equations on the right. By x  we denote the derivative 
(change of) of the function x t( ), x dx dt= / . (A) Tumour without any 
treatment. (B) Tumour and CAR T, where tumour killing and CAR T 
exhaustion can be a non- linear function of cancer and CAR T-cell 
densities [47,48]. (C) Adding host immune cells to the model of (B). (D) 
Accounting for CAR T phenotypic heterogeneity [49].
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long- term response with little to no tumour is highly probable. On 
the other hand, the waiting time to relapse can be exceedingly long. 
Another aspect of stochastic process modelling in response to drug 
kinetics is the introduction of inevitable outcome variation, even in 
patients comparable in almost any aspect (Figure 29.4C). Kimmel 
et al. [47] asked about the importance of this intrinsic variation by 
controlling for exogenous parameter variance. Interestingly, this 
variance, e.g. between- patient variability in tumour growth rate 
or CAR T effector- tumour target killing, played a more prominent 
role in the response and efficacy of the cellular drug. Thus, intrinsic 
stochasticity does not overrule inter- patient variability but may be 
an important determinant of the ability to define curative events, 
especially for single- dose cellular therapies that do not persist 
indefinitely.

These three examples highlight important aspects of CAR T- cell 
therapy modelling efforts. Firstly, we must understand non- linear 
and time- dependent properties in the expansion of CAR T-cells in 
the disease- specific context and the conversion to memory cells. 
Secondly, the CAR T- cell phenotype, defined by the abundance of 
naive memory (stem cell memory and central/ effector memory) 
cells [55], can have an important role in the dynamics but is often 
only measured once. Thirdly, dynamic mechanistic assumptions 
about CAR T– resident immune system interactions may be cru-
cial in understanding the drug’s behaviour in patients. Lastly, prob-
abilistic theories can be included to develop a more comprehensive 
understanding of long- term responses or cure events. These needs 

arise due to the unique circumstances of adoptive immune cell ther-
apies that are typically only given once.

29.4. CAR T- cell therapy as an inflammatory  
process: the role of cytokines and toxicity

CAR T- cell therapy can cause severe CRS or a characteristic immune 
cell- associated neurologic syndrome (ICANS). Both events are asso-
ciated with significant co- morbidity and mortality [29,56,57]. They 
are characterized by high levels of inflammatory cytokines and high 
numbers of CAR T-cells that spill into the blood [28]. Both forms of 
toxicity occur in predictable distributions across patient populations 
[58], thus shaping clinical outcomes.

Multiple processes can be identified as potential drivers of patient 
outcomes: the effects of lymphodepleting chemotherapy [47,48], the 
composition of the CAR T- cell product (e.g. phenotypic markers of 
T- cell differentiation into killer effector cells) [49], CAR T- cell ex-
pansion and durability [50], tumour killing [59,60], and tumour 
burden [27,47]. The use of inflammatory or homeostatic markers, 
such as cytokines, may be considered in modelling if needed for im-
proved prediction. The explicit utility of inflammatory cytokines in 
treatment efficacy or side- effects models has yet to be shown sat-
isfactorily. However, they play essential roles in the inflammatory 
process accompanying CAR T- cell therapy [61,62]. A key assump-
tion is that a return of the wild- type lymphocytes to homeostatic 
levels can serve as an adequate proxy for the aberrant expression 
of inflammatory cytokines [47]. The up- regulation of homeostatic 
cytokines, such as IL- 7 or IL- 15, likely impacts CAR expansion and 
tumour killing [63]. An interesting addition to modelling could 
be the metabolic interactions between T-cells and tumour cells, 
requiring additional model compartments, e.g. glucose and cyto-
kine levels. The concentrations of these molecules could then be 
integrated into existing ODE model frameworks, with a potential 
concentration- dependent effect on CAR T- cell activity and prolifer-
ation, sometimes called ‘paradoxical’ signalling [64]. Unfortunately, 
in our experience, the cytokine concentrations in patients fluctuate 
highly, complicating the reliable inference of cytokine dynamics.

Elevating key inflammatory cytokines (IFN- γ, IL- 6, and IL- 1) is 
also associated with severe CRS and ICANS. One could hypothesize 
that CAR T- cell expansion and the occurrence of toxicities can be 
at least partially explained by dynamic cytokine/ biomarker levels in 
the blood. At the same time, homeostatic (IL- 15) and inflammatory 
(IL- 6, IFN- γ, and IL- 1) cytokines may benefit CAR T- cell expan-
sion. Computational, statistical, and mathematical models like the 
ones already developed [47,49] could be adapted to this problem to 
assess parameter sensitivities and establish clinical covariates. The 
modelling of cellular immunotherapies can benefit from an eco-
logical perspective to develop a mechanistic understanding of treat-
ment dynamics, failure and success.

29.5. Lymphodepletion before CAR T- 
cell therapy: necessary but not sufficient

Sufficient lymphodepletion (LD) is a pre- CAR T administration 
conditioning of the patient using a combination of chemotherapy 
agents [65]. LD is important in determining a durable response and 

Figure 29.4. Leveraging stochastic dynamics of tumour extinction to 
describe patient population statistics. The long- term success of single- 
dose CAR T (y , (A)) can be used to model stochastic dynamics in the 
tumour (B) that grows at a rate β and is eliminated at a CAR T- dependent 
rate δ(y), giving rise to a branching process [1,47]. An individual tumour 
can probabilistically go extinct or relapse even with the same conditions 
and parameters (note that the probability of relapse, p, can be very 
different from the random value of 0.5). As a result, one can model 
survival as a probabilistic outcome (C).
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may also involve some tumour removal before CAR T adminis-
tration. Kimmel et al. [47] considered that LD eliminates normal  
T-cells, giving rise to temporarily reduced competition among 
normal and engineered (CAR) T-cells. Normal and CAR T- cell 
populations then grow towards their respective carrying capacities, 
which gives rise to selection that is detrimental to the CAR T- cell 
populations in the long term but typically overshadowed by the CAR 
Ts’ early expansion advantage. Specifically, the CAR T- cell- carrying 
capacity is lower than normal T-cells, resulting in their eventual re-
moval. Immune recapitulation after LD must be driven by stem and 
progenitor cells [66,67], mediated by a complex signalling cascade 
[68]. Normal T-cells and CAR T-cells use this changing environ-
ment to proliferate and expand at different rates.

In the long term, CAR T-cells are disfavoured against normal   
T-cells [69]. In the context of mathematical modelling [47], coexist-
ence is not possible. Thus, the CAR T- cell disadvantage ultimately 
leads to their decline and removal over time. However, CAR T- cell 
persistence due to effector memory cells could play a role in the 
long- term dynamics, especially in treating childhood acute lympho-
blastic leukaemia. Still, it is unclear whether the associated mechan-
isms play a role in diffuse large B- cell lymphoma treatment in adults 
[26]. The decline of CAR T-cells may occur in a time frame longer 
than the expected survival time of the patient. Therefore, models 
that theoretically do not include eternal persistence may capture the 
clinical definition of CAR T persistence.

The expansion of CAR T-cells rapidly occurs within the first two 
weeks post- infusion, after which first rapidly declines and then decays 
slowly. The overall CAR T- cell turnover is expected to change during 
immune reconstitution, allowing us to hypothesize that additional 
levels of feedback exist between the immune system, the tumour, and 
CAR T-cells. Owens and Bozic explored the impact of different LD con-
ditioning regimens on CAR- T- cell treatment outcomes [48]. The op-
timal LD regimen would depend on the CAR T dose and the tumour 
burden. The time between LD chemotherapy and CAR T- cell infusion 
(about 5 days in the clinic) was observed to be depending on the tu-
mour growth rates. As this growth rate is often unknown, this model 
is a powerful example of how mathematical modelling can contribute 
to formulating novel testable hypotheses or treatment modifications. 
There might be room for improvement in selecting the timing and 
strength of LD, possibly on a personalized level.

So far, most models have assumed that tumour cell prolifer-
ation is independent of tumour burden. However, the cancer’s 
net growth rate might depend on the tumour burden relative to a 
(patient- specific) maximum possible tumour size. In this context, 
one could explore the impact of other sources of variability that ori-
ginate from a logistic dependence of tumour cell proliferation on tu-
mour volume, called proliferation saturation [70,71]. Future studies 
should carefully consider non- linear relationships between tumour 
size and growth as a potential dynamic biomarker for the success of 
CAR T- cell therapy.

29.6. Modelling feedback from the 
tumour and predator– prey dynamics

Clinical outcomes of CAR T cell therapy have been shown to be 
impacted by cellular interactions between CAR T cells and patient 
tumours [72]. The interactions between cancer and immune cells 

can be understood as predator– prey, but this analogy has limita-
tions [8] . Unlike predatory animals, immune cells do not feed on 
their prey (the target or cancer cells). Kareva et al. have also noted 
that immune– target cell systems are not expected to exhibit the os-
cillatory behaviour often seen in nature [8,73]. On the one hand, 
both target and immune cells compete for space and resources in the 
tumour microenvironment. On the other hand, increased tumour 
size often correlates with decreased immune cell density; these two 
key differences jointly create a new predator (immune cell)– prey 
(cancer cell) relationship. This relationship is driven by cell– cell sig-
nalling, immune editing, immunosuppression, resource availability, 
and temporal complexity rooted in healthy immune regulation. 
Together, these mechanisms determine tumour- immune feedback 
and alter the predatory character of the CAR T cells [59].

Due to its complex ecological character, in which the whole is 
more than the sum of its parts, there is a critical need to better 
understand the tumour microenvironment within which immune 
cells, such as CAR T cells, function. Modelling aims to predict 
how this environment can be perturbed to inhibit tumour growth 
more efficiently, e.g. relying on adapted predator– prey theory and 
methods from modelling in the field of ecology [46]. For example, 
Sahoo et al. observed in vitro in glioblastoma that CAR T- cell dose 
correlated inversely with the killing rate but correlated directly with 
the net rate of CAR T proliferation and exhaustion. This relation-
ship suggests that at lower doses CAR T- cell killing is improved. Yet, 
the cells become more exhausted, all the while CAR T- cell exhaus-
tion increases with antigen density and tumour growth rate [59]. 
This example shows that adoptive cellular therapies are an emer-
ging and exciting application area for modelling personalized bio-
logical control strategies in ecological settings and the evolution of 
escape mechanisms. In this context, Hamilton et al. have noted that 
there are clear collective and resource competition effects involved 
in understanding CAR T cells as predators [46], possibly in con-
nection to the handling time that predatory immune cells need to 
find and kill their targets. In addition, immune cell dynamics may 
be self- limiting, independent of the cancer cells [64] or other im-
mune cells, impeding T cells from reaching and killing tumour cells 
[74]. Unlike ‘conventional’ predators, immune cell populations can 
‘work cooperatively to detect and destroy cancer cells’ [46]. How 
these mechanisms collectively can improve CAR T cells’ ability to 
control tumours of various sizes and limit the number of escape 
strategies remains to be seen.

29.7.  Conclusions

Insights from ecology and evolution, especially mathematical mod-
elling, often loosely called ‘evolutionary dynamics’ [2] , are of great 
value to the emerging and fast- paced field of adoptive cellular im-
munotherapies. The mechanistic description of the cell population 
dynamics is crucial for understanding and further innovating these 
therapies. Ecology and evolution offer compelling frameworks for 
understanding complex, non- linear, and possibly stochastic sys-
tems, such as CAR T- cancer cell interplay. It is said that immuno- 
oncology ‘is now in a position to reciprocate’ [46], as more and more 
precise data about cellular dynamics [75], tumour burden [76], 
and inflammatory processes [77] becomes available, creating pos-
sible feedback that critically influences clinical outcomes. Advanced 
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immuno- oncology and modern mathematical modelling can help 
revolutionize cancer care using CAR T- cell therapies.
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Modelling small cell lung cancer biology 
through deterministic and stochastic 
mathematical models
Srisairam Achuthan, Rishov Chatterjee, and Atish Mohanty

30.1.  Introduction

Mathematical constructs that depict self- similarity, i.e. repeating 
patterns over multiple scales and non- integer dimensions, are re-
ferred to as fractals. Highly complex biological as well as universal 
entities have been described based on fractals [1] . Manifestations 
of fragments of repeating patterns are often observed in nature. In 
nature, structural patterns are often conserved and expressed across 
organisms including those from disparate realms. A noteworthy case 
is the analogy between the structure of a tree and that of a human 
lung. In both, the fractal design (self- similarity) and function are 
conserved as well as elegantly manifested. The central trunk of a tree, 
like the trachea in the human body, divides into wider branches, like 
the bronchi. These branches then bifurcate into increasingly smaller 
branches, like the bronchioles, and ultimately lead to the ‘leaves’, or 
alveoli, where gas exchange occurs. This similarity in structure also 
applies to function, and maintaining this natural order is crucial for 
biological equilibrium and overall health. By analysing changes in 
these patterns, it may be possible to identify and diagnose abnormal 
tissue at an early stage, leading to more effective and personalized 
cancer treatments [2]. Mathematical models are vital tools to study 
biological entity like the human lung that exhibits fractalness.

The objective of this chapter is to provide an overview of some 
of the mathematical models and principles reported in the litera-
ture underlying the growth, genetic diversity, and spread of small 
cell lung cancer (SCLC). This knowledge can serve as a framework 
for further analysing and utilizing the vast amount of genomic and 
clinical data available related to SCLC. By sharing this mathematical 
understanding with physicians and cancer researchers, more pre-
cise treatment plans could be created to improve patient outcomes. 
It is believed that cancer is triggered by a chaotic imbalance through 
random processes of genetic mutations and drift. However, cancer 
progression seems to restore balance, albeit in an abnormal state, 
through a predictable process of clonal selection. To model this, both 
deterministic equations, such as ordinary and partial differential 

equations, to describe tumour growth and surrounding tissue, as 
well as stochastic models, such as cellular automata (CA) and sto-
chastic partial differential equations (PDEs), have been applied, to 
represent cancer initiation and progression. Principles from group 
theory and game theory could be applicable to describe the tumour 
cellular dynamics as well [3] . However, we have not covered these 
principles in this chapter. Together, these methods are crucial as they 
may provide a starting point for an integrated systems approach to 
developing new cancer treatments.

30.2. SCLC clinical states

SCLC is an aggressive form of lung cancer that often presents at 
advanced stages and is believed to originate from neuroendocrine 
cells found in the lung epithelium [4] . The cancer cells are small 
and round, and they rapidly grow and spread throughout the body. 
These cells retain markers such as CD56 [5, 6], chromagranin, 
synaptophysin [4], and the neuroendocrine transcription factor 
ASCL1 (achaete- scute complex homolog- like 1) [7]. SCLC is highly 
metastatic and is characterized by a large number of circulating tu-
mour cells (CTCs) in the periphery, which contributes to relapse and 
poor prognosis [8, 9]. CTCs can have stem cell properties and may 
be used as diagnostic markers through liquid biopsy methods [10, 
11, 12]. Majority of SCLC patients have a history of smoking, and 
the disease may present itself many years after smoking cessation 
[13, 14]. Treatment options for SCLC include chemotherapy, radi-
ation therapy, and surgery; however, the prognosis for SCLC is gen-
erally poor. SCLC is characterized by its rapid and early metastatic 
growth, often spreading as clusters of cancer cells that may contribute 
to chemoresistance [15]. This suggests that molecules regulating 
cell– cell interactions, cell– matrix interactions, or cytoskeletal func-
tions may be potential therapeutic targets for SCLC. Often, SCLC 
is classified into two stages: limited disease and extensive disease. 
Additional information about these two stages is provided in [2].
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30.3. SCLC cells represent a 
diverse population

SCLC’s intrinsic and ongoing genomic instability is a major factor 
in the diversity and evolution of the disease. With an average of 
175 mutations per tumour, SCLC has one of the highest rates of 
genomic changes among solid tumours, ranging from 5.5 to 7.4 
mutations per megabase [16, 17]. G- to- T transversions, a tobacco 
carcinogenesis signature, are frequently seen among SCLC patients 
and are consistent with a smoking history [16]. Even though SCLC 
is believed to originate from neuroendocrine cells found in lung 
epithelium [4] , the cancer stem cell (CSC) population of SCLC is 
not clearly defined and appears to be diverse in terms of phenotype 
and genome. This may be due to a high number of mutations and/ 
or epigenetic regulation. The phenotype of SCLC CSCs is not well 
understood and may express several markers, such as SOX2, CD44, 
CD56 (NCAM), CD90, CD105, CD133, Sall4, Oct4, nestin, S100β, 
or vimentin [18, 19]. The ASCL1 transcription factor plays a role in 
regulating neuroendocrine features and works together with Notch 
signalling in the normal differentiation of airway stem cells [20]. 
However, in SCLC, this pathway is altered, and the overexpression 
of E2F 3 and loss of function of RB drive disease progression, likely 
due to mutations in the tumour suppressor gene TP53 [21]. TP53 
(100%) and RB1 (93%) are the most commonly mutated genes 
in SCLC cases without chromotripsis [22]. Additionally, expres-
sion of the histone- lysine methyltransferase enhancer of zeste 
homolog 2 (EZH2) gene is strongly linked to disruption of the E2F 

transcription factors and RB1 pathway, found in 96% of SCLC cases 
[23]. More information about the diverse population of SCLC cells 
is provided in [2].

30.4. SCLC metastasis and 
the tumour microenvironment

The process of metastasis involves several distinct phases, beginning 
with the invasion of tumour cells into surrounding tissue and eventu-
ally the bloodstream. As CTCs, they can reach distant sites and grow 
if they could survive and interact with various tissues, such as ex-
travasation through the endothelial lining of blood vessels [24]. The 
success of this process depends on specific cellular properties that 
may vary and are not only determined by genomic changes and their 
cellular consequences, but also by the effects that the tumour has 
on its microenvironment and how it interacts or responds to them. 
Both extravasation and the subsequent intravasation to establish 
metastatic sites can be regulated at multiple levels, involving ligands 
within the extra- cellular matrix (ECM), their receptors, including 
selectins, integrins, cadherins, CD44 and others, or chemokines and 
cytokines and their receptors. Additional interaction with immune 
cells or stromal cells further determines metastatic function [25]. 
A retrospective study analysed 251 SCLC patients diagnosed be-
tween 1999 and 2000 and found 152 (60.6%) with distant metastases. 
Target organ involvement included 20.3% liver, 18.3% bone, 15.5% 
brain, 10.0% lung, and 6.0% of adrenal gland [26]. In Figure 30.1,  

Figure 30.1. Most common metastatic sites of SCLC. Simulation of early time points and end points (from top to bottom right) of tumour cells 
(purple) metastasizing to different organs. Source: Adapted from Salgia et al., 2018.
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a model was generated by JavaScript bubble chart, where the ini-
tial state is fixed with all cancer cells positioned at the primary site, 
and the final state is quantitatively fixed based on the metastasis sites 
population reported in Nakazawa et al. [26]. Cells with different 
metastatic phenotypes first appear at the primary site, and then cells 
with similar metastatic phenotypes cluster together and eventually 
metastasize to different sites. Metastasis is a multi- step process in 
the cancer model that includes steps, such as mitogenesis, morpho-
genesis, and motogenesis [27]. The mitogenesis gives the prolifer-
ation that then also affects morpho-  and motogenesis. The process of 
metastasis is dependent on genetic regulation, protein network, and 
tumour– stroma interaction. As an example, it has been shown that 
PAX5 transcription factor is highly expressed in SCLC [28]. This 
then regulates chemokine receptor CXCR4 and RTKs, such as MET 
and RON. The receptors themselves cause a plethora of signal trans-
duction events, such as activation of the focal adhesion protein FAK 
and Actin cytoskeleton. Ultimately, this leads to increased motility, 
invasion, and metastasis.

EMT is a crucial process for metastasis formation in cancer 
progression and development. The significance of the tumour 
stromal microenvironment for tumorigenicity and metastasis in 
SCLC has been well established, and some of the mechanisms in-
volved have been already unraveled. To learn more about EMT, 
ECM, phenotypic plasticity of SCLC being a dynamic chaotic 
system where the initial conditions in the tumour microenvir-
onment plays a crucial role in determining the final states, and 
other aspects of SCLC metastasis and tumour microenviron-
ment, refer to [2] .

30.5. Computational modelling

Deterministic and stochastic mathematical models have been used 
to study cancer. Deterministic models are mathematical models 
that describe the time evolution of a system using a set of differen-
tial equations. They describe the rate of change of variables in the 
system. The solution to the system is obtained when the value of the 
variables of the system of equations is computed at any given time. 
Deterministic models are useful for understanding the underlying 
mechanisms of cancer growth and spread, and for making predic-
tions about the behaviour of a population of cancer cells. Examples 
of deterministic models used in cancer research include CA models 
and compartmental models.

Stochastic models, on the other hand, consider the randomness 
and uncertainty associated with biological processes, such as the 
growth and spread of cancer cells. These models use probability 
distributions and random variables to describe the behaviour of 
the system. Stochastic models are useful for studying the popu-
lation dynamics of cancer cells as well as for understanding the 
effects of genetic and environmental factors on cancer progression. 
Examples of stochastic models used in cancer research include 
agent- based models (ABMs), Markov processes, and branching 
processes.

Single- cell events, like mutations, play a vital role in the devel-
opment of cancer. To understand their impact, researchers have 
used various discrete methods that include both deterministic 
and stochastic approaches, such as CA [29], ABMs, and hybrid 

continuum- discrete approaches [30]. The CA models allow re-
searchers to study the behaviour of individual cells and the inter-
actions between cells, leading to a better understanding of cellular 
processes. While the ABMs focus on the behaviour of individual 
cells, the hybrid continuum- discrete approaches, on the other hand, 
combine the strengths of both CA and ABMs to provide a more 
comprehensive view of cellular processes. In recent years, multiscale 
modelling has emerged as a promising tool for studying cancer and 
other complex diseases. This approach links ordinary differential 
equations (ODEs) to cellular- level parameters [31], allowing re-
searchers to study the dynamics of cancer progression and treatment 
response at multiple scales. The integration of discrete models with 
ODEs provides a comprehensive view of cancer development, from 
the molecular to the tissue level, and has led to new insights into the 
underlying mechanisms of cancer progression.

30.6. Cellular automata models

CA models are a type of deterministic mathematical model that 
are used to simulate the growth and spread of cancer cells. These 
models divide the space in which the cancer cells are growing into 
a regular grid of cells, with each cell representing a small volume 
of tissue. The state of each cell in the grid is determined by a set of 
rules that govern the behaviour of the cells in the neighbourhood. 
Cancer models based on differential equations address a continuum 
of cells at the tissue scale where the effect of individual cells is aver-
aged. On the other hand, discrete models of tumour growth based 
on CA capture the response of individual cells as they interact with 
one another as well as with their microenvironment. CA models 
have been used to simulate a variety of different types of cancers at 
the cellular scale [32, 33, 34, 35, 36] and sub- cellular scale [37, 38], 
depending on the specific rules and initial conditions used. For ex-
ample, in some CA models of solid tumours, cells could be in one 
of several different states, such as healthy, normal, or cancerous, 
and the rules govern the interactions between these cells and the 
rate at which they transition between states. An example of a CA 
model used to study cancer is the so- called ‘Game of Life’ model, 
which is based on the two- dimensional cellular automaton of the 
same name, invented by John Horton Conway [39]. This model 
represents cells as ‘alive’ or ‘dead’, and the rules determine how the 
cells interact with their neighbours to reproduce, die, or remain 
the same. This model could be used to simulate the growth of a tu-
mour and its interactions with the surrounding tissue, by applying 
appropriate rule set. However, these models have limitations and 
need to be validated with experimental data to be useful in actual 
clinical scenarios.

CA was used to study the invasion of cancerous cells in a popu-
lation of normal cells by Qi et al. [35]. In this context, a lattice cell 
represented a single biological cell. The state of each of the cells of 
the CA was assumed to be normal, cancerous, complex (cancerous 
and bound by white blood cell), or dead cancerous. Probabilistic 
rules were then applied to study the dynamics of the cellular states. 
However, this model did not explicitly consider growth promoting 
factors (such as the presence of blood vessels, nutrient supply, and 
oxygen) and growth inhibiting factors (such as toxic metabolites) for 
tumours that ‘motivate’ them to move far away from primary sites.
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Macklin et al. [30] modelled the microenvironment- dependent 
birth rate bi and death rate di as shown below:
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where di N,
*  is a constant [40]. The microenvironment apoptosis rate 

di A,  is modelled as

 d t d d d R ti A i A i A i A i, , , ,( ) = + −( ) ( )* max *  

where dmax is the maximum rate of apoptosis.
For the time interval [t, t +  Δt], each viable tumour cell has 

the chance to divide, undergo apoptotic death, or reach necrotic 
death. The probability for a live cell to perform one of the three 
actions in each time step until death is described by the below 
equations:
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Each dead cell then has the probability that it will become lytic and 
rupture, leaving an empty space in the automaton model, based on 
the average duration the cell death. The probability of the dead cell 
to reach lysis is expressed in the below equation, where TD is the 
duration of cell death:

 P
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t
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30.7. Simulation example

To do this, by increasing the birth rate by 0.025 and increasing the 
viable cell Hill coefficient to 4 to simulate our growth rate in Figure 

30.2, modified the viable lifespan of the tumour cells to increase the 
probability of apoptosis over time and decrease the time between 
apoptosis and necrosis due to hypoxia, and introduced a 3% rate of 
necrosis for peri necrotic tumour cells to fit our carrying capacity 
obtained in Figure 30.2. The remaining parameters of the simula-
tion remain similar, where the duration of necrosis and cell death 
are the same, the system begins with a single cell at time =  0, and 
the drug parameters are unchanged. The first action performed by 
the BioFVM program as it creates the simulation is to fill any un-
occupied spaces with fluid and consider any dead cells as an empty 
space [40]. The model then uses the following reaction– diffusion 
equations for the oxygen and drug, respectively, to apply the uptake 
rate across each cell:
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where the treatment by the drug is set at 5 μM at time t =  528 (day 22). 
When observing the two- dimensional image of the tumour over time, the 
cells become more hypoxic the closer they are to the middle. The oxygen 
concentration in the tumour begins to decrease in steps as the tumour 
begins to grow, leaving the population of hypoxic cells to grow rapidly.

With the presence of the drug at time t =  528, the live tumour cell’s 
exposure to the drug E and its response to the drug R (having a Hill 
coefficient h =  1) are given by the below equations:
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where α is the exposure for a half- maximum effect [40].

Figure 30.2. Tumour growth models. (A) Tumour growth model 
with dynamic carrying capacity. (B) Histogram of tumour evolution 
(green) alongside the histogram (red) of the metastatic growth. As the 
primary tumour reaches the maximum carrying capacity, the metastatic 
burden will increase exponentially from the detached primary cells 
travelling and growing at distant sites. The metastatic cell population 
grows beyond the original carrying capacity until it reaches a new 
carrying capacity due to the model describing the growth of cells in all 
metastatic sites rather than just the primary sites. 
Source: Adapted from Salgia et al., 2018.
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The BioFVM simulations may be captured after the two- 
dimensional tumour profile; cell automata model, basic agent 
model, and MATLAB model scripts have been edited and saved; and 
the simulations have been run through the command prompt [30]. 
Once the simulations have finished running, MATLAB is automat-
ically prompted and a series of images, or visual interpretations of 
the system at each recorded time interval, are then opened. These 
images may then be saved as image files. This spatiotemporal model 
could be utilized to predict and personalize patient response to drug 
therapy using organoids, spheroids, mouse models, and zebrafish 
models.

30.8. Agent- based models

The cellular Potts model [41] is a more generalized CA that uses 
lattice dynamics to study interactions among biological cells. The 
cellular Potts model was used to study the formation of cell clus-
ters because of assuming configurations of minimal adhesive free 
energy [42]. The CA model and the cellular Potts model fall under 
ABMs. The variables in ABM are individuals. These individuals are 
considered as agents, and a set of prescribed rules govern the behav-
iour of these agents. In the case of CA, the individual lattice cells are 
the agents.

ABMs can be used to study the evolution of a cancer population 
over time and to investigate the impact of various therapeutic inter-
ventions on the progression of the disease. ABMs have been applied 
to various types of cancers, including breast cancer, prostate cancer, 
and lung cancer. These models can provide valuable insights into the 
mechanisms underlying cancer growth and progression and can be 
used to evaluate potential therapeutic strategies and predict their ef-
ficacy. One of the advantages of ABMs is their ability to capture the 
complexity of the cancer microenvironment and the interactions be-
tween cancer cells and other cellular and non- cellular components. 
Additionally, ABMs can be used to study the impact of genetic and 
epigenetic heterogeneity in cancer populations and to incorporate 
information on specific cellular pathways and signalling networks. 
However, ABMs can also be computationally intensive and may re-
quire a large amount of data and computational resources to be ef-
fectively implemented. ABMs require significant amounts of data to 
initialize and parameterize the models, including data on cell prop-
erties, signalling pathways, and interactions between cancer cells and 
the microenvironment. The complexity of ABMs can make it chal-
lenging to interpret and understand the results, particularly when 
studying large, complex systems. ABMs can be difficult to validate 
due to the lack of experimental data or the difficulty in obtaining ex-
perimental data that directly supports the model predictions.

A discrete agent- based spatiotemporal model that incorporates 
the effects of nutrient supply, mechanical confinement that repre-
sents the tissue resistance against tumour cell movement, and tox-
icity of metabolites in the context of brain tumour progression was 
developed by Mansury [43]. They simulated the complex dynamic 
self- organizing and adaptive processes observed in tumours, namely 
spatial aggregation of tumour cells as clusters and their migration in 
search of suitable survival conditions.

Hybrid agent- based models combine the unusual effectiveness 
of continuum deterministic models to capture tumour dynamics at 

the tissue scale with discrete CA models at cellular and sub- cellular 
scales [44]. Tumour invasion of stroma and surrounding tissue are 
modelled as coupled non- linear PDEs. The PDEs are discretized 
to model cell migration and form the basis of the hybrid discrete- 
continuum model. This model enables specific properties of cells to 
be described, such as proliferation, death, cell– cell adhesion, and 
mutation.

30.9. Compartmental models

Compartmental models are a type of deterministic mathematical 
model that are used to study the population dynamics of cancer cells 
and the progression of cancer. These models divide the population 
of cancer cells into different compartments, each representing a dif-
ferent stage or state of the cancer. The compartments can represent 
different stages of cancer progression, such as normal, precancerous, 
or malignant cells, or different stages of treatment response, such as 
responsive, resistant, or dormant cells.

The compartmental models use a set of differential equations to 
describe the rate of change of the number of cells in each compart-
ment over time, considering various processes such as cell growth, 
death, and migration. The behaviour of the system is represented by 
the overall dynamics of the population. Compartmental models can 
be used to simulate a variety of different types of cancers, depending 
on the specific compartments and interactions included in the 
model. One example of a compartmental model is the Gompertz 
model [45], which is a classic model for describing the growth of 
tumours and has been used to study various types of cancers. The 
model assumes that the growth rate of a tumour is initially slow, then 
accelerates, and eventually slows down again as the tumour reaches 
a maximum size:
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where V(t) is the tumour size at time t , Vinj is the initial size with tu-
mour parameters α and β.

Compartmental models are useful in simulating and studying the 
complex dynamics of cancer progression and can be used to test hy-
potheses about the mechanisms of cancer progression and the effects 
of various treatments. However, these models also have limitations 
and need to be validated with experimental data to be useful in ac-
tual clinical scenarios. Compartmental models do not consider the 
spatial distribution of cancer cells, which is particularly important 
for understanding solid tumours. It can be difficult to parameterize 
the compartmental models based on actual data, which can lead to 
unrealistic or misleading results. The models are deterministic in 
nature and do not consider the randomness and uncertainty associ-
ated with biological processes.

30.10. Deterministic continuous models

For a given set of initial conditions, models that produce the same 
results each time they are solved are known as deterministic models. 
These differ from stochastic or probabilistic models in that the 
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model results change each time they are solved even though the ini-
tial conditions do not. Deterministic models with one independent 
variable (‘time’) and one or more dependent variables (such as ‘sub-
strates’ or ‘metabolites’) and represented by ODEs are ideal to cap-
ture dynamical processes. For example, Enderling and Chaplain [46] 
studied the rate of tumour growth cells. Utilizing parameters α (frac-
tion of dividing tumour cells) and β (fraction of tumour dying cells), 
they showed that tumour cells could either be in (1) quiescence  
(α –  β =  0), (2) proliferative (α > β), or (3) depleting (α < β). Since 
tumours do not grow indefinitely in size, a more realistic representa-
tion of rate of tumour growth should take into account the carrying 
capacity constraint, K, representing the maximum population of 
cells also known as carrying capacity of the host cell. Hahnfeldt et al. 
[47] modelled K as a function of time and tumour size as follows:
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where ϕ and ϕ represent constant positive rates of angiogenesis 
stimulation and inhibition, respectively (Figure 30.2).

Mathematical models solely based on ODEs describe the total 
number of tumour cells over time but do not consider any spatial 
variables. It is essential to model the spatial variables along with time 
since processes such as cancer invasion and metastases are more po-
tent killers than local tumour growth and are inherently spatial in 
nature. Models based on PDEs such as reaction diffusion are apt for 
quantitative substances of interest in cancer modelling (such as nu-
trients or oxygen) at a specific position (space) and time (t). PDE- 
based models are also referred to as continuum models since they 
are solved for continuously in space and time variables.

For example, Gatenby and Gawlinski [48] were one of the earliest 
to model cancer invasion as a spatiotemporal evolution of tumour 
cells (C), enzymes with H +  ions (m), and ECM (v) as follows:
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where DC is the diffusion coefficient constant, ρ is the tumour cell 
proliferation rate constant, δ is the H+ ion’s production and decay 
rate constant and γ  is the ECM degradation rate. Appropriate ini-
tial conditions and spatial region need to be specified to solve 
∂
∂

= ∇ + −
m

m C m
t

2 δ( ), where tumour cells are assumed to prolif-

erate and undergo non- linear diffusion and secrete H +  ions that 
diffuse and degrade the normal tissue. The H + ions are assumed 
to undergo linear decay with logistic growth for normal tissue in 
the absence of any cancer cells. Cancer cell migration processes, 
such as haptotaxis (i.e. directional cell migration in response to 
gradients of cellular adhesion molecules in the ECM or gradients 
of the ECM density), were modelled using a modified version of 
∂
∂

= ∇ + −
m

m C m
t

2 δ( ) by Anderson [49].

The PDE- based models can be discretized using finite- 
difference approximations. To study individual cell movement, 

Anderson et al. investigated the discrete form of the continuous 
version built to study haptotaxis [50]. Spatial variables were dis-
cretized retaining time, t , to be continuous. Stochastic movement 
rules were incorporated to derive a biased random walk governing 
the motion of a single tumour cell. Dynamical models of cancer 
growth leading to chaotic behaviour have also been reported [51]. 
Itik and Banks were able to explicitly show the existence of de-
terministic chaotic dynamics by modelling the interactions and 
competitions between tumour cells and other cells of the body, 
such as healthy host cells and activated immune system cells. 
Based on ideas from Lie algebra [52], the control of chaotic dy-
namics of cancer growth has been recently formulated [53] in a 
three- dimensional cancer model for tumour growth. This spati-
otemporal heterogeneity model could be utilized to understand 
the tumour evolution over time as well as attempt to predict the 
genetic phenotype that may correlate with metastasis and cancer 
progression. As we go forward from here, we must be able to in-
corporate mathematical modelling in SCLC. We can envision the 
utilization of various models in the behaviour of cell lines/ three- 
dimensional models, organoids/ spheroids along with PDX/ CDX 
models, as well as tumour behaviour in natural progression and/ 
or therapeutic response. We should be able to study the potential 
for mechanisms of resistance.

30.11. Application of neural networks 
to ODEs and PDEs

Mathematical modelling of SCLC from a deterministic or stochastic 
perspective often makes use of ODEs or PDEs to better simulate 
the disease’s intricate mechanisms. Drawing from examples such 
as emulating the tumour microenvironment [30] or studying cell 
movement [51], these methods tend to rely on many strict con-
straints to find closed- form or efficient numerical solutions. Since 
various systems of SCLC holistically are complex with many con-
founding variables that influence behaviour of entities (e.g., cells 
or tissue), flexible mathematical models in the form of differential 
equations tend to be more challenging to solve in a closed- form 
manner, and numerical approximation tends to stop at local minima 
quite frequently. To lead to faster convergence while avoiding a cold 
start, deep neural networks can be leveraged for solving systems of 
differential equations that model phenomena of SCLC as optimiza-
tion problems when limited data is present or when the dimension-
ality is large [54].

To frame the optimization problem that a neural network will 
minimize loss using gradient descent and backpropagation, the 
universal approximator property of neural networks is leveraged 
to transform the existing differential equation as a set of learnable 
parameters. The loss function itself is defined in a way that measures 
the deviation of the neural network’s output from the true solution 
to the differential equation. Afterwards, the forward and backward 
passes of the network are utilized to minimize this loss. The iterative 
update process of the coefficients or unknowns of the differential 
equations is essentially weights that are adjusted to minimize the 
specified loss function. As an example, metastatic tumour growth 
and metastatic spreading can be modelled in a generalized way using 
an ODE and transport PDE model [55]:
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where v represents the volume of the tumour, b vm> ,0 is the volume 
of the tumour at the saturated level, and v tp( ) represents the volume 
of the primary tumour at time t . By discretizing the domain of the 
hybrid DE system, the partial derivatives of the model can be ap-
proximated using finite differences. By introducing a supervised 
training paradigm where the model can have input– output pairs 
from a numerical solver, training data can be generated from an 
artificial neural network to adjust weights of the input variables via 
backpropagation. The inputs would refer to initial/ boundary condi-
tions, and the outputs would refer to expected outputs. To frame the 
optimization problem, a loss function is necessary. Common loss 
functions include mean squared error (MSE) or mean absolute error 
(MAE) where the intent is to minimize loss to reach a global min-
imum during model training over several iterations.

Leveraging the weights obtained from the limited training data, the 
trained artificial neural network (ANN) model could then be used to 
make predictions on new boundary conditions defined by the model 
system. For further refinement, a physics- informed neural network 
(PINN) [56] can be leveraged to add more constraints on the defined 
loss function to converge to a minimum that more closely would 
approximate the true dynamics of the differential equation system. 
A PINN modifies the loss function by adding terms to the loss func-
tion which are associated with the rules described by the differential 
equation system. A general way of describing this modification is 
by introducing a term lambda that balances the contribution of the 
data and physics terms to the loss. Another loss term is attributed to 
the differential equation system independent of the ANN. Lambda is 
multiplied to this new loss term. The sum of loss terms is seen as the 
new loss function to optimize. Another approach to using ANNs for 
solving differential equations is to not only have examples of pairs 
of boundary conditions with outputs but to also introduce the pre-
dicted error of each pair from the numerical solver as an additional 
feature to the ANN. This integration is accentuated by the interactive 
mathematical modelling- artificial neural network (IMANN) frame-
work [57].

In Figure 30.3, the numerical ODE model known as SOFC’s 
anode numerical model is used to receive the inputs of an ODE with 
temperature and density as input parameters. The numerical model 
will predict overpotential, η, which has its squared difference com-
puted from the experimental evidence for the specific boundary 
condition [57]. This result is fed into the ANN along with the input 
parameters that went into the numerical model to have a more 
calibrated, universal approximation of alpha and beta terms that 
come back into the numerical model for reinforcing the numerical 
model in future iterations until the squared difference of predicted 
overpotential and experimental overpotential converges to a global 
minimum. The flexibility of using ANNs for better approximation of 
ODE/ PDE solutions can also be applied to equation systems that are 
high dimensional. This new development is presented by reformu-
lating non- linear, parabolic differential equations as backward sto-
chastic differential equations (BSDEs) [54]. The gradients of BSDEs 

can be much more easily approximated by ANNs invariant to the 
scale of the number of dimensions that makes it a robust approach 
when having limited input and output pairs from a numerical solver. 
Current solvers for very high dimensional PDEs are limited to the 
curse of dimensionality; therefore, simulation methods such as 
Monte Carlo and Feynman– Kac are used. ANNs that make predic-
tions from approximating the gradients of BSDEs ultimately con-
verge to lower loss values compared to Monte Carlo simulation for 
high- dimensional PDEs.

Although there are not many practical examples of high- 
dimensional PDEs currently in the computational oncology domain, 
there is potential for modelling tumour dynamics in the perspective 
of multi- omics that would lead to a significant number of dimen-
sions when PDEs are developed. Reformulation of proposed PDEs 
to BSDEs while using ANNs for approximation will lead to more 
efficient solvers for large- scale systems in computational oncology.

30.12.  Conclusions

Throughout this chapter, we have demonstrated that mathemat-
ical modelling is critical for advancing our understanding of small 
cell lung cancer (SCLC), a particularly aggressive and rapidly me-
tastasizing form of lung cancer. We reviewed and explored various 
mathematical frameworks that shed light on the growth patterns, 
genetic diversity, and metastasis mechanisms of SCLC, highlighting 
the value of both deterministic and stochastic approaches. These 
models are vital in examining the intricate fractal nature of bio-
logical systems, particularly the lung's unique geometry. By utilizing 
these mathematical tools, researchers can develop algorithms that 
effectively analyse changes in disease phenotypes. We have empha-
sized the significance of deterministic models, such as differential 
equations, and stochastic models, like cellular automata, in compre-
hending the dynamics and progression of cancer.

Deterministic models that employ differential equations are es-
sential for describing tumour growth and dynamics, while stochastic 
models capture the inherent randomness in biological processes. 
Notable examples of computational approaches, such as cellular au-
tomata and agent- based models, simulate cancer cell behaviour and 
interactions. The development of hybrid models, which integrate 
both deterministic and stochastic elements, provides a compre-
hensive perspective on cancer dynamics, effectively encapsulating 

Figure 30.3. The interactive mathematical modelling- artificial neural 
network block diagram. Source: Adapted from Buchaniec et al. 2021.
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processes at both cellular and tissue levels. Furthermore, recent 
advancements in neural network architectures have significantly 
enhanced mathematical modelling, allowing for more accurate 
simulations of SCLC dynamics. These sophisticated models con-
tribute to optimizing predictions regarding tumour behaviour and 
treatment responses, thereby supporting the move towards person-
alized medicine. The incorporation of physics- informed neural net-
works (PINNs) further improves the modelling of complex systems 
by offering enhanced approximations of the differential equations 
that govern SCLC.

In conclusion, the integration of mathematical models, computa-
tional techniques, and neural networks is crucial in deepening our 
understanding of SCLC biology and in developing innovative thera-
peutic strategies. This comprehensive approach aims to improve pa-
tient outcomes by facilitating the creation of more precise treatment 
plans tailored to the unique characteristics of the disease.
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Mathematical models of resistance 
evolution under continuous and pulsed 
anti- cancer therapies
Einar Bjarki Gunnarsson and Jasmine Foo 

31.1.  Introduction

Cancer chemotherapy, the use of chemicals to treat cancer, be-
came a standard treatment option following its successful appli-
cation to childhood leukaemia and advanced Hodgkin’s disease 
in the 1960s and 1970s [1] . Although patients often respond well 
initially, treatment usually fails due to the emergence of drug re-
sistance. Resistance can develop through intrinsic mechanisms, 
such as poor absorption or rapid metabolism, which reduce the 
concentration of drug within the body [2]. It can also develop due 
to tumour cells acquiring specific genetic or epigenetic modifica-
tions that allow them to escape treatment. These modifications can 
cause resistance to many structurally and functionally unrelated 
drugs, e.g., via enhanced drug metabolism or drug efflux, which 
limits the accumulations of drug within the cell [2]. With the ad-
vent of cancer genomics and epigenomics, it has become clear that 
every tumour harbours cells with a variety of distinct mutational 
profiles and epigenetic states, some of which can confer resistance 
to treatment [3,4]. More recently, it has been observed that epigen-
etic states can be dynamic, causing cells to phenotypically switch 
between drug- sensitive and drug- tolerant states [5– 7]. Epigenetic 
modifications usually occur at a much faster rate than genetic mu-
tations, which can significantly increase the probability of treat-
ment resistance, compared to resistance arising due to genetic 
mechanisms alone [8].

Chemotherapy usually attacks all rapidly dividing cells, both 
healthy and cancerous. It is applied with the premise that cancer cells 
are more susceptible due to their uncontrolled growth. An improved 
molecular understanding of cancer has paved the way for targeted 
therapeutics that inhibit specific proteins or biological pathways 
driving tumour evolution. Due to their specificity, targeted ther-
apies are often better tolerated than conventional chemotherapy, but 
they nevertheless have their unique profile of adverse effects [9,10]. 
Targeted therapies can fail due to the same generic resistance mech-
anisms as chemotherapy, or due to drug- specific mechanisms, such 

as alterations of drug targets or activation of parallel or alternative 
biological pathways [2,11]. For example, in lung cancer, resistance 
to the tyrosine kinase inhibitor erlotinib can be acquired via the 
T790M point mutation in the epidermal growth factor receptor, 
which prevents the drug from binding to its target, or through MET 
amplification, which reactivates the PI3K/ Akt signalling pathway 
otherwise suppressed by the drug [11].

A critical element of administering anti- cancer therapy is to de-
termine the appropriate dosing schedule. Chemotherapy has trad-
itionally been administered under the ‘maximum tolerated dose’ 
(MTD) paradigm. This involves giving a concentrated dose of the 
drug, often intravenously, followed by a prolonged treatment break 
of two or more weeks, to allow the patient to recover from drug tox-
icity [12,13]. The goal is usually to deliver as large a cumulative dose 
in as short a period as possible, with the premise that this will lead to 
maximal tumour reduction [14]. Conversely, the less toxic targeted 
drugs are often administered orally on a daily basis, in part due to 
their short half- lives [9] . Similar to chemotherapy, these drugs are 
commonly given at the maximum daily dose tolerated by the pa-
tient [15]. As our biological, chemical, mathematical, and medical 
understanding of cancer has advanced, these established treatment 
regimens have become increasingly challenged. Alternative dosing 
strategies that have been explored include low- dose continuous ap-
plication of chemotherapy [16,13], and either pulsed application 
[17,18] or lowered daily dosing [19] for targeted therapies. As testing 
a large number of possible dosing strategies in pre- clinical and clin-
ical studies is both resource- intensive and unethical, mathematical 
modelling offers an attractive method to search for better treatment 
strategies and to narrow down promising options for subsequent 
testing [20].

In this chapter, we discuss recent mathematical investigations of 
resistance evolution under continuous and pulsed anti- cancer ther-
apies, focusing on the effect of treatment- induced resistance and 
phenotypic switching. In the following, continuous treatment refers 
to a treatment that applies a constant dose without treatment breaks. 
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Pulsed treatment, which can also be referred to as intermittent or 
periodic, is defined as a treatment that alternates (usually elevated) 
drug doses with drug holidays. We only consider treatment with a 
single anti- cancer agent, such as chemotherapy or targeted therapy. 
We note that this chapter is not intended to be a comprehensive re-
view. Rather, our goals are to outline the key ingredients of mathem-
atical models applied recently to study resistance evolution under 
continuous and pulsed therapies, and to extract insights into the 
conditions under which each strategy is preferable and under which 
lower cumulative doses are superior to higher doses. We conclude 
with a brief summary and discussion of important considerations 
for future work.

31.2. Key ingredients of mathematical models

We begin by outlining the main ingredients of mathematical models 
used recently to investigate continuous and pulsed anti- cancer ther-
apies. A schematic overview is given in Figure 31.1.

31.2.1. Population dynamics in the absence of drug

The tumour population is usually assumed to consist of two types 
of cells: drug- sensitive and drug- resistant or drug- tolerant. Let S(t) 
and R(t) denote the number of sensitive and resistant (or tolerant) 
cells at time t, respectively. In the absence of the anti- cancer drug, 
we assume that sensitive (respectively resistant) cells divide at rate bS 
(respectively bR) and die at rate dS (respectively dR). For a stochastic 
model, this usually means that during an infinitesimally small time 
interval of length ∆t, a sensitive cell divides with probability bS∆t 
and dies with probability dS∆t. For a deterministic model, bS∆t (re-
spectively dS∆t) is the constant proportion of sensitive cells dividing 
(respectively dying) during a small interval of length ∆t. We define 
λS :=  bS − dS and λR :=  bR − dR as the net division rates for each cell 
type. Resistant cells are usually assumed to proliferate more slowly, 
or at most as fast, as sensitive cells in the absence of drug, λR ≤ λS. 
This is often referred to as a ‘cost of resistance’, which is the notion 
that resistance mechanisms, such as enhanced efflux or activation of 
alternative signalling pathways, consume energy that would other-
wise be devoted to proliferation [21,22].

We assume that sensitive cells transition to become resistant at 
rate µSR, and resistant cells transition back at rate µRS (Figure 31.1A). 
If the transition to resistance is due to a genetic mutation, it is as-
sumed irreversible, in which case µSR > 0 and µRS =  0. If the transition 
is due to phenotypic switching, then µSR > 0 and µRS > 0. In many 
works, the transition between sensitivity and resistance is assumed 
to be directly influenced by the anti- cancer drug, see Section 31.2.2.

For the deterministic version of this model, the time evolu-
tion of the number of sensitive and resistant cells in the absence 
of drug can be described by the following system of differential 
equations:

 
dS

dt
S S RS SR RS= − +⋅ ⋅ ⋅λ µ µ , (31.1)

 
dR

dt
R S RR SR RS= + −⋅ ⋅ ⋅λ µ µ . 

If µSR =  0 and µRS =  0, these equations lead to exponential growth 
at rates λS and λR per unit time for sensitive and resistant cells, 

respectively. If µSR > 0 and µRS > 0, the populations of sensitive and 
resistant cells eventually grow at a common exponential rate σ, 
given by

σ
λ µ λ µ λ µ λ µ µ µ

=
−( ) + −( ) + −( ) − −( )( ) +S R S RSR RS SR RS SR RS

2
4

2

See [8]  for the details. For a stochastic model, the differential equa-
tions in (31.1) describe the time evolution of the average number of 
sensitive and resistant cells.

The deterministic model in (31.1) can be modified to account for 
competition between sensitive and resistant cells for space and re-
sources. To this end, it is common to consider paired logistic equa-
tions of the following or similar forms:

 
dS

dt

S R

K
S S RS SR RS= −

+





− +⋅ ⋅λ µ µ1 , (31.2)

 
dR

dt

S R

K
R S RR SR RS= −

+





+ −⋅ ⋅λ µ µ1 . 

For µSR =  0 and µRS =  0, these equations describe a Lotka– Volterra 
competition model with carrying capacity K. In this model, the 
net growth rates for sensitive and resistant cells are assumed to de-
crease linearly from λS and λR, respectively, to 0 as the total popula-
tion size increases from 0 to K [23]. Sometimes, only the division 
rates are assumed to decrease with population size, in which case 
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− [22,24]. More generally, 
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 in (31.2) can be replaced by 

terms of the form fS(S,R)·S and fR(S,R)·R, where fS(S,R) and fR(S,R) 
are density- dependent growth rate functions. By choosing these 
functions appropriately, the logistic growth model in (31.2) can be 
replaced by other well- known tumour growth models, such as the 
Gompertz model or the von Bertalanffy model [25,26].

31.2.2. Dosing strategies and pharmacodynamics

To begin modelling the effect of anti- cancer therapy, we introduce the 
drug concentration c(t) ≥ 0 as a function of time. Time is commonly 
measured in days, and c(t) is often discretized so that on day i a given 
drug dose leads to a constant concentration ci throughout the day, 
meaning that c(t) =  ci for all t ∈ [i−1,i) and i ≥ 1. In many works, ‘dose’ 
and ‘concentration’ are used interchangeably, with the implication that 
the drug concentration reaching the tumour is proportional to the dose 
administered to the patient. We follow the same convention here. We 
note however that these are simplifications of the actual pharmacokin-
etics of an anti- cancer drug within the body, referring to its absorption, 
distribution, metabolism, and excretion [27]. In reality, the drug con-
centration in the body reaches a peak shortly after administration and 
decays over time, as is explicitly modelled in some works [28,24]. In 
addition, the serum concentration of the drug and the concentration 
reaching the tumour are not necessarily proportional to the dose given, 
meaning that it is not sufficient to know the dose to accurately model 
the response of the tumour to treatment [28,29].
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Figure 31.1. Main ingredients of recent mathematical models used to study resistance evolution under continuous and pulsed anti- cancer 
therapies. (A) First, the model structure must be determined, which delineates the cell types, their growth rates, and possible transitions between 
types. For example, in models of drug- sensitive and drug- resistant cells, genetic mutations from sensitivity to resistance are modelled by an 
irreversible transition, while phenotypic switching is modelled by a reversible transition. (B) Depending on the context, the model may assume 
unrestricted exponential growth of the cell population, or it may account for competition between cells for space and nutrients, producing a 
growth curve with a carrying capacity such as a logistic curve. (C) When comparing continuous and pulsed dosing strategies, some form of toxicity 
constraint should be imposed to establish a relationship between the size of a drug pulse and the number of days it can be tolerated. A common 
constraint is that of equal area under the curve across a treatment cycle, meaning that the same cumulative dose is applied over the cycle under 
all strategies. In some works, a maximum daily dose is considered instead, which allows a larger cumulative dose under continuous than pulsed 
strategies. (D) To model the effect of treatment, it is common to assume that the anti- cancer drug increases the death rate of drug- sensitive cells. 
The relationship ∆dS(c) between the drug dose and the increase in sensitive cell death rate is modelled using a linear or non- linear equation such as 
the Hill equation or an exponential equation. The Hill equation can have either a concave or a sigmoidal shape, depending on the value of the Hill 
coefficient n. In some works, ∆dS(c) is empirically determined by fitting a suitable curve to data from in vitro experiments. (E) For the case of drug- 
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To compare treatment outcomes under continuous and pulsed 
strategies, we must specify

(i) some form of toxicity constraint on the dosing strategy, which 
establishes a relationship between the size of a drug pulse and 
the number of days it can be tolerated,

(ii) the pharmacodynamic relationship between drug dose and cell 
proliferation, and

 (iii)  whether and how treatment affects transitions between sensi-
tivity and resistance.

For (i), it is common to assume that treatment is conducted in cycles 
of T days, and that all dosing strategies have the same area under 

the curve, or the same cumulative dose,
 

c t dt C
T

( ) .=∫0
 
This enables 

the application of larger daily doses for pulsed therapies than for 
continuous therapy. It is also common to assume a maximal instant-
aneous dose cmax so that c(t) ≤ cmax for all 0 ≤ t ≤ T. In this case, the 
cumulative dose allowed under continuous application is larger than 
under pulsed application (Figure 31.1C). We note that both in the 
pre- clinical and clinical setting, the cumulative dose tolerated under 
pulsed application can be significantly larger than for continuous 
application [17,18,30], and vice versa [16,28,31]. Thus, while the two 
simple assumptions presented here are mathematically convenient 
and useful to derive general insights, for the purposes of clinical 
translation, a mathematical model should be informed by an actual 
toxicity profile derived from pre- clinical or clinical data.

For (ii), it is common to assume that the anti- cancer drug affects 
the death rate of sensitive cells, according to one of the following 
relationships between the increase in death rate ∆dS(c) under treat-
ment and the dose applied c:

 ∆d c h cS( ) ,= ⋅  (31.3)

 ∆d c
c

cS

n

n n
(

)
)

(
,=

+
⋅δmax EC50

 (31.4)

for some constants h, δmax, EC50 > 0, and n ≥ 1. In the linear model 
(31.3), the death rate under treatment is assumed to increase pro-
portionally to the dose applied. In the Hill model (31.4), the drug 
effect levels off as the dose increases, approaching a maximum effect 
δmax as c → ∞ [32]. For n =  1, (31.4) takes the form of the Michaelis– 
Menten equation for enzyme kinetics [33]:

 ∆d c
c

cS( ) .=
+

⋅δmax EC50

 (31.5)

Here, ∆dS(c) is concave. For n > 1, the Hill model (31.4) has a sig-
moidal shape with an inflection point at c =  EC50, the dose at which 
the drug has half the maximal effect (Figure 31.1D).

In some works, the relationship between ∆dS and c is empirically 
determined by fitting a suitable curve to data from in vitro experi-
ments [28,34]. In this case, an exponential curve of the following or 
similar form is often employed [35,36]:

 ∆d c cS( ) .= − − ⋅
( )



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
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EC
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50

 (31.6)

We note that for c ≪ EC50, using Taylor expansion, the non- linear 
equations (31.5) and (31.6) can be approximated by ∆dS(c) =  h · c, 
with h =  δmax/ EC50 for (31.5) and h =  δmax log(2)/ EC50 for (31.6). Thus, 
the linear relationship (31.3) can be a reasonable approximation for 
the non- linear relationships (31.5) and (31.6) if all possible daily 
doses are significantly below the EC50 dose. Conversely, if all pos-
sible doses are significantly above EC50 dose, the constant function 
∆dS(c) =  δmax can be a reasonable approximation for (31.5) and (31.6).

For (iii), many works assume that the transition from sensitivity 
to resistance is unaffected by the drug, meaning that ∆µSR(c) =  0 i.e., 
µSR(c) =  µSR for all c ≥ 0. However, both chemotherapy and targeted 
therapies have been observed to induce mutations in cancer driver 
genes [37– 40] and to drive phenotypic switches to drug- tolerant or 
drug- resistant states [6,35,41]. This is analogous to stress- induced 
mutagenesis observed in bacterial populations in response to anti-
biotics [42]. To incorporate this form of treatment- induced resist-
ance, it is common to assume that transitions from sensitivity to 
resistance linearly increase with drug dose, ∆µSR(c) =  h · c. In some 
works, the drug is assumed to increase transitions from sensitivity 
to resistance independently of the dose, meaning that ∆µSR(c) =  k for 
some constant k > 0. As before, we note that non- linear relationships 
of the forms (31.5) and (31.6) can incorporate both these extremes. 
For the case of phenotypic switching, the rate of switching from re-
sistance to sensitivity µRS(c) can also be assumed to depend on the 
drug dose.

Finally, in most of the works we consider, resistant cells are as-
sumed to be ‘fully resistant’, meaning that they are not affected by 
the drug at any concentration. Otherwise, the effect of drug on re-
sistant cells can be modelled using the relationships (31.3)– ( 31.6) or 
similar forms, with the constants h, δmax, EC50, and n taking different 
values for resistant cells than for sensitive cells.

31.2.3. Comparing time evolution 
across different strategies

Gathering all of the aforementioned ingredients, and assuming a de-
terministic model, the model dynamics for exponential growth can 
be captured by the following differential equations:

 
dS

dt
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dR
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For logistic growth, the treatment effect ∆dS(c) is usually treated as 
an exponential decay rate. This assumes that a fixed dose of the drug 
kills a certain proportion of tumour cells, independently of the size 
of the tumour, which is the ‘log- kill model’ [13,14]:
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When combined with a dosing function c(t), these differential equa-
tions can be used to compute the response of the tumour to any 
dosing strategy and to compare their efficacy.
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31.3. Review of previous work

In this section, we discuss recent mathematical investigations of 
resistance evolution under continuous and pulsed anti- cancer 
therapies. As stated in the introduction, we focus on the effects of 
treatment- induced resistance, as discussed in Section 31.3.2, and 
phenotypic switching, as discussed in Section 31.3.3. We begin by 
briefly discussing in Section 31.3.1 a set of investigations involving 
spontaneous resistance evolution through genetic mutation, which 
led to the first phase 1 clinical trial testing a mathematically opti-
mized targeted treatment [29].

31.3.1. Earlier work on spontaneous 
resistance evolution

In [43], Foo and Michor study continuous and pulsed administration 
for targeted therapy, using the stochastic version of the exponential 
model (31.7). They propose a methodology for determining the best 
treatment schedule, where the objective is to either minimize the 
probability of resistance or the expected size of the resistant popula-
tion. They suggest using clinical data to determine the relationship 
ton(c) between a daily dose c and the number of days ton the dose can 
be tolerated during each treatment cycle, and to determine ∆dS(c) 
empirically using in vitro experiments. Together, these functions 
give rise to a relationship ton(∆dS) between the effect of drug on sen-
sitive cells and the length of drug application during each cycle. The 
authors find that the preferability of high- dose pulsed schedules to 
more even schedules critically depends on the degree of convexity of 
the curve ∆dS ↦ ton(∆dS).

Using the same modelling framework, Chmielecki et al. [34] pro-
pose a novel strategy for treating EGFR- mutant non- small- cell lung 
cancer with erlotinib, where a large weekly pulse (20 µM) is applied 
in conjunction with a small continuous dose (1 µM) (see also Stein 
et al. [28]). The small continuous dose is applied to control the sen-
sitive cell population. The large weekly pulse is applied since the div-
ision rate of resistant cells is observed to linearly decrease with drug 
dose, meaning that resistant cells are only partially resistant. Based 
on the results of [34], a phase 1 clinical trial was conducted, where 
twice- weekly pulses of erlotinib were combined with daily low doses 
[29]. The MTD was determined to be 1,200 mg on days 1– 2 and 50 
mg on days 3– 7. The schedule was well tolerated, but it did not im-
prove progression- free survival or prevent the emergence of EGFR 
T790M resistance compared to the standard daily dosing schedule. 
One possible explanation is that the median peak concentration 
under the drug pulses did not reach the 20 µM concentration studied 
in the pre- clinical model [34]. In fact, the pharmacokinetic data in 
[29] indicates that increasing the pulse dose from 600 to 1,350 mg 
does not lead to a significant increase in peak plasma concentration. 
It also shows significant inter- patient variability in plasma concen-
tration, which suggests the importance of patient- specific treatment 
optimization and evaluating larger cohorts for efficacy.

31.3.2. The effect of treatment- induced   
resistance

We next discuss works which assume that transitions from sensi-
tivity to resistance are elevated by the anti- cancer drug. To set the 
stage, we begin by noting that, in a recent work by Russo et al. [35], 
the authors investigate the responses of two colorectal cancer cell 

lines to increasing doses of targeted therapies. Using a mathemat-
ical model of drug- sensitive and drug- tolerant ‘persister’ cells, they 
conclude that transitions from sensitivity to tolerance are predom-
inantly induced by the targeted therapies. For one of the cell lines 
(WiDr cells), the rate of transition linearly increases with the drug 
dose, while for the other cell line (DiFi cells), the rate is constant as 
a function of the dose, according to the best model fit under their 
framework. This work constitutes recent indication that the model-
ling assumptions discussed in Section 31.2.2 and applied in some of 
the following works are reasonable.

Greene et al. [44] consider a logistic competition model of the 
form (31.8), where both ∆dS(c) and ∆µSR(c) are assumed linear in 
c. They show an example where under equal daily dosing, a pulsed 
schedule outperforms a continuous schedule, while the opposite 
is true when transitions to resistance are unaffected by the drug, 
∆µSR(c) =  0. They conclude that the level of resistance induction by 
the drug is a clinically significant parameter. It should be noted that 
Greene et al. only consider one value for the daily dose in this com-
parison, and this dose is later shown to be suboptimal for continuous 
application. In other words, they do not compare the optimal con-
tinuous and pulsed schedules (see [45] for a later work by the same 
authors which applies optimal control theory to the problem). In a 
more recent work, Kuosmanen et al. [46] study the same model as 
in [44], except ∆dS(c) is now assumed to follow the Hill function 
(31.4) with n =  2.3, which has a sigmoidal shape. Starting from a 
population of sensitive cells only, the authors formulate an optimal 
control problem that aims to minimize the probability of resistance 
evolution or the size of the resistant population at a fixed time. The 
only constraint on the dosing strategy is a maximum instantaneous 
dose, c(t) ≤ cmax. For the objective of minimizing the probability of 
resistance, the authors argue that the optimal strategy is often close 
to a continuous schedule, which leads them to study the simpler 
problem of finding the optimal continuous dose. They show that 
under even a small level of treatment- induced resistance, a dose sig-
nificantly below cmax becomes optimal. This result is at least partly 
driven by the fact that in their model, the effect of drug on sensitive 
cells ∆dS(c) levels off for large drug doses, while the transition rate 
effect ∆µSR(c) is linear in c.

Kuosmanen et al. [46] note that if the objective is to minimize 
the probability of resistance, then in the absence of drug- induced 
resistance, ∆µSR(c) =  0, the optimal continuous treatment is the max-
imal dose c(t) =  cmax. As indicated by both [44] and [46], this is not 
necessarily the case under a different objective, such as maximizing 
the time until the tumour reaches a certain size N0. Indeed, under 
the logistic model (31.8), if N0 is close to the carrying capacity of the 
tumour, the growth of resistant cells can be significantly suppressed 
by maintaining the sensitive cell population close to N0. In this case, 
applying the largest dose, which maximally reduces the size of the 
sensitive population, is counterproductive even when the drug does 
not induce resistance. An example is shown in Figure 31.2. We note 
that the idea of maintaining the sensitive cell population to promote 
competition with resistant cells forms the basis of adaptive therapy 
strategies proposed by Gatenby [21]. We refer to the review [47] and 
the recent survey of open questions [48] for further discussion of 
these strategies.

In Angelini et al. [49], the authors investigate an exponential 
growth model of the form (31.7), where both ∆dS(c) and ∆µSR(c) 
are assumed to be logistic functions of the form c ↦ k(1 +  e−r(c−s))−1, 
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which has a sigmoidal shape. The authors only consider continuous 
treatment, and they measure treatment success in terms of the time 
at which the tumour rebounds to its pretreatment size. Their results 
indicate that when the EC50 concentration of the drug is similar for 
∆dS(c) and ∆µSR(c), the maximal continuous dose is optimal, al-
though a wide range of intermediate doses may be almost as effective 
as the optimal dose. However, if the EC50 concentration is signifi-
cantly larger for ∆µSR(c) than for ∆dS(c), meaning that drug- induced 
transitions to resistance become significant only at doses that are 
already effective at killing drug- sensitive cells, an intermediate dose 
becomes optimal. These results highlight the need to understand 
whether the dose range over which drug- induced transitions to re-
sistance increase coincides with the dose range of increased cell kill. 
We note that since Angelini et al. use an exponential growth model, 
the competitive dynamics that contribute to the optimality of inter-
mediate doses in Greene et al. [44] do not play a role.

We conclude this section by discussing a recent work by Mathur 
et al. [50], which considers both single- agent and combination anti- 
cancer therapies. For single- agent therapy, the authors use an expo-
nential model of the form (31.7). They assume an equal cumulative 
dose across schedules and that ∆dS(c) is linear in c. This means that 
if continuous treatment increases the death rate of sensitive cells by 
δ, a pulsed treatment applied for ton days during a cycle of length 
T increases the death rate by δT/ ton. The authors also allow treat-
ment to increase transitions from sensitivity to resistance, which oc-
curs in a dose- independent manner as far as we can tell, ∆µSR(c) =  k 
with k ≥ 0. Mathur et al. randomly generate parameters for 50,000 
synthetic tumours, and for each tumour, they randomly sample 50 
sets of values for ton and T/ ton, generating 50 pulsed schedules. By 
comparing continuous therapy with the best pulsed therapy for each 
synthetic tumour, they find that pulsed application outperforms 
continuous application in all cases, delaying tumour recurrence 
by up to >140×. This substantial preference for pulsed schedules is 
likely driven by the assumptions that the effect of drug on sensitive 
cells does not level off at large doses and that treatment- induced re-
sistance is dose independent, the latter of which puts a penalty on 
the length of drug application as opposed to the dose size.

31.3.3. The effect of phenotypic switching

We conclude by discussing works that incorporate phenotypic 
switching between sensitivity and resistance or tolerance. In [51], 
Akhmetzhanov et al. study a model of resistance in BRAF- mutant 
melanoma, where cell phenotypes are determined by the activities 
of two mutually inhibitory biological pathways. The activation dy-
namics of each pathway within each cell is modelled by a particle 
undergoing Brownian motion inside a double- well potential. A tar-
geted anti- cancer agent changes the structure of the double- well 
potential associated with the main pathway. This inhibits the pro-
liferation of main- pathway- active cells and facilitates activity transi-
tions from the main to the alternative pathway. After making some 
simplifying assumptions, the authors arrive at a model with two cell 
states, sensitive and resistant, and they derive mean- field differential 
equations that have the same form as (31.7) (see expressions (3) and 
(4) and the paragraph following them in [51]). However, the func-
tions ∆dS(c), ∆µSR(c), and ∆µRS(c) have more complex forms than 
those discussed in Section 2.2 since they emerge from the under-
lying model of particles moving inside potentials.

Using the tumour size six months after treatment initiation as the 
objective, Akhmetzhanov et al. compare continuous and pulsed treat-
ments with a treatment derived from optimal control theory. They 
find that the best continuous strategy applies an intermediate dose 
but do not discuss the underlying cause. We note that by the results of 
Angelini et al. [49], the fact that an anti- cancer drug induces transitions 
from sensitivity to resistance does not necessarily lead to optimality 
of an intermediate dose. According to expression (4) and Figure S2 of 
[51], the effect of drug on sensitive cells levels off at higher doses. In 
addition, the drug both encourages transitions to resistance and dis-
courages transitions back in a dose- dependent manner, each of which 
increases the time spent in the resistant state relative to the sensitive 
state. In combination, these factors lead to the optimality of an inter-
mediate dose. The relative importance of each modelling assumption 
in producing this result is an interesting avenue for further study.

Akhmetzhanov et al. also find that the best pulsed treatment 
outperforms the best continuous treatment by 12.2%, and the 

Figure 31.2. When sensitive and resistant cells compete for space and resources, maintaining a large number of sensitive cells under treatment 
can delay resistance evolution. Here, treatment is initiated when the tumour is at size N0 =  8 × 109, which is close to the carrying capacity of the 
tumour, K =  1010. The time evolution of the model follows the logistic equations (31.8) with λS =  1, λR =  0.2, ∆dS(c) =  c, µSR(c) =  10−6, and µRS(c) =  0 for c 
≥ 0. In other words, the death rate of sensitive cells linearly increases with drug dose, and transitions from sensitivity to resistance are unaffected by 
the drug. In (A), a constant drug dose c =  0.3 is applied, and in (B), the constant dose c =  0.8 is applied. The time at which the tumour returns to its 
original size N0 is significantly longer under the lower drug dose, which is due to the fact that the large sensitive population suppresses the growth 
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treatment derived from optimal control theory leads to a further 
improvement of 4.6%. The optimal treatment is applied without 
breaks and involves two dose changes over the six- month period. 
Assuming that there is no resistant cell at the beginning of treat-
ment, the maximal dose cmax is applied for a short initial period. 
This increases the proportion of resistant cells in the population 
to a certain level. Then, a significantly lower dose is used to main-
tain the resistant cells at the same proportion, which is possible due 
to the phenotypic switching between types. Finally, cmax is applied 
again for a short period since dosing at cmax is maximally effective at 
killing sensitive cells and reducing the tumour burden in the short 
term. Thus, in the model of [51] there appears to be an optimal 
population composition that can be maintained by a low drug dose, 
and the best treatment shifts the original population to this com-
position as quickly as possible and subsequently maintains it. We 
finally note that the best pulsed schedule, which performs similarly 
to the optimal schedule, induces the proportion of resistant cells to 
oscillate around the optimal level.

Cassidy et al. [24] have recently studied a model of phenotypic 
switching between drug sensitivity and drug tolerance, where 
switches occur on cell divisions, and the probability of switching 
depends on the dividing cell’s age. Individually, each drug- tolerant 
cell has a negative net division rate, even in the absence of drug. 
However, drug- tolerant cells cooperate to divide faster as their fre-
quency in the population increases. More precisely, the division rate 
of tolerant cells is assumed to increase as a function of the ratio θ 
between tolerant and sensitive cells according to the Hill equation 
(31.4). The anti- cancer drug affects sensitive cells according to the 
Michaelis– Menten relationship (31.5), while drug- tolerant cells are 
unaffected by it. Under this model, an aggressive treatment strategy 
that maximally reduces the sensitive cell population triggers the co-
operative growth of drug- tolerant cells. Cassidy et al. therefore pro-
pose an adaptive strategy that aims at controlling the proportion of 
tolerant cells in the population. Under this strategy, every T days a 
fixed drug dose is applied if and only if the proportion between tol-
erant and sensitive cells is below a certain threshold. The threshold 
is chosen as the largest proportion θ∗ for which the net division rate 
of tolerant cells is nonpositive. The authors parametrize their model 
using experimental data on non- small- cell lung cancer tumour 
spheroids treated with chemotherapy. They show that in this con-
text the adaptive therapy leads to sustained tumour decay, whereas 
pulsed therapy applying a fixed dose every seven days drives the 
population to drug tolerance and eventually loses its effectiveness. 
We note that the two treatments compared are not necessarily the 
optimal versions of each strategy.

The previous two works suggest that under phenotypic switching, 
the best treatment strategy may involve maintaining the popu-
lation at a certain desirable composition. As acknowledged by 
Akhmetzhanov et al. [51], implementing a strategy that necessitates 
frequent monitoring of the population composition requires the ex-
istence of non- genetic biomarkers that can be tracked non- invasively 
and inexpensively, which may impede clinical translation. As such, 
the identification of simple fixed continuous or pulsed strategies that 
perform comparably to the optimal schedule can be clinically useful 
[51]. In addition, we note that a model of switching between two 
types does not consider the evolution of more permanent and irre-
versible resistance mechanisms, whether due to genetic mutations 
or epigenetic reprogramming [8] .

Finally, in the context of metastatic colorectal cancer treated with 
the anti- EGFR inhibitor panitumumab, Yin et al. [52] consider a 
three- type model of sensitive cells, cells harbouring a KRAS muta-
tion rendering them resistant to panitumumab, and cells harbouring 
a secondary mutation rendering them resistant to a hypothetical 
second treatment targeting KRAS- mutated cells. They also model 
the release of DNA fragments into the bloodstream by each of 
the two mutated populations, creating circulating tumour DNA 
(ctDNA). They derive differential equations of the form (31.7), with 
three cell types, where the dosing function c(t) for each drug only 
takes the values 0 or 1, meaning that only a single dose is considered 
for each drug. Transitions from sensitivity to resistance for each 
drug are assumed to be only active in the presence of the drug, and 
transitions back are only active in its absence. After parametrizing 
the model using patient data, the authors find that a pulsed treat-
ment applying panitumumab for eight weeks out of a 12- week cycle 
prolongs the time until the tumour reaches its pretreatment size 
from 52 to 60 weeks compared to continuous application. They also 
show that an adaptive therapy that alternately applies panitumumab 
and the hypothetical second drug based on measured ctDNA levels 
further extends the rebounding time to 114– 132 weeks.

31.4. Conclusions

The examples discussed in Section 31.3 demonstrate how the rela-
tive effectiveness of continuous versus pulsed schedules, and lower 
versus higher doses, crucially depends on the modelling assump-
tions outlined in Section 31.2. For example, if the effect of treat-
ment on the sensitive cell death rate ∆dS(c) levels off at higher doses, 
while the effect on transitions from sensitivity to resistance ∆µSR(c) 
is linear, a continuous low- dose treatment may become optimal as 
in Kuosmanen et al. [46]. Conversely, if ∆dS(c) is linear in c, while 
the drug increases transitions to resistance independently of the 
dose, ∆µSR(c) =  k, then short, elevated pulses followed by treatment 
breaks may become optimal as in Mathur et al. [50]. As indicated in 
Section 31.2.2, we note that these two regimes can emerge if ∆dS(c) 
and ∆µSR(c) both follow a non- linear curve such as (31.5) or (31.6), 
where the EC50’s for each curve are of different orders of magnitude.

Using the logistic growth model (31.8) creates competitive dy-
namics where it can be beneficial to maintain a large population of 
sensitive cells. This can create a preference for lower doses, even in 
the absence of drug- induced resistance, if the objective is to max-
imally delay tumour recurrence as opposed to preventing resistance 
evolution. For the case of phenotypic switching, applying treatment 
breaks or varying the dose over time may become beneficial, e.g., if 
the drug both increases transitions from sensitivity to resistance and 
inhibits transitions back in a dose- dependent manner, if resistant 
cells cooperate to grow faster at higher densities, or if transitions 
to resistance only occur in the presence of drug, while transitions 
back only occur in its absence. We also note that under phenotypic 
switching, it may become optimal to maintain a certain balance be-
tween sensitive and resistant cells that maximally inhibits long- term 
tumour growth.

The dose dependence of transitions between sensitivity and re-
sistance remains poorly understood; this currently limits the clinical 
relevance of the mathematical studies discussed in Sections 31.3.2 
and 31.3.3. The work of Russo et al. [35] is a recent example which 
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infers ∆µSR(c) under a Bayesian framework using experimental data 
for two colorectal cancer cell lines treated with targeted therapies. In 
our opinion, mathematical modelers can make an important contri-
bution to further research on therapy- induced resistance by investi-
gating optimal experimental designs to jointly infer ∆dS(c), ∆µSR(c), 
and ∆µRS(c) in a robust manner.

Most mathematical investigations to date have assumed math-
ematically convenient forms for ∆µSR(c) and ∆µRS(c), and they have 
generally considered one specific parameter regime. It is common 
to conduct sensitivity analysis to show how results change when the 
values of key model parameters are changed. However, it is equally 
important to tease apart how individual components of the math-
ematical model, including the ones depicted in Figure 31.1, affect 
qualitative results, such as whether continuous or pulsed schedules 
and whether low or high doses are preferred. Ideally, this calls for 
deriving theoretical results under a variety of different modelling as-
sumptions. Such analysis is crucial for developing intuition for how 
the nature of interactions between cells in a particular cancer and the 
pharmacodynamics of a particular drug lead to specific treatment re-
commendations, and for understanding why different treatment re-
commendations emerge from different mathematical investigations. 
This is especially important in light of inter- patient heterogeneity, 
which suggests viewing each patient as harbouring a unique disease 
involving unique pharmacokinetics and pharmacodynamics.
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Integrating in silico models with ex vivo 
data for designing better combinatorial 
therapies in cancer
Cameron Meaney, Dorsa Mohammadrezaei, and Mohammad Kohandel 

32.1.  Introduction

Historically, cancer therapy has primarily consisted of crude sur-
geries and singly administered compounds with severe side effects. 
In some ways, this description has changed little over the years, with 
many cancers remaining incurable and the standard of care treat-
ments improving only slightly. In other ways, however, cancer medi-
cine has changed dramatically, spurred on by progress in adjacent 
fields, such as medical imaging, engineering, and genomics. Modern 
cancer treatment plans utilize complex, sophisticated strategies 
involving combinations of therapies and relying on advanced tech-
nologies, which have led to earlier detection, better tumour targeting, 
and increased survival times. Much of this progression is owed to 
the ever- growing incorporation of mathematical and computational 
modelling into cancer medicine, both in better understanding the 
disease and improving its treatment. Indeed, the use of numerical 
methods in medical science is only expected to increase with time, 
with mathematical oncology poised to benefit particularly.

However, a key challenge in mathematical oncology is that 
models are built on data, which is often hard to come by in a medical 
context. Preclinical research typically begins with in vitro studies, 
followed by standard animal testing. However, as many of these 
models rely on cells with undermined immune systems or cells of 
a non- human origin, clinical translation is rare, with some studies 
putting it as low as 8% [1] . In the case of more advanced techniques, 
such as genome sequencing of tumour cells, these often similarly 
fail to accurately predict or describe phenotypes since many other 
biological factors are at play, such as protein expression, genetic 
mutations, microenvironment complexities, oncogenic amplifica-
tions, and post- transcriptional alteration that must be considered 
[2]. Simultaneous factoring in these non- genomic biological factors 
with existing experimental techniques is difficult, and methods for 
explaining interactions between them are lacking [3, 4]. In the case 

of human data specifically, financial, technological, and ethical con-
siderations often prevent collecting enough data to inform models 
as much as would be desired. This can leave model elements, such 
as type, form, initial condition, parameter values, and validation 
data, needing to be artificially generated or estimated from insuf-
ficient observations. This poses a significant challenge for modern 
models of cancer systems. As a result, the development of a precise 
experimental method, presenting tumour phenotypes and closely 
reflecting the in vivo situation systems, is required for more precise 
disease modelling and drug screening.

 Ex vivo models can provide a better experimental framework for 
understanding the influence of the tumour microenvironment and 
heterogeneity on cancer cell functions and have accordingly caught 
the attention of researchers in recent years. Ex vivo methods are de-
fined as any technique that involves performing a drug screening on 
tumour cells or solid tumour tissue directly obtained from patients 
[5] . Although only a few results derived from ex vivo experiments 
have made their way to cancer clinics, these few results have shown 
remarkable outcomes demonstrating that there are alternatives 
when conventional treatment strategies have been exhausted [3]. 
The motivation behind ex vivo cultures of patient- derived tumour 
samples is to maintain the original tissue matrix as much as pos-
sible in experiment so that inter- patient and intra- patient variation 
can be included in the initial phases of drug development [6, 7]. 
Ex vivo methods were first used in haematologic malignancies by 
taking malignant cells from a blood sample, and ex vivo methods for 
solid tumours have proven more challenging since they frequently 
necessitate an invasive biopsy or surgical resection, and the acquired 
sample has limits in terms of accurately representing the complete 
range of heterogeneity. However, some ex vivo techniques have tried 
to replicate solid tumour heterogeneity in the experiments taking 
place outside of the patient body, with varying degrees of success, 
e.g. patient- derived cell lines [8, 9, 10], patient- derived cultures 
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[11,12], patient- derived organoids [13,14,15,16], organoids on chips 
[17,18,19,20,21], assembloids [22,23,24], patient- derived explants 
[25,26], and tumour xenografts [27,28].

Similarly increasing in their utility and popularity in cancer 
research, in silico techniques have proven their immeasurable 
worth to modern medical research. Indeed, countless examples 
exist throughout the literature of works in which quantitative, in 
silico analysis has furthered our understanding of tumour devel-
opment, improved an existing therapy, or aided in drug develop-
ment, to name a few. In cancer medicine, in silico methods are 
typically employed for goals, such as modelling the spatiotem-
poral dynamics of a tumour system, predicting random events 
throughout tumour progression, or classifying patients into 
various groups. With these different goals, naturally, different in 
silico methods can be useful additions to analysis. These can be 
loosely broken into two categories: mechanistic modelling and 
machine learning (ML). Ordinary differential equations (ODEs), 
partial differential equations (PDEs), stochastic and agent- based 
models, and discrete models can all be classified as mechanistic 
models. And similarly, tree classifiers, random forests, support 
vector machines (SVM), and deep neural networks can all be clas-
sified as ML models.

In this chapter, we spotlight several works that combine ex vivo 
data with in silico models (Figure 32.1) to improve combination 
therapies for cancer. We focus on some works that exclusively rely 
on mechanistic models, some that exclusively rely on ML models, 
and one that details a hybrid mechanistic– ML model.

32.2. In silico models of triple- negative 
breast cancer ex vivo data

This section describes a series of papers that use mechanistic mod-
elling to improve combination therapies of triple- negative breast 
cancer. The papers build on each other and utilize data taken from 
ex vivo experiments to inform their models.

Breast cancer remains one of the deadliest cancers despite exten-
sive research into understanding and treating the disease. Its high 
mortality rate is owed primarily to the development of late- stage 
treatment resistance in many patients [29]. Breast tumours, like 
many other tumour types, may initially respond well to a given treat-
ment but lose this positive response after some time. This is espe-
cially true in a particular type of breast cancer called triple- negative 
breast cancer (TNBC), termed by being negative for the production 
of the three important cell surface receptors HER2, oestrogen, and 
progesterone [30]. Treatment resistance occurs at a significantly 
higher rate in TNBC than in other breast cancers, leading to shorter 
survival times [31, 32]. Importantly, this development of late- stage 
treatment resistance in TNBC is observed in both chemotherapies 
and radiotherapies [33]. It is even observed in the emerging modality 
of immunotherapy, in which compounds are administered to a pa-
tient to better utilize the immune system to target the tumour [34]. 
In light of this, it is generally acknowledged that the major hurdle 
in bettering our treatment of breast cancer, particularly TNBC, is in 
overcoming the development of treatment resistance.

Figure 32.1. Integration of ex vivo data with in silico models for designing more efficient combinatorial therapies in cancer. The left image shows 
typical steps in ex vivo experiments. Data such as histopathological images, drug screening, cell viability, and immunophenotype of tumour cells 
determined by flow cytometry are collected in these studies that can be used for training and validation in silico simulations. The right image 
presents different in silico models, including mechanistic mathematical modelling, ML, and a combination of mechanistic mathematical modelling 
and ML. Source: The images are created with BioRender.com.
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A full understanding of the biological mechanisms under-
lying treatment resistance remains elusive, although several the-
ories exist. Until recently, the primary theory explaining acquired 
chemoresistance relied on the principles of simple Darwinian evolu-
tion, where advantageous inheritable traits are iteratively passed to 
daughter cells in a non- reversible fashion [35]. Specifically, in this 
case, the presence of a drug in the tumour creates a selective pressure 
towards cells that contain genetic mutations that confer a degree of 
resistance to the given treatment. For example, a cell may have an 
up- regulation of efflux transporters for which the drug is a substrate 
[36]. Then, with prolonged exposure to the chemotherapeutic, the 
minority of cells possessing the resistant phenotype become the 
likeliest survivors and eventually proliferate to become the majority, 
creating a chemoresistant tumour. However, through experimental 
observations, it has been shown that this is not the only mech-
anism at play in acquired resistance. For example, patients treated 
with chemotherapy can exhibit drug resistance even when no 
resistance- conferring genetic mutations can be identified— and in-
deed, similar observations have been made in studies of bacteria ex-
posed to antibiotics [37, 38, 39]. Additionally, the simple Darwinian 
theory of adaptively acquired resistance is apparently refuted by the 
resensitization of cells after ceasing drug administration before re-
starting [40]. Hence, other mechanisms must be at play which drive 
acquired drug resistance.

Other theories have rested upon tumour heterogeneity, spe-
cifically with respect to cancer stem cells (CSCs). CSCs are a 
subpopulation of cells within a tumour which drive growth and dif-
ferentiation. These cells typically have high proliferation rates and 
a higher degree of chemoresistance than differentiated cancer cells 
[41]. However, as our understanding of CSCs has improved, it has 
become clear that the binary classification of CSC vs. non- CSC is far 
too simplistic. Studies have demonstrated plasticity between CSCs 
and non- CSCs: in other words, cells may switch categories over time 
based on external factors [41]. Worse yet, the notion of splitting cells 
into distinct categories itself is perhaps overly simplistic, with the 
more correct interpretation being that cells exist on a continuous 
spectrum of genetic variability— though this is decidedly harder to 
characterize experimentally or model mathematically.

Recent studies, however, have revealed a new contributing factor 
explaining drug- induced chemoresistance: phenotypic switching. 
Specifically, evidence suggests that cancer cells can switch their 
phenotypic level of chemotolerance in response to the presence of a 
drug, even when an underlying genotypic change does not accom-
pany this change [42, 43]. This drug- induced resistance can arise 
via protein expressions, kinase scaffolding, and signalling activa-
tions [44]. Though less well understood, this description of acquired 
chemotolerance does have experimental evidence to back it, as dis-
cussed below. Furthermore, a better understanding of it provides an 
opportunity to design therapies that bypass the resistance or perhaps 
even take advantage of drug- sensitive phenotypes. Naturally, when 
addressing such questions, in silico techniques can be of tremen-
dous value.

Goldman et al. [45], for example, performed explant studies to 
examine the effect of drugs on the phenotypic expression of breast 
cancer cells. Tumour explants are a particularly useful experimental 
technique here as they preserve the cellular heterogeneity of the 
original tumour, which is crucial for examining the sizes of the 

subpopulations within. They examined key subpopulations, distin-
guished by their expression of two key molecules: CD44 and CD24. 
CD44 molecules are important because their expression can help to 
distinguish between CSCs and non- CSCs, or more generally, cells 
with a stem- like phenotype and cells with a non- stem- like pheno-
type. Specifically, cells that are CD44HiCD24Lo are considered 
stem- like and typically exhibit strong resistance to chemotherapy, 
as well as a host of other mesenchymal, stem- like characteristics. 
Conversely, cells which are CD44LoCD24Hi are considered non- 
stem- like and typically exhibit a degree of radiosensitivity and other 
traits typical of differentiated cells. Using their explant studies, they 
observed that after treating the cells with docetaxel, there was an 
increase in their expression of both CD44 and CD24. This sug-
gested that chemotherapy induced a transition in the phenotype of 
treated cells towards a CD44HiCD24Hi state, termed the ‘induced’ 
state. These cells were characterized by low levels of apoptosis 
and exhibited a higher level of drug tolerance, including to other 
chemotherapeutics not used to induce the state.

To add theoretical backing to these observations, the authors cre-
ated a compartmental mathematical model to analyse the phenotypic 
switching description of acquired drug resistance. Their model con-
sisted of a system of three ODEs that described the time evolution of 
the size of the three different subpopulations within the tumour. In 
their model, cells in each compartment were assumed to proliferate 
and have a degree of plasticity— an ability to switch between dif-
ferent compartments. Using fluorescence- activated cell sorting, the 
authors were able to measure the population dynamics of the tumour 
explants. The authors then fit the model to tumour explants that had 
and had not been exposed to prior chemotherapy and observed the 
results. Based on the values of the fitted parameters in each case, 
they could make predictions about the mechanics underlying the 
phenotypic switching. For example, in the cells that had been previ-
ously exposed to chemotherapy, the proliferation rates of CSCs and 
induced cells were significantly increased, whereas the proliferation 
of non- CSCs became practically nonexistent. Furthermore, the 
fitted parameters suggested that treatment did not impact the rate 
at which CSCs differentiated into non- CSCs, but that bidirectional 
plasticity was significantly less likely in the cells that had been ex-
posed to treatment. Transition rates were balanced between the in-
duced and non- CSC compartments in drug- exposed cells, whereas 
in treatment- naive cells, this transition strongly favoured the non- 
CSCs. Finally, in the treatment- naive cells, CSCs and induced cells 
freely transition between compartments, though this transition was 
only in the direction of CSCs. Most importantly, the fitted parameter 
values for the two systems were distinct, meaning that the steady- 
state solutions of the ODE system were different.

The authors continued their experiments, again confirming 
several of these fitted results using cell sorting into the three com-
partments. These results led them to the idea of incorporating 
temporality into the administration of drugs that could take ad-
vantage of this phenotypic switching in response to chemotherapy. 
Specifically, they showed that treatments using a taxane- based 
therapy (docetaxel) followed by SFK inhibitors (dasatinib) re-
sulted in an improvement of treatment effect. The rationale behind 
this combination is that docetaxel induced a phenotypic transition 
from non- CSC compartment to the induced state, which activates 
SFK signalling, making the cells sensitive to the effect of an SFK 
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inhibitor. To corroborate this, the authors generated additional tu-
mour explants from tumours resistant to docetaxel. These explants 
were treated with either docetaxel alone or docetaxel followed by an 
SFK inhibitor. They found that the sequenced treatment resulted in 
a significant increase in tumour cell death compared to the single 
compound. Additionally, that administration of docetaxel followed 
by dasatinib was superior to simultaneous administration and ad-
ministration in the reverse order.

Taken together, the in silico model of phenotypic switching al-
lowed a scaffolding upon which a testable hypothesis could be 
generated. And indeed, the results of several ex vivo experiments 
agreed with the predictions of the ODE model. Most importantly, 
the combination of the ex vivo data and in silico modelling suggests a 
method for improving treatment of TNBC, which is notorious for its 
acquired resistance, by utilizing a novel combination chemotherapy. 
These results were also consistent with clinical findings showing 
similar results [46, 47, 48].

Another hallmark characteristic of tumours, including TNBC 
tumours, is dysregulated metabolism. In the absence of sufficient 
oxygen supply, normal cells resort to glycolysis rather than full oxi-
dative respiration, a phenomenon termed anaerobic glycolysis [49, 
50, 51]. Tumours often display high levels of hypoxia or anoxia, 
leading to cells utilizing anaerobic glycolysis as their primary meta-
bolic pathway. Interestingly however, it is frequently observed that 
cancer cells, even in the presence of sufficient oxygen, will still re-
sort to glycolysis for metabolism rather than complete full oxidative 
phosphorylation. This phenomenon is termed aerobic glycolysis or 
is more commonly referred to as the Warburg effect [49, 50, 51]. 
The outcome of this dysregulated metabolism within tumours is 
an acidic microenvironment that supports tumour progression. 
Evidence also shows that the utilization of this less efficient meta-
bolic pathway contributes to treatment resistance although this is 
less well understood [52, 53].

Goldman et al. [45] investigated this altered metabolism to under-
stand whether it contributed to conferring cross- drug resistance, 
that is, whether the administration of one drug can confer resistance 
to a different drug. The authors began by analysing cells that were 
either (1) pre- treated with docetaxel or were (2) naive to treatment, 
noting that the utilization of glycolytic metabolism was higher in the 
pre- treated cells, as evidenced by measuring the differences in extra- 
cellular acidification rate, oxygen consumption rate, and overall 
ATP abundance. After establishing the altered metabolic phenotype 
in pre- treated cells, the authors tested if the cells were resistant to 
doxorubicin using in vitro cultures. They administered doxorubicin 
along with lonidamine— an inhibitor of glucose metabolism— to 
isolate the effect of altered metabolism that minimally affects cell 
viability. When administering doxorubicin with lonidamide, cell 
death increased significantly compared to administration of doxo-
rubicin alone, implicating the altered metabolism in drug– cross- 
drug tolerance. This effect was observed in both pre- treated and 
treatment- naive cells though the effect was more pronounced in 
pre- treated cells.

The authors performed further experiments to assess the tem-
poral dynamics of the biological network underlying the switching 
in phenotypic plasticity and metabolism. Specifically, they applied 
sublethal doses of docetaxel which altered the relevant phenotypes 
without killing the cells. Using cell sorting flow cytometry, they ob-
served that CD44 expression increased within 4 h of drug exposure, 

indicating that the phenotypic plasticity had been altered. On the 
other hand, the change in glucose uptake was more delayed and did 
not increase until 24 h after drug exposure, suggesting that a change 
in metabolic phenotype occurs after a change in plasticity pheno-
type. Given these temporal dynamics, the authors hypothesized that 
a combination chemotherapy with appropriate scheduling could 
overcome the resistance observed as a consequence of the altered 
phenotypes. Specifically, they considered a three- drug combination, 
including docetaxel, anthracycline, and a G6PD inhibitor.

A systems biology model was created to model the drug effect and 
signalling dynamics, with the values of all system parameters being 
taken from other previously published studies. The model consisted 
of four ODEs that tracked the amount of CD44, hypoxia- inducible 
factor (HIF1α), Glut1 (which encodes a glucose transporter), and 
reaction oxygen species. They assumed that cells transitioned into 
a drug- tolerant state after docetaxel exposure and modelled the 
tumour- killing effect of a glucose metabolism inhibitor. The simu-
lation then determined how the addition of the glucose metabolism 
inhibitor resulted in the reduced glucose flux through the pentose 
phosphate pathway and used this as a proxy for cell death. The au-
thors used the model to test different temporal sequencing of the 
chemotherapeutic combination. In all cases, the model predicted 
that simultaneous administration of lonidamine and doxorubicin 
after docetaxel treatment resulted in the best anti- tumour outcome.

The authors then used ex vivo experiments to study the poten-
tial clinical impacts of these results by generating tumour explants 
from fresh tumour biopsies. They tested the combination therapy 
of docetaxel, doxorubicin, and lonidamine, and observed that 
coadministration of doxorubicin and lonidamine after docetaxel 
provided the largest anti- tumour outcome, both in terms of cell 
death and reduction of the drug- tolerant phenotype. This was in 
agreement with the prediction of the in silico model, which also pre-
dicted this drug sequence as being the most efficacious. Taken al-
together, these authors’ results show that cancer cells are able to alter 
their metabolic pathway phenotype in response to chemotherapy. 
Furthermore, this alteration of the metabolism can confer a degree 
of tolerance to the administered drug as well as, importantly, a cross- 
tolerance to other drugs to which the cells are naive. And finally, they 
demonstrated that this reprogramming of the cancer cells’ metabolic 
phenotype presents an opportunity that careful temporal sequen-
cing can exploit to bypass the chemoresistance and yield greater 
anti- tumour efficacy. Of note, and just as in the discussion of the 
phenotypic switching model above, the in silico modelling provided 
a testable hypothesis that ex vivo experimentation could investigate 
and confirm. The result is a clinically relevant outcome that provides 
an opportunity for a novel combination therapy that could be useful 
in treating TNBC.

Heat shock protein 90 (Hsp90) plays many roles in cellular sig-
nalling, and accordingly, Hsp90 inhibitors have been studied both 
alone and in combination with other chemotherapies [54, 55]. 
Unfortunately, Hsp90- targeting compounds have yet to return re-
sults as efficacious as hoped, though hope still remains that it can 
still be used in the right combination and within the right treat-
ment plan [56]. Cancer immunotherapies have emerged as a novel 
treatment option for tumours resistant to other conventional 
chemotherapeutics.

Unfortunately, tumours similarly commonly find ways to miti-
gate or bypass the action of CD8+  cytotoxic T cells and natural killer 
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(NK) cells. Even with strategies to prime these immune cells for tu-
mour rejection, they often suffer from exhaustion, hampering their 
use as a long- term solution [57]. One idea, however, is to increase 
cancer cell surface receptors that can reinvigorate immune cells and 
enhance anti- tumour efficacy.

In Smalley et al. [58], the authors designed an engineered chemo-
therapy approach through utilization of ex vivo data, in silico mod-
elling, and cancer nanomedicines that aims to reinvigorate NK cells 
to combat drug- induced resistance phenotypes. To begin, the au-
thors used an in vitro coculture model with cells that were either 
treatment- naive or pre- treated with docetaxel and were therefore 
in a drug- tolerant state. They observed that the pre- treated drug- 
tolerant cells were also resistant to NK cells, whereas the treatment- 
naive cells remained more sensitive to the NK cells’ effect. Through 
a series of in vitro experiments on pre- treated, drug- tolerant cells, 
combined with existing evidence from the literature, the authors 
created a list of protein families that are implicated in inducing drug 
tolerance following drug administration. These were Hsp90, Src, 
Akt, Casp- 3, ERK, STAT3, HSF1, MICA, and NKG2D— all of which 
were included in a systems biology model. Hsp90 was an important 
node of the system that regulated the relationship between NK cell 
anti- tumour action and the tumour prosurvival pathways.

As evidenced by the results of the works described above, the pre-
cise ordering and timing of chemotherapies is an important consid-
eration when planning cancer therapy, especially when attempting 
to overcome drug tolerance and resistance. The authors investi-
gated the sequencing of Hsp90 inhibitors and docetaxel in vitro by 
examining the anticancer effects and NK cell action via NKG2D re-
ceptor ligand expression. They found that administering docetaxel 
followed by radicicol resulted in a synergistic treatment effect that 
maximized anti- tumour effect. To validate these experimental re-
sults, the ODE model was used to investigate the drug sequencing 
analogously. They used a genetic algorithm to fit the model to the 
in vitro data and then used the resulting model to investigate the 
scheduling. The simulation results agreed with the in vitro sequen-
cing results, specifically that docetaxel first, radicicol second, was 
the optimal administration sequence in terms of anticancer effect. 
In addition to the anticancer effect, the authors also tested the model 
predictions related to Hsp90 disruption and NK cell recognition. 
They found that, as expected, Hsp90 inhibition sensitized tumour 
cells, significantly increasing the expression of MICA in the cells.

In summary, the combined results of the experimental and in 
silico models suggested two key findings: first, that the order of ad-
ministration between docetaxel and radicicol was an important 
factor for improving anticancer effect; and second, that cells treated 
with docetaxel have suppressed NK cells that can be reversed by in-
hibition of Hsp90. Given these findings, the authors observed an op-
portunity to combine these drugs into a nanoparticle formulation. 
Since drugs in vivo tend to have shorter half- lives than in vitro, a 
nanoparticle formulation of the two drugs would theoretically allow 
the drug synergy window to be better exploited. This docetaxel– 
radicicol nanoparticle would have a fast release of docetaxel to elim-
inate the sensitive, treatment- naive cells and then the subsequent 
release of the radicicol would boost NK cell activity against the 
remaining, drug- tolerant cells. Using their in silico model, the au-
thors predicted that this formulation would result in an improved 
anticancer effect compared to even the optimal sequencing of sep-
arate administration.

Once again, this study— which builds upon the results of the pre-
vious two studies in this section— incorporated ex vivo data with in 
silico techniques to arrive at a potential improvement for combin-
ation therapies with important clinical implications.

32.3. Combining ex vivo data and 
ML approaches

Thanks to the adoption of artificial intelligence (AI) and ML 
throughout the past decade, a new age in medicine has begun. AI 
has revolutionized how we process information and fundamentally 
changed how healthcare is delivered. ML techniques are being used 
to address challenges in current clinical and preclinical trials due 
to their capacity to automate essential procedures and practices 
[59, 60]. One of the challenges of ex vivo methods is the complex-
ities in analysing patient- derived samples [61]. Hence, incorpor-
ating ML and deep- learning approaches in ex vivo studies can help 
overcome such complexities and improve the accuracy of findings 
while decreasing the time required for the analysis. In ex vivo experi-
mental studies in oncology, ML has been mainly used for various 
applications, including tumour tissue detection, image analysis, pa-
tient survival prediction, clinical response anticipation, and therapy 
monitoring [62, 63, 64, 65]. In this section, we aim to provide an 
overview of the recent cancer treatment advances made by inte-
grating ML and ex vivo techniques.

 Ex vivo confocal laser scanning microscopy (CLSM) is a diag-
nostic technique for cutaneous squamous cell carcinoma (cSCC) 
detection. Clinical diagnosis of cSCC is complicated because of 
the overlap in clinical characteristics between cSCC and other skin 
neoplasms such as keratoacanthoma or basal cell carcinoma [66]. 
As a result, surgical excision and subsequent histopathologic ana-
lysis are essential to make an accurate diagnosis and determine the 
best course of treatment [67]. Unfortunately, the standard method 
of pathological evaluation, known as frozen sectioning, is based on 
labour- intensive and time- consuming processes. In addition to this, 
they present other issues, such as a partial breakdown in the cel-
lular network of the tissue, difficulties in the cutting process, and 
poor quality of staining [68]. Ex vivo CLSM is one of the screening 
methods designed to solve existing problems with conventional 
pathology [69, 70]. Even with this, the evaluation of collected CLSM 
pictures is difficult, particularly when time is restricted, as it requires 
specialized knowledge and training [71].

To overcome this issue, Ruini et al. [71] showed the high poten-
tial of ex vivo CLSM to take advantages from incorporating ML al-
gorithms into the interpretation and decision- making procedure by 
developing convolutional neural networks (CNNs) for automated 
tumour tissue diagnosis in ex vivo CLSM images of cSCC. In Ruini’s 
study, 34 fresh tissue samples were extracted and tested shortly fol-
lowing excision. Then, following the histologically approved ex vivo 
CLSM detection, scientists annotated the tumour cells for classifi-
cation for the purpose of training the CNN algorithm. To accom-
plish this, a MobileNet [72], a lightweight deep CNN, was employed. 
MobileNet is well known for its utilization of depth- wise separable 
convolutions, which reduces the amount of time required for pro-
cessing. Compared to the expert assessment, CNN’s overall sensi-
tivity and specificity for distinguishing cSCC were 0.76 and 0.91, 
respectively. These findings showcase the capability of deep- learning 
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algorithms in recognizing cSCC locations on coloured ex vivo CLSM 
images and in differentiating those regions from tumour- free re-
gions with a high level of sensitivity and specificity [65]. There are 
already published studies suggesting the potential use of ex vivo 
CLSM in detecting additional tumour forms, such as melanoma, 
prostate, and breast cancer. Consequently, the results of Ruini’s study 
can serve as a guideline for the development of new standard deep- 
learning models for the automatic diagnosis of additional kinds of 
cancer cells or tissue on ex vivo CLSM pictures [71, 73, 74, 75, 76]. 
This new approach may be more effective and economical than the 
standard operating procedure present in use.

Incorporating ML into a combination of clinical and preclinical 
procedures can also assist in predicting patient survival [64]. One of 
the prevalent clinical methods today is magnetic resonance imaging 
(MRI) that is used to characterize tumours, particularly gliomas 
[77]. However, as a substitute or supplement to MRI- only tech-
niques, radiolabelled amino acid Positron Emission Tomography 
(PET) tracer, such as L- S- methyl- 11C- methionine (11C- MET), 
is regarded due to their high sensitivity and specificity as a prom-
ising diagnostic strategy for tumour characterization and prolonged 
treatment monitoring. L- S- methyl- (11C- MET) PET imaging is used 
to grade gliomas, determine tumour scope, determine brain biopsy 
sites, schedule radiotherapy, and monitor treatment [78, 79, 80]. 
Gliomas are the most prevalent type of brain tumour, which make 
up 81% of all cerebral malignancies. Anticipated patient survival dif-
fers by glioma kind, with glioblastoma multiforme— the most preva-
lent and deadly— having the lowest five- year survival rate at around 
5%. In spite of the fact that ex vivo histopathologic and molecular 
evaluation is frequently used to make the definitive diagnosis, im-
aging is typically the main tool used in the process of diagnosing 
patients who may have gliomas. However, early detection, improved 
tumour therapy, and longer survival rates can be achieved by com-
plex, sophisticated techniques involving the integration of multiple 
therapeutic techniques, including in ex vivo, in vivo, and in silico ap-
proaches [64].

For example, Papp et al. [64] developed ML- based survival pre-
diction models for glioma utilizing ex vivo data, in vivo 11C- MET 
PET, as well as patient characteristics. This research involved a 
total of 70 participants, all of whom had treatment- naive gliomas 
that tested positive for 11C- MET and had ex vivo features ex-
tracted from histopathologies, such as tumour stage and histology. 
ML algorithms were employed to define relevant in vivo, ex vivo, 
and patient characteristics (such as age, height, and weight), as well 
as their respective weights in the ML model, with the purpose of 
predicting survival at 36 months. Four prediction models were de-
veloped through the utilization of the generated feature weights. 
The first of these models depended on in vivo data, ex vivo char-
acterization, and patient features; the second of these models de-
pended on in vivo information and patient characterization; the 
third of these models solely depended on in vivo features; and the 
fourth model depended on ex vivo data and patient information. 
Across all analysed characteristics, in patients with amino- acid– 
positive gliomas, grey- level cooccurrence matrix characteristics, 
such as entropy, angular second moment, and intensity character-
istics like maximal tumour- to- background ratio (TBR), proved to 
be of modest value in predicting survival. However, some other 
features, such as the age of patients, ex vivo features, including 

isocitrate dehydrogenase 1 R132H mutational status, and the in 
vivo features, such as TBR total and spheric dice coefficient, found 
to be crucial for predicting survival. Furthermore, according to the 
results of a Monte Carlo cross- validation, the developed models 
that had the highest area under the curve (AUC) were in vivo- , 
ex vivo- , and patient- based model, as well as ex vivo-  and patient- 
based one with 0.9 and 0.87, respectively. Accordingly, the most 
dominant features selected by the ML- chosen and ML- weighted 
features were dependent on patient and ex vivo data, followed by 
in vivo characterization as the next most important factor. These 
results recommended that the combination of patient characteris-
tics, ex vivo, in vivo data, and ML methods, can result in the highest 
accurate survival predictions for amino acid PET– positive glioma 
patients. The proposed ML methods and predictive model are ex-
tremely general because they do not take into account any pre-
vious information regarding the inputs or derived characteristics. 
Consequently, it is feasible to investigate these ML techniques for 
various types of cancers.

The application of ML in ex vivo studies is not confined to image 
analysis and the detection of tumour tissue and patient survival; it 
also includes the prediction of early clinical response. Indeed, sig-
nificant variation in treatment responses across diverse clinical set-
tings necessitates accurate prediction of treatment response [62]. 
As an example, lymphoma is one of the most widespread haemato-
logical malignancies as well as one of the most prevalent forms of 
cancer in both animals and humans [81]. About three- fourths of 
canine lymphoma cases are multicentric lymphoma, while other 
types occur less frequently [82]. Multi- agent chemotherapy has been 
shown to achieve the highest response rates and the longest remis-
sion when treating canine lymphoma [83, 84]. However, treatment 
outcomes vary according to the administered drug combinations 
and lymphoma subsets. T cell subgroups of canine lymphoma, for 
instance, have a lower therapeutic efficiency than B- cell subgroups 
[85]. Therefore, it is necessary to precisely anticipate therapy re-
sponse, particularly for individuals having lymphoma subgroups 
that are infrequent or have low response rates. By meeting this need, 
clinicians will be able to find the most effective medications for each 
patient and exclude those that are ineffective, hence enhancing treat-
ment outcomes [62].

To this end, Bohannan et al. [62] integrated ex vivo chemosensitivity 
measurements with ML methods to assess the likelihood of chemo-
therapy drug efficiency for canine lymphoma. Ex vivo cell- based 
drug sensitivity tests are investigated extensively as a personalized 
medicine technique to simulate the tumour microenvironment in 
vitro and anticipate responses in patient lymphoproliferative dis-
eases [86, 87, 88]. For developing the predictive system, Bohannan 
et al. [62] extracted active cancer cells from biopsies of diseased 
lymph nodes and acquired clinical feedback from 261 canine 
lymphoma patients who were expected to undergo at least one of 
five commonly used chemotherapeutic drugs (doxorubicin, vin-
cristine, cyclophosphamide, lomustine, and rabacfosadine). In 
order to strengthen the probabilistic models of treatment response, 
they additionally included the immunophenotype of cancer cells 
derived from patients as assessed by flow cytometry. This is because 
characteristics collected from the findings of just drug sensitivity 
screening alone may not be sufficient for anticipating in vivo re-
sponding [50]. Then, 70% of treated patients for each drug were 
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randomly selected to train a random forest algorithm to determine 
the likelihood of a positive drug response. The remaining 30% of 
the dataset was used as a testing set to evaluate the accuracy of the 
model. The variables included the drug response output values 
and the proportion of the collected sample cells expressing a wide 
range of markers, such as lymphocytes, and large lymphocytes, 
and percentages of the cell population expressing CD21, class II 
MHC, CD3, CD8, and CD34. The results showed that the ROC– 
AUC for all drugs was consistently greater than 0.95, achieving 
a high distinction between positive and negative feedback in the 
dataset. Therefore, it showed that flow cytometry markers for 
immunophenotyping and drug sensitivity parameters are adequate 
for developing ML- based prediction models of chemotherapy re-
sponse. Nonetheless, larger sample sizes and the addition of extra 
variables, such as genomic sequencing information or terms char-
acterizing interactions between drugs, are anticipated to improve 
the prediction capacity of the given models.

To more accurately anticipate the response to chemotherapeutic 
treatments, it is crucial to preserve the clinical heterogeneity of 
cancer and stromal cells, tumour matrix, and tumour anatomy. 
However, the present standard in vitro and ex vivo preclinical tech-
niques, which utilize cells and spheroids or ex vivo cancer models, 
are hampered by their poor ability to properly simulate the biology 
of the original tumour, resulting in poor clinical result prediction 
[89, 90, 91]. Majumder et al. [63] attempted to develop a clinic-
ally useful ML-  and ex vivo based predictive model by designing 
and improving an ex vivo tumour ecosystem for colorectal cancer 
(CRC) and head and neck squamous cell carcinoma (HNSCC). 
To accomplish this, they cultured narrow cancerous explants with 
preserved cellular, microenvironmental, and architectural vari-
ability in culture wells covered with grade- matched tumour matrix 
support with personalized serum providing endogenous ligands. 
They combined the developed tumour ecosystems with an ML al-
gorithm to create a platform that accurately anticipated the treat-
ment effectiveness of anticancer drugs in patients. This platform 
was developed using tumour biopsy samples from 109 patients 
with CRC and HNSCC that had been treated with the same drugs, 
such as docetaxel, cisplatin, and 5- fluorouracil. The results of sur-
vivability, growth, histopathology, and apoptosis derived from 
these samples, along with the therapeutic outcome seen in the 
corresponding patients, were categorized as non- response, partial 
response, or full response, and this data were then employed as 
the training set for the ML algorithm. A linear prediction model 
was used for classification that was trained to employ SVMpAUC, 
a structural support vector machine classifier for improving par-
tial AUC. This algorithm maintained an acceptable level of spe-
cificity while achieving 87.27% accuracy and 100% sensitivity on 
the testing dataset. Therefore, the reported platform can be con-
sidered an effective predictive tool that can be applied to various 
cancer types and therapeutic strategies, as evidenced by the overall 
feedback rates of HNSCC and CRC tumours to chemotherapeutic 
treatments.

Taken together, on the basis of all of these studies, we can infer 
that diverse combinations of in vitro, ex vivo, in vivo, and patient 
data combined with ML tools can improve personalized medicine 
tumour tissue diagnosis as well clinical practice prediction to an ac-
knowledged high degree of accuracy.

32.4. Integrated systems biology and 
deep learning with ex vivo data

In this section, we provide a case study on the application of mech-
anistic models and deep- learning approaches to interrogate the re-
sponse dynamics of an immunotherapy checkpoint inhibitor using 
ex vivo system with human HNSCC.

Immunotherapy has emerged as a promising new cancer treat-
ment strategy and is widely considered to now be the fourth ‘pillar’ 
of modern cancer medicine. The most successful immunotherapy 
used in practice today is anti- PD- 1 (programmed cell death pro-
tein) therapy, which works by blocking the binding of PD- 1 to 
PD- L1 (programmed death ligand 1), preventing cancer cells from 
suppressing the activation of T cells, and evading the anti- tumour 
immune response [92]. While anti- PD- 1 therapy is the most suc-
cessful immunotherapy to date, patient response to the treatment 
is unpredictable— some patients respond well, and others have no 
response. This variability in response is thought to be attributable to 
underlying patient- specific biological traits though these traits are 
not well understood.

In a recent work, Smalley et al [93]. developed a systems biology 
model to investigate how the blockade of PD- 1 affects the behaviour 
of relevant immune cells and how such therapy can elicit different 
response dynamics. Their model was based upon, and calibrated by, 
results from human ex vivo experiments and allowed for a frame-
work through which immune checkpoint inhibitors could be tested 
in silico. This detailed and experimentally calibrated mathematical 
model is useful; however, an important goal that the model strug-
gles to attain on its own is to identify patient- specific traits and 
biomarkers that could predict whether a patient is likely to be a re-
sponder to anti- PD- 1 therapy. One way to answer such a question is 
through using ML techniques as described above. For example, one 
could amass a dataset of patients who have received anti- PD- 1 im-
munotherapy, classify them according to their treatment response, 
train a neural network with this data, and then use this to predict 
which patients are likely to respond well to therapy. Unfortunately, 
this plan suffers from two key problems. Firstly, doing so may gen-
erate an accurate classification, but the classification algorithm is a 
black box, leaving researchers without interpretability, and no fur-
ther insight into what the key traits which determine response actu-
ally are. And secondly, the network, to be properly trained, would 
require an amount of data that would be difficult or simply impos-
sible to collect. This makes an exclusively ML- based approach im-
practical, meaning that a more sophisticated solution is necessary in 
order to predict the anti- PD- 1 response from patient- specific traits.

In Przedborski et al. [34], the authors extend their systems biology 
model by creating a hybrid systems biology and deep- learning ap-
proach which allowed them to tackle these questions. Specifically, 
the systems biology model, calibrated by human ex vivo data, can 
generate an amount of data limited only by computational run time. 
Rather than using the small amount of available clinical data to train 
the anti- PD- 1 response prediction neural network, they generated 
a much larger dataset using the systems biology model and then 
trained the neural network with this data. This technique bypasses 
one of the common shortcomings of exclusively ML- based models 
in medicine of the difficulty in obtaining enough data for training. 
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Furthermore, it also alleviates the lack of model explainability since 
results can be interpreted through the lens of the coupled systems 
biology model. The authors refer to this technique as a systems 
biology informed neural network.

A reasonable question to ask is whether the synthetically gener-
ated clinical dataset is a reasonable representation of the full clinical 
variability. The authors address this question by using feature selec-
tion techniques to show that the simulated dataset captures the key 
dynamics and variability seen in previous experimental and clinical 
investigations of anti- PD- 1 therapy. From this analysis came other 
notable observations. For example, several of the parameters that 
feature selection identified as being crucial for predicting response 
to anti- PD- 1 treatment (e.g., baseline levels of cytotoxic and naive 
T cells) can be experimentally measured or estimated. This means 
that patients could be pre- screened to estimate their likelihood of 
positive treatment response. Furthermore, knowledge of these key 
traits could give insight into mechanisms of drug resistance, allow 
for more efficient screening of patients, and perhaps even allow for 
development of treatments that could alter these values and improve 
response. Additionally, the simulated data was not used alone, but 
rather in concert with the ex vivo clinical data. Specifically, the net-
work was first trained using the simulated data, then the ex vivo was 
incorporated into the training to fine- tune the network. This transfer 
approach greatly increased the accuracy of the network when evalu-
ated on the ex vivo dataset. The reasoning for this is that since the ex 
vivo dataset is small, it does not capture the full range of possible dy-
namics that the much larger simulated dataset is able to. Therefore, 
pretraining on the larger dataset allows the network to generalize to 
previously unseen cases more accurately.

Of particular relevance, the results of these simulations also led to 
a rationale for a combination therapy that theoretically improves pa-
tient response to anti- PD- 1 immunotherapy. In particular, the base-
line population of cytotoxic T cells was identified as a primary driver 
of response to anti- PD- 1 treatment. So, theoretically, increasing the 
T cell population prior to the stat of anti- PD- 1 therapy would im-
prove the patient response. Analysis of the systems biology model re-
vealed that administration of IL- 6 inhibitors and recombinant IL- 12 
to the patient would ultimately yield increased numbers of cytotoxic 
T cells, hence providing a rationale for a novel combination therapy 
that could improve anti- PD- 1 therapy. Indeed, in previous studies, 
both IL- 6 inhibitors and recombinant IL- 12 individually showed the 
potential to improve the anti- tumour effects of anti- PD- 1 therapy. 
Using the systems biology model, the authors showed that adminis-
tering recombinant IL- 12, followed by an IL- 6 inhibitor second, prior 
to the anti- PD- 1 agent (nivolumab, in this case), significantly in-
creased the number of responders in their simulated clinical dataset.

Altogether, this study showed how systems biology models and 
ML models, in concert with ex vivo data, can be combined in such 
a way that the shortcomings of both styles can be mitigated. Most 
notably, the results suggested a novel triple combination therapy 
that theoretically improves the patient response to anti- PD- 1 
immunotherapy.

32.5.  Conclusions

 Ex vivo experimental methods have proven their utility in helping 
to alleviate the existing challenges of common in vitro and in vivo 

models in preclinical trials by being able to closely reflect the real 
situation systems through representing the original tumour pheno-
types and heterogeneity. However, because of the complexities ana-
lysing results in patient- derived samples, more improved analytical 
techniques, such as mathematical and computational approaches, 
are required. Incorporation of different mathematical and com-
putational modelling into cancer medicine can further our under-
standing of the disease and improve its treatment. In this work, we 
showcased several works that did just this. We divided these works 
by the methods of quantitative analyses they used: those that employ 
mechanistic mathematical modelling exclusively, those that employ 
AI exclusively, and those that employ both. Reviewing all of these 
works demonstrates the potential applicability of different mathem-
atical methods to the successful evaluating of ex vivo data with the 
purpose of tumour tissue detection, image analysis, patient survival 
prediction, clinical response anticipation, and therapy monitoring.

The combination of ex vivo and in silico models has two bene-
fits: first, mathematical and computational techniques can assist in 
more accurately analysing the outcomes originating from patient- 
derived samples and overcoming the complexities associated with ex 
vivo models; and second, using ex vivo models can support creating 
the dataset required for developing and validating mathematical 
models. For example, the challenge of obtaining adequate human 
data greatly restricts the use of ML and deep learning in cancer 
medicine. This is because it can be difficult to obtain this informa-
tion in a medical setting due to financial, technological, and ethical 
constraints. However, by applying different anti- tumour therapies 
on ex vivo samples, researchers can provide results closer to clinical 
outcomes and supplement the required datasets for ML algorithms.

It is also important to note that in building predictive mathem-
atical models, parameters acquired from patient- derived samples 
exclusively may not be sufficient, and the addition of other infor-
mation, such as in vitro features, in vivo features, or patient charac-
terization, may increase the predictive value of ex vivo evaluation. 
Hence, it can be concluded that personalized cancer treatments 
should include more complex and advanced strategies involving 
combinations of preclinical and clinical methods, such as ex vivo, 
in vitro, and in silico models to improve earlier detection, tumour 
targeting, and survival rates.
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Tumour- immune co-evolution dynamics 
and its impact on immunotherapy 
optimization
Annice Najafi and Jason George

33.1. Historical aspect of immunotherapy

Tumour immunology and cancer immunotherapy have recently 
become tremendously active areas of research, but the foundations 
of this exciting field have been developed over centuries (Figure 

33.1) [1] . The idea of immunity can be traced back to 430 BC when 
Thucydides discovered that Athenians infected with the plague did 
not become infected a second time [2]. This was followed by the 
famous thirteenth- century story of Peregrine Laziosi, a cancer pa-
tient who, on the day of his scheduled leg amputation, had exhib-
ited significant tumour regression. At the time, the immune system’s 
role in cancer elimination was unknown; subsequently, Laziosi 
became the patron saint for people living with cancer [3]. About 
four centuries later, a cascade of events led to the advent of the first 
vaccine. As smallpox spread across Europe during the seventeenth 
century, Lady Mary Montagu, the wife of the British ambassador 
in Istanbul, was intrigued by the Ottoman practice of inoculation 
and attempted to return it to England by granting Charles Maitland 
a royal licence to test the variolation method on willing prisoners, 
all of whom survived smallpox. Maitland then inoculated the two 
daughters of the Princess of Wales, resulting in the public’s general 
approval. In 1796, Dr Edward Jenner inoculated an eight- year- old 
patient against smallpox with cowpox viral material collected from 
an infected milkmaid. The patient experienced mild infection and 
healed shortly thereafter, which later led to the widespread use of 
vaccination in England [4,5]. By 1878, Louis Pasteur successfully 
vaccinated lab chickens against cholera and extended the same im-
munization method for anthrax and rabies [6].

After the advent of the first vaccines, a series of key observations 
of tumour regression occurring in the setting of bacterial infections 
were made in Europe. In 1725, Deidier first noted that syphilis pa-
tients developed fewer tumours, and Sir James Paget observed more 
generally that infections could cause tumour regression. This latter 
observation led to subsequent attempts to induce tumour regression 

via bacterial infection. In 1869, Wilhelm Busch deliberately inocu-
lated a cancer patient with erysipelas and observed tumour regres-
sion, and at the time, the underlying causative was unknown [7] . 
Shortly thereafter, Friedrich Fehleisen repeated the same experi-
ment and ultimately identified Streptococcus pyogenes as the primary 
contributor to this process [8].

In New York, Dr. William Coley also noted sarcoma regres-
sion following infection with erysipelas. He attributed these 
miraculous post- surgical regressions to the stimulation of the im-
mune system. Coley began experimenting with his hypothesis by 
injecting a solution known as Coley’s toxins, made of two dead bac-
teria: Streptococcus pyogenes and Serratia marcescens [7,8]. Coley 
is now known as the ‘father of immunotherapy’, but his approach 
was met with substantial scepticism by the scientific community. 
Variability in the site and method of inoculation, and even ques-
tionable cancer diagnoses in some patients, complicated the val-
idity of his results. As a result, the earliest form of immunotherapy 
was definitively abandoned [7,8].

The next significant discoveries occurred in the 1920s at Johns 
Hopkins when Raymond Pearl noted an inverse relationship be-
tween cancer and tuberculosis (TB) [9] . Holmgren noted the lack 
of allergy to tuberculin in cancer patients and exploited this obser-
vation to diagnose cancer. He later attempted to treat gastric cancer 
patients with the available vaccine against TB, bacillus Calmette– 
Guerin (BCG). Although Holmgren mentions immune stimulation 
in a rectal cancer patient, he more generally notes ‘no remarkable’ 
effect on cancer growth [10]. In the decades to follow, several doc-
tors noted the effectiveness of this vaccine in fighting against mel-
anoma and bladder tumours [11– 13], with this vaccine eventually 
receiving FDA approval for the treatment of carcinomas in 1990 
[14]. The underlying mechanism is still unclear, although it is known 
that cytotoxic T- cell- mediated immunity, antigen presentation, and 
pro- inflammatory responses are augmented through the utilization 
of BCG [14].
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In addition to tumour- specific immune regression, independent 
effects of tumour targeting were emerging. George Beatson dis-
covered a connection between sex steroid hormones and hormone- 
sensitive cancers. Beatson began treating breast cancer patients 
through the surgical removal of ovaries (oophorectomy). Although 
this method later became widely accepted and is still in use, the 
underlying mechanisms linking hormones, inflammation, and tu-
mour growth were unknown at the time [15]. Several conceptual 
advances followed this: Rudolph Virchow noted an association be-
tween cancer and inflammation [16], and the Noble Prize laureate 
Paul Ehrlich conceptualized the existence of cell surface receptors 
capable of recognition and binding to specific molecules. This led 
Ehrlich to work on developing preferential chemical targets for these 
receptors. Ehrlich also postulated that the immune system could re-
press several carcinomas [17,18].

In the 1940s, Alice Moore performed the first viral oncolysis 
[19]. Moore noted that both slow- growing and rapidly prolifer-
ating tumours were unaffected by the Russian Encephalitis virus 
in the study suggesting a higher potential for therapeutic escape 
for highly proliferating and slowly proliferating tumours [20]. This 
observation was rediscovered in the setting of tumour- immune 
interactions about a decade later when George Klein defined the 
rejection of medium- sized inocula over small- sized and large- 
sized inocula referred to as the ‘sneaking- through’ phenomenon 
of tumours [21].

This was followed by the discovery of interferons (IFNs) in 1957 
by Isaacs and Lindenmann, named for their ability to interfere with 
viral infections [22]. IFNs were later purified and administered to 
patients and yielded encouraging results against nearly every type 
of cancer [23]. Additional leukocyte- derived cytokines known as 
‘interleukins’ (IL) [24] were later discovered [25] and have been 
implicated in mediating tumour- immune infiltration [26]. The 
clinical use of interleukin- 2 (IL- 2) immunotherapy in 1987 was 
followed by the inoculation of murine models by IL- 2 expanded 
tumour infiltrating leukocytes (TILs) resulting in the total eradi-
cation of tumours [27]. Collectively, the above discoveries estab-
lished a resurgence in interest for developing immunotherapies in 
the first half of the twentieth century. This work laid the scientific 
foundation for subsequent development of the modern principles 
of cancer immunotherapy.

33.2. Immunosurveillance and immunoediting

In 1957, Frank Macfarlane Burnet and Lewis Thomas hypothesized 
the cancer immunosurveillance concept that thymus- dependent 
immune cells interrogate host cells to detect inappropriately trans-
formed cells [28,29]. Osias Stutman argued that immunosurveillance 
implies hosts with defective immune systems should have higher 
rates of occurrences of either chemically induced or spontaneous 
tumours and proceeded to test this empirically [30]. Unfortunately, 
his analysis was limited to CBA/ H nude immunocompromised mice 
at the time, which had many shortcomings, including the presence 
of detectable αβ T cells and fully functioning tumour suppressor sys-
tems such as p53. These limitations confounded his ultimate finding 
of no statistical difference in tumour incidence between immuno-
compromised and control groups. As a result, the field experienced 
waning scientific interest in the immunosurveillance hypothesis for 
several decades [31–33].

Renewed interest in immunosurveillance occurred when scien-
tists repeated Stutman’s experiment and found that nude BALB/ c 
mice died more often of cancer [34]. The protective role of inter-
feron γ (IFN- γ ) was discovered when 129/ SvEv mice, without the 
IFN- γ  receptor, and STAT1 were shown to be more sensitive to the 
tumour- inducing ability of 3- methylcholanthrene (MCA) [35]. The 
immunoediting concept was then born by the Schreiber group. They 
utilized recombinant activating gene knockout mice, which results 
in complete immunodeficiency of T cells, natural killer (NK) cells, 
and B cells. Their work showed that the 129/ SvEv RAG2−− −−/  mice 
were more susceptible to tumours than the control highlighting the 
role of immune system in recognizing tumours. Intriguingly, wild- 
type tumours’ reduced immunogenicity compared to RAG2−− −−/  tu-
mours in the absence of a functioning immune response suggested 
the immune system’s role in refining the tumour’s immunogenicity 
[31–33,36].

Collectively, these findings demonstrated the key role of 
immunosurveillance on tumour progression and elimination, 
and the more general concept that immunity not only prevents 
but also sculpts the immunogenicity of developing tumours be-
came known as the immunoediting hypothesis [31,32]. Schreiber’s 
group further defined three associated dynamical phases to this 

Figure 33.1. The historical aspect of immunotherapy, demonstrating the key historical events of the field of immunotherapy.
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process: elimination, equilibrium, and escape [31,32]. During the 
elimination phase, tumour cells that have lost their original tumour 
suppressive features draw the attention of the host immune system 
and become targeted. Both innate and adaptive immunity are at play 
with the infiltrating lymphocytes recognizing antigens and secreting 
IFN- γ. IFN- γ contributes direct apoptotic and anti- proliferative 
effects on cancer cells as well as indirect suppressive mechanisms, 
including angiogenesis inhibitors. Dendritic cells (DCs) follow 
cell debris, draining them into the lymphatic vessels. Meanwhile, 
chemokines provoke an immune response by recruiting NK cells 
and macrophages to the site. In some cases, tumours are completely 
destroyed in this phase. However, should the immune system fail to 
eradicate tumour cells completely, the residual population enters the 
equilibrium phase [31–33].

In the equilibrium phase, cells are kept in a dormant state which 
takes the longest period among the three phases of immunoediting 
[31–33]. However, tumour dormancy and its underlying mechan-
isms are poorly understood [37,38]. For example, it is unclear to 
what extent cancer cells become truly dormant, with zero growth 
and immune- mediated death versus a state of net zero growth 
where birth and death rates are matched. Some studies have shown 
that tumour cells can exhibit non- proliferating properties while 
halted in a cell cycle arrest in G1/ G0 through the combination of 
the effects of the tumour necrosis factor (TNF) and IFN- γ [38,39]. 
While other studies emphasize population or angiogenic dormancy 
in which case the tumour population size remains constant, and 
its growth is counterbalanced with its death through apoptosis due 
to which the tumour fails to vascularize and may remain below a 
clinically detectable size, increasing the likelihood of immune eva-
sion [37]. Koebel et al. showed that dormant tumours would only 
become malignant in the absence of T lymphocytes, IFN- γ or IL- 
2, while they failed to progress in the absence of innate immunity 
components, such as NK cells, thus highlighting the importance 
of the adaptive immunity in maintaining equilibrium. In addition, 
they showed that the dormant tumour allowed considerable infil-
tration of immune cells, such as T cells, macrophages, and B220+ 
cells, resulting in a higher death rate [38,40]. The role of the adap-
tive immune- mediated modulation of tumour dormant states is 
gaining interest as a potential therapeutic avenue [31–33,36,38]. If 
cancers escape from the dormant state, the tumour cells form an 
immunosuppressive environment, and the immune cells can no 
longer act on inhibiting the growth of the tumour. This marks the 
transition into the final elimination phase [31–33].

33.3. Adoptive cellular therapy and 
checkpoint blockade

Adoptive cellular and checkpoint blockade therapies emerged based 
on the concept that immunotherapy is constricted by regulatory 
mechanisms that prevent immune activation and the existence of an 
immunosuppressive tumour microenvironment (TME). Adoptive 
cellular therapy utilizes immune cells to enhance anti- tumour im-
munity [41]. The earliest accounts of adoptive cellular therapies 
trace back to 1957, when Edward Thomas performed the first cel-
lular therapy on a leukaemia patient. Given the immune ablative 
nature of early irradiation therapy, the patient was treated with 
bone marrow infusion from his identical twin brother [42]. It was 

later discovered that leukaemia remission rates were enhanced by a 
donor- derived T- cell- mediated graft- versus- host effect against the 
minimal residual cancer population [43,44]. HSCT is still in use 
today for treating haematological malignancies and is a curative op-
tion for many patients [45,46].

A more recently developed strategy, known as chimeric antigen 
receptor (CAR) T- cell therapy, was introduced in 1989 by Zelig Eshar 
and subsequently granted FDA approval for haematological malig-
nancies in 2017 [47–49]. CAR T cells, composed of tumour- specific 
binding domains with T- cell intracellular signalling domains, kill 
target- bearing cells. Although clinical trials have demonstrated en-
couraging results, cancer progression and toxicities arise in some 
patients, necessitating further refinement and combination therapy 
for improved individualized treatment [47–49]. For example, 
CAR T- cell therapy may lead to cytokine release syndrome (CRS) 
[49–52], a serious side condition where large amounts of cytokines, 
including INF- γ , TNF- α, IL- 6, and IL- 2, are released. CRS can be 
mitigated by blocking the IL- 6 signalling pathway or suppressing 
cytokine production with dexamethasone or tocilizumab [49,50]. 
Other treatments, such as corticosteroids, can reduce transduced T 
cells and thus reduce inflammation and graft- versus- host disease. At 
the same time, methotrexate can not only indirectly help with the 
treatment of CRS but also be effective in treating autoimmune dis-
eases caused by off- target CAR T cells [50]. Furthermore, empirical 
evidence has shown that the body acquires resistance to CAR T- cell 
therapy through subsequent exposure reducing the effectiveness of 
this type of immunotherapy [50–52].

Although CAR T- cell therapy was initially designed for haem-
atological malignancies, its utility has carried over to solid tumours 
through bispecific CAR T cells, which can target two antigens con-
currently or through immune checkpoint inhibitors [53]. Other 
types of immune cells commonly used for adoptive cellular therapy 
are NK cells, cytokine- induced killer cells, lymphokine- activated 
killer cells, and DCs. While all but the latter activate in an antigen- 
independent manner against tumours, DCs have been used in im-
munotherapy due to their ability to regulate adaptive immunity [54].

Perhaps most significantly, the discovery of the immune check-
point T- cell molecules. programmed death- 1 (PD- 1) and cytotoxic 
T lymphocyte antigen- 4 (CTLA- 4), by Nobel Laurates Tasuku Hanju 
and James Allison demonstrated an inhibition in T- cell proliferation 
that occurs upon binding with PD- L1 and B7, respectively. The dis-
covery that these inhibitory molecules are often up- regulated in 
cancer populations led to checkpoint blockade strategies that suc-
cessfully treat many cancer subtypes [55–56]. However, not all pa-
tients respond to treatment, and an immune- permissive TME and 
the proper immune recognition of tumours are required for effective 
therapeutic responses [57]. Studies of blockade therapies have shown 
that tumour mutational characteristics often correlate with response 
to therapy; thus, better therapeutic responses can be achieved by 
targeting mutant neoantigens [58,59]. Furthermore, studies fo-
cusing on non- small- cell lung cancer (NSCLC) samples have shown 
that better anti- tumour responses are achieved by targeting clonal 
neoantigens [59].

Given the early success of immune checkpoint blockade, there 
was an immediate question of how cancers evolve in a microenvir-
onment following treatment. To address this, Riaz et al. studied a 
cohort of melanoma patients sub- categorized based on previous 
CTLA- 4 inhibition using ipilimumab (IPI). These patients were 
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then given PD- 1 blockade agent Nivolumab (Nivo) and assessed 
via whole exome and T- cell receptor (TCR) sequencing. Riaz et al. 
observed a reduction of mutations and neoantigen diversity post- 
treatment with Nivo in both IPI- treated and IPI- naive groups, 
which is consistent with active immunoediting taking place [61]. 
They also discovered an increase in the fraction of TILs [61], a 
common indicator of therapeutic response [60], upon Nivo treat-
ment relative to that of (untreated) IPI- naive patients. However, 
this enrichment was significantly greater in IPI- naive patients 
than in IPI- treated ones. Although similar rates of therapeutic re-
sponse were observed in both groups, overall survival was only as-
sociated with tumour mutational load in the IPI- naive group [61], 
suggesting TME dependence on the difference in effects between 
checkpoint blockade agents. Lack of association between thera-
peutic response and mutational load suggests an alternative, non- 
genetic driver of outcome.

33.4. Intra- tumoral heterogeneity

As established above, if immunoediting is the driving force that 
imposes a continuous selective pressure on cancer, then intra- 
tumoral heterogeneity (ITH) may be viewed as one evolutionary 
consequence that can lead to population- level diversification and 
impaired therapeutic response. The failure of immunoediting and 
immunotherapy is often attributed to ITH [63] that was first dis-
covered by Rudolph Virchow. Virchow observed ITH in the form of 
variations in cancer cell shape and morphology [64]. Huxley further 
generalized this concept by categorizing features of ITH as genetic, 
epigenetic, and environmental [65]. ITH arises from several envir-
onmental pressures in the form of metabolic, immunological, pH 
changes, and therapeutic components. Mutations that randomly 
accrue throughout tumour development diversify the tumour 
population, resulting in competition for survival in the presence of 
selection [63, 66–68].

Furthermore, ITH may also manifest within the neighbouring 
cells of the tumour, affecting the stroma and components of the 
immune system. This heterogeneity often confers a survival ad-
vantage through phenotypic plasticity. Throughout development, 
the tumour population and corresponding microenvironment 
undergo adaptive alterations that contribute to the population- level 
heterogeneity. On the other hand, immunoediting selects tumour 
subclones with low antigenicity so that ITH drives tumour progres-
sion and immune escape. Mounting experimental evidence sug-
gests that ITH results in worse therapeutic response suggesting ITH 
should be targeted for therapy [63]. However, although spatial ITH 
can be therapeutically targeted, temporal ITH may be an aggressive 
driver of tumour progression and, thus, more difficult to target [63]. 
ITH is complemented by heterogeneity in the immune response 
to tumours. In particular, the state of the T cells’ response can vary 
widely in time and across patients. To complicate matters, the effects 
of cancer immunosurveillance prior to detection also appear to in-
fluence the likelihood of immunotherapy success. Tumour samples 
from CTL- infiltrated lung cancer patients demonstrate antigen de-
pletion and MHC loss [69]. In solid tumours, such as hepatocellular 
carcinoma and lung cancer, tumour antigen- specific CTL enrich-
ment appears to reflect spatial geography of malignant populations 
as well as whether or not antigens are ubiquitous or localized [70,71].

33.5. Unravelling patterns of tumour evolution

In the preceding section, we discussed ITH and its contribution 
to therapy resistance. Here, we provide a brief history and a de-
scription of the endeavours that revealed patterns of clonal evo-
lution leading to ITH. In the early 1900s, Boveri postulated the 
somatic mutation theory, proposing that chromosomal rearrange-
ments result in the loss of the segment of chromosomes respon-
sible for inhibiting cell proliferation and thus lead to cancer [72]. 
This was followed by Whitman’s postulate that cancer initiates 
from mutated cells [72]. Shortly thereafter, scientists discovered 
that carcinogenic ionizing radiation is also mutagenic, providing 
additional evidence supporting the relationship between somatic 
mutations and cancer [73].

Meanwhile, two opposing views emerged concerning whether 
mutant acquisition was the result of environmental changes, or if 
it was pre- existent and emerged as a result of environmental se-
lective pressures. This dilemma remained inadequately addressed 
until 1943, when Max Delbrück and Salvador Luria investigated the 
origin of mutations in bacteria. In the Delbrück– Luria experiment, 
the viral agent infected five tubes of a bacterial strain susceptible to 
a specific virus. They demonstrated that the predicted fluctuation 
in the number of resistant colonies in the test tubes could resolve 
whether mutations were acquired versus pre- existent. This famous 
set of experiments showed that pre- existing mutations can arise 
prior to an inciting selective pressure [74].

By the end of the 1940s, Bauer’s theory of a single mutated cell 
resulting in cancer received several objections from the scientific 
community regarding its failure to explain the relationship be-
tween age and cancer incidence. Although Bauer responded to 
the objections by stating that mutated cells remain latent in the 
body in a carcinogen- dependent manner, the scientific commu-
nity soon followed up with the very first attempts at mathemat-
ical modelling of cancer [75]. With Muller’s concept proposed in 
1951 that the acquisition of multiple mutations by a single cell is 
required for the occurrence of cancer [76], three statistical pro-
jects investigated the relationship between age and cancer mor-
tality [75,77,78].

33.6. Cancer- age incidence models

Fisher and Hollomon in 1951 and Nordling in 1953 used data from 
stomach cancer in US women and statistics from Europe and the 
United States about cancer- related mortality in men, respectively, to 
relate age and cancer incidence. They concluded that the logarithm 
of age and logarithm of cancer- related death rate are proportional, 
and the death rate increases six times as rapidly between the ages 
of 25 and 74 years. Data from young people were excluded because 
they believed that the underlying mechanisms behind cancer at 
early ages are not the same at later ages, and data from older people 
are unreliable, perhaps due to the low number of samples and high 
mortality rate. Fisher and Hollomon hypothesized the need for a 
critical number of cancer cells for malignant growth (critical size 
hypothesis), leading to the conclusion that cancer cells and cancer 
incidence are proportional to the fifth/ sixth power of the concentra-
tion of carcinogen, which was contradictory to experimental data.
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Armitage and Doll took the approach of assuming mutation rates 
to be rare but constant throughout the life of the patient [75,77,78]. 
From this, the rate r  of cancer incidence could be explained by

 r kp p p p p p t= 1 2 3 4 5 6
6 

where r  is the cancer incidence rate at age t , k  is a constant, and pi 
is the probability of occurrence of the i th successive mutation. That 
means the logarithm of the cancer incidence rate is directly propor-
tional to the logarithm of the age [79]:

 log logr t C= +6  

Armitage and Doll were determined to investigate this hypoth-
esis further for cancers of different sexes and sites. As opposed to 
Nordling, Armitage and Doll did not restrict their description of 
successive events to mutations. They found that the data is con-
sistent with the results of the previous two studies in cancers that 
are more likely to be independent of environmental factors for both 
sexes. Thus, the effects of carcinogens remain constant throughout 
life. On the other hand, the data deviated from the proposed model 
in cancers where developmental factors affect the development of 
the tumour variably, such as prostate and lung cancer. The model 
proposed by Armitage and Doll is often referred to as the multi- stage 
theory of carcinogenesis [75,77,78].

In other instances, tumour incidence was discovered to follow 
specific trends. In 1971, Alfred Knudson observed, among 48 retino-
blastoma cases, that children with hereditary retinoblastoma typic-
ally developed the tumour in both of their eyes as opposed to others 
who developed the tumour in only one eye. Based on these observa-
tions, Knudson proposed the concept of a tumour suppressor gene 
and postulated that children with hereditary retinoblastoma have 
one defective copy of the gene, which was mutated in the germline. 
Because germline mutations impact all somatic cells, children with 
hereditary retinoblastoma develop more tumours. On the other 
hand, individuals with sporadic cases of retinoblastoma born with 
two normal alleles need to develop mutations in both copies in so-
matic cells. This concept became known as the ‘two- hit’ hypothesis. 
In his paper, Knudson showed that the relationship between age and 
the fraction of retinoblastoma cases that are not diagnosed is line-
arly proportional in cases of children with multiple cancers in both 
eyes, while it is better explained with a quadratic function of age 
in months for children with only one tumour. Knudson concluded 
from the data that tumours are distributed with a Poisson distribu-
tion, and he estimated the mean number of tumours per gene car-
rier [79]. This study was followed by probabilistic models proposed 
by Moolgavkar and Knudson describing the incidence of retino-
blastoma and cancer initiation and progression [80].

33.7. Patterns of tumour evolution

During the 1960s and 1970s, cytogenetic and karyotyping studies 
gave insights into the contribution of polyploidy to cancer. Notably, 
the study by Felix Mitelman in 1971 showed heterogeneity in 
chromosomal numbers and clonal evolution in 50 albino Rous mice. 
In that study, a stepwise accumulation of chromosome numbers was 
shown to be associated with loss of differentiation and decreased col-
lagen production in sarcoma cells [81]. A separate study investigated 

the inactivation of the X- chromosome at the glucose- 6- phosphate 
dehydrogenase locus in women who were heterozygous for the gene. 
Although the existence of both isoenzymes was observed in normal 
tissue, only one phenotype was functional in tumour cells suggesting 
tumour clonality [82].

In 1975, Peter Nowell concluded the clonal pattern of tumour evo-
lution from the studies mentioned above and suggested a unicellular 
origin for tumours. Nowell developed the first model of linear tu-
mour evolution. In his model, a single cell acquires a selective fitness 
advantage over neighbouring cells via an induced change. This is fol-
lowed by neoplastic progression either immediately or after a latent 
period. Later if a new genetic variant is induced, it will get elimin-
ated due to metabolic disadvantages or immunological destruction. 
However, if this new variant provides further fitness advantage, it 
will soon dominate the population with its progeny. This process is 
commonly known as a selective sweep. The utility of this model di-
minished as higher resolution data was acquired, and its most suc-
cessful application describes colorectal cancer evolution [83].

Branched evolution was the next alternative evolutionary frame-
work applied to understand cancer progression whereby expansion 
of distinct clones can occur in parallel, each with a low likelihood of 
selective sweeps. One of the most famous models of this type is the 
multi- type branching model developed by Bozic et al., where tumour 
evolution was modelled as a stochastic discrete time branching pro-
cess [84]. In this model, in each step, either a cell dies or gives birth 
to two daughter cells. The daughter cell can either be identical to the 
producing cell or acquire a mutation that changes the fitness advan-
tage. The probability of giving birth in each generation is referred to 
as bj, while the probability of dying is d j. While a cell can either die or 
give birth at every time point, and thus b dj j+ = 1, it may give birth 
to a mutated cell with probability u. The death rate is variable and 
changes as a function of generation j and may be explained via the 
function d j =  1 / 2 1 −( )s

j

 [84].
Two types of mutations were considered in this process, drivers, 

which conferred a fitness advantage, and passengers, which were 
neutral. Through this model, Bozic et al. found the number of pas-
senger mutations as a function of driver mutations. They used pub-
lished sequencing data and the Cancer- specific High- throughput 
Annotation of Somatic Mutations (CHASM) algorithm, a super-
vised learning method using a random forest model for identifying 
missense mutations, for conferring the fitness advantage of muta-
tions. After fitting their model to the data, they identified the same 
average selective advantage as 0.4% for the two types of cancers con-
sidered, glioblastoma multiforme and pancreatic adenocarcinoma. 
These results suggest that the average selective advantage of drivers 
is not dependent on the cancer type and is universal. Additionally, 
the selective advantage of drivers is very low, which suggests that the 
rate of extinction of driver mutations is very high. In addition, Bozic 
considered the model when transitioning to a continuous- time pro-
cess. Bozic noted that by making the death rate constant d = 1 while 
switching the birth rate to b sj= +1  (s is the selection parameter and 
j is the generation), the population becomes infinite at a finite time. 
On the other hand, the death parameter can be tweaked to d sj= −1  
while the birth parameter remains constant as b = 1 to solve this 
problem [84].

Although the simplicity of this foundational mathematical model 
makes it amenable to analytic characterization and direct and uni-
versal experimental testing, both of which become nontrivial in 
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models with many parameters, this model assumes an exponen-
tial pattern of tumour growth. Thus, it loses accuracy in describing 
populations undergoing Gompertzian growth. Another issue of this 
model is that it does not consider the effects of deleterious passenger 
mutations. A more recent study by McFarland et al. utilized a sto-
chastic population model and framed tumour progression in the 
context of a tug of war between driver mutations and deleterious pas-
senger mutations, with the death rate increasing as a Gompertzian 
function. Interestingly, their model predicted a significantly dif-
ferent average selective advantage than the Bozic model [84,85].

The above model was extended to describe mutational events 
resulting in the emergence of resistant phenotypes. In this model, 
mutations are categorized as deleterious, neutral, or advantageous 
depending on their growth rate relative to that of the original popula-
tion. Mutated clones arrive according to a Poisson process with par-
ameter λ = Mu, where u is the mutation rate and M is the population 
size, from which Bozic et al. estimated that the expected number of 
clones is k  when the population reaches k u/  and thus the probability 
of k  clones in a population of size M is λ λke k− / !. Intriguingly, their 
results suggest that the ratio of medians and means for the number of 
cells for the two subclones is parameter free, which they attributed to 
the fact that the branching process with a large size and slight muta-
tion (M and u≫ ≪1 1) possibly can be approximated by a pure birth 
process. This parameter- free ratio was then confirmed from clonal 
abundances measured by liquid biopsy- derived circulating tumour 
DNA data. Subsequent work developed a mathematical framework 
for estimating the relative sizes of treatment- resistant clones and 
the probability of resistant clone acquisition based on the tumour 
size, thereby providing insight into the heterogeneity of the tumour 
population, which is important for therapeutic planning [86].

Multi- type branching frameworks can also be utilized in a more 
specific tumour- immune interaction setting. Iwasa et al. investi-
gated the dynamics of immune escape utilizing a continuous- time 
branching process where a heterogenous quasi- species struggles to 
survive with a low reproductive ratio and needs to accrue mutations 
in several nucleotides under harsh selective pressures, such as an 
adaptive immune system, to successfully invade the host. Immune 
escape can then be modelled through a Galton– Watson branching 
process whereby a wild- type sequence with a subcritical repro-
ductive ratio undergoes a number of successive forward mutations 
(which can happen simultaneously) to reach an escape sequence 
with a reproductive ratio exceeding 1. Their model shows that suc-
cessful immune escape depends on population size, reproductive 
ratios, mutation rates, and initial fitness of the invading host. They 
also emphasize that the independence of lineages assumed in their 
model is a limitation and may fail in capturing the transfer of genetic 
information between the lineages [87].

Through the linear and branched patterns of tumour evolution 
mentioned above, the tumour originates from a single mutated cell 
and propagates in a stepwise fashion; however, some experimental 
evidence supports another pattern of tumour evolution called punc-
tuated evolution. Through punctuated evolution, a plethora of mu-
tations occur at the early stages of tumour evolution and only one or 
few of these clones expand afterwards. Thus, in contrast to branched 
and linear evolutions where the origin of cancer can be traced back to 
point mutations, in punctuated patterns of evolution, cancer is often 
caused by copy number variations and chromosomal abnormalities. 
The tumour’s pattern of evolution has important therapeutic values 

as cancers propagating with a branched or linear pattern of evolu-
tion can easily be targeted for mutations or copy number variation 
since most of the population is uniform while punctuated evolution 
suffers from immense ITH and successful eradication of the tumour 
is contingent upon correctly targeting truncal mutations [66].

Although next- generation sequencing data has allowed us to in-
vestigate the tumour extensively at the genetic level, single- biopsy 
samples fail to capture the temporal and spatial heterogeneity 
needed to properly assess evolutionary models of cancer pro-
gression. Suitably specialized experimental studies have begun to 
emerge that can offer further insight. Perhaps, most notably, the 
TRACERx project investigates the spatial pattern of tumour evo-
lution in NSCLC, clear- cell Renal Cell Carcinoma (ccRCC), lon-
gitudinal and multi- region samples with the goal of optimizing 
therapy based on the patient’s genetic profile [88,89]. These studies 
predict slow cancer growth over prolonged periods that were then 
followed by immune escape. In the NSCLC data, heterogeneity of 
copy number variations, and not mutations, was associated with 
worse patient outcomes, while the ccRCC data was characterized 
by loss of chromosome 3p, associated with tumour development by 
ages of 30– 50 years [88,89]. The TRACERx cohort, and similar ap-
proaches, should be championed for providing a suitable amount 
of data for comparison to predicted trajectories of sophisticated 
mathematical models.

33.8. Models of tumour- immune interaction

Unlike traditional treatments that target specific pathways in cancer 
cells, immunotherapy acts indirectly by stimulating the patient’s im-
mune system and in doing so imposes a distinct type of evolutionary 
pressure [90]. This results in significant variability in immune re-
sponse and cancer progression. Mathematical models play a crucial 
role for predicting the complex behaviour of tumour- immune inter-
actions where tumour, immune system, and immunotherapy are 
mutually affected by one another. Mathematical models that have 
been developed over the past 40– 50 years have identified variables 
affecting the efficacy of therapy, thereby improving patient outcomes 
[91]. This section provides a brief review of some of the models used 
to study tumour- immune interactions. A majority of the available 
models can be sub- categorized into predator– prey models, deter-
ministic differential equation models, and stochastic process models.

33.8.1. Predator– prey

The first use of the predator– prey models in oncology can be traced 
back to the early 1970s when Bell utilized a simplistic predator– 
prey framework to model and track the dynamics of tumour- 
immune population in different parameter regimes [92]. This was 
followed by 1977 with DeLisi and Rescigno, where they modelled 
the interaction between a population of lymphocytes and tumour 
cells and showed that the probability of immune evasion increases 
with tumour size [93]. A later predator– prey model by Bocharov 
et al. captured the sneak- through phenomenon for lymphocytic 
choriomeningitis viral infection, which, similar to tumour progres-
sion, may result in replication and immune evasion [94]. Although 
predator– prey models have been widely used to explain cell– cell 
interactions in the tumour- immune setting, their use is question-
able due to their underlying assumptions [95–98]. In these models, 
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the existence of predators depends on the density of the prey popu-
lation that corresponds to T cells’ clonal expansion and contrac-
tion in the presence and absence of abundant antigenic signatures. 
However, when applied to study immune recognition of cancer, 
these models implicitly assume T- cell recognition of cancer, which 
in general is not guaranteed to be constant over the relevant time 
interval [98]. These models therefore omit a complete description 
of the stochastic tumour- immune recognition that is important for 
elimination.

33.8.2. Ordinary differential equations

Ordinary differential equations (ODEs) and partial differential 
equations (PDEs) are another type of tumour- immune interaction 
models commonly utilized. In these models, the dynamics of 
populations are tracked using ODE if time is the only independent 
variable, while they may be represented by PDE if multiple spa-
tial dimensions are considered. Here, we provide two examples of 
ODE models.

33.8.3. ODE of macrophages: a double- edged sword

Macrophages are innate cells and known to possess both pro- 
tumorigenic and anti- tumorigenic effects. Highly influenced by 
stromal signalling, monocytes can potentially differentiate into an 
M1 state and display tumour inhibitory behaviour through the se-
cretion of cytotoxic elements such as nitric oxide or they may differ-
entiate into a tumorigenic M2 state and secrete growth promoting 
cytokines [99]. Early models interrogated the role of macrophages 
in eradicating tumour cells in avascular settings [100] followed 
by models investigating the ability of engineered macrophages in 
targeting tumour cells or delivering drugs that showed unusual 
sensitivity of these therapies to tumour and therapy parameters 
[101–102].

Using a differential equation model, den Breems and Eftimie in-
vestigated the interplay between macrophage polarization and tu-
mour progression [103]. Through their model, the dynamics of M1 
and M2 macrophages can be tracked via the differential equations 
below, which allow for two- state transitions and exogenous cellular 
and cytokine activation:
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In the above equations, XM1  and XM2 represent the density of M1 
and M2 macrophages; xTs  is the density of immunogenic tumour 
cells, in the presence of which M1 macrophages get activated with an 
activation rate of as ; xTn is the density of non- immunogenic tumour 
cells, in the presence of which M2 macrophages get activated with 
an activation rate of as ; M1 and M2 macrophages get activated in 
the presence of Th1 and Th2 helper T cells (represented by xTh1 and 
xTh2) with rates am1 and am2, respectively. The death rates of the two 
types of macrophages are represented by δm1 and δm2 for M1 and M2 

macrophages, respectively, where they transition from an M1 state 
to M2 and vice versa with rates k12 and k21.

Using this model, Den Breems and Eftimie showed that type II 
immune responses correlate with tumour growth and the k12 and 
k21 are related to the delay in tumour growth and tumour size. 
Clinically, it has been observed that the prominent presence of 
M2 macrophages within the TME leads to worse patient outcomes 
[103]. This was further supported by another model that considered 
the effects of Tie2 Expressing Macrophages (TEMs) emanating from 
a separate precursor macrophage. Although phenotypically similar 
to M2 macrophages, these macrophages facilitate angiogenesis and 
tumour growth through both Angiopoeitin- 2 and differentiation to 
M2 macrophages through interleukin- 10. Interestingly, the results 
showed that the active presence of M2 macrophages regardless of 
TEM results in larger tumour growth highlighting the potential 
failure of TEM ablation in an M2- abundant TME [104].

33.8.4. Sneaking through with ODEs

Following up on Klein’s discovery of the ‘sneaking- through’ phe-
nomenon, in 1980 Grossman and Berke proposed an ODE model 
considering the interactions between immunogenic tumour cells 
and T lymphocytes. They tracked the dynamics of three types of 
lymphocyte populations, X, Y, and Z, representing precursor, pro-
liferating, and killer cells, respectively [105].

In their model, the precursor lymphocyte population represented 
by X grows and decays at a rate of s and ′e , respectively. X cells differ-
entiate into proliferating lymphocytes denoted as Y  in the presence 
of antigenic tumour cells and at a rate that is proportional to their 
density and the antigen density denoted as Ag. Y cells grow for τ time 
until they reach a resting and immunocompetent state (memory 
cell), and as this state was considered functionally similar to the X 
state, the two states are considered the same. If further stimulation 
by antigens takes place, in that case Y cells divide at a rate of dy for a 
period of ′τ  until they become cytotoxic killer cells denoted as Z. The 
tumour cells on the other hand (density equivalent to Ag) replicate 
at a constant rate of b. Z cells then kill tumour cells at a fast pace and 
die at a rate of c . Another type of immunogenic antigen molecules, 
denoted by Ag′, are assumed to be generated by tumour cells at a rate 
of ′b  or by destroyed tumour cells at a rate proportional to the rate 
of killing. These cells are then removed with a rate of ′′b . Grossman 
and Berke considered the effects of blocking factors that are antigen- 
bound antibody complexes or free antigens capable of blocking the 
immune system from destroying tumour cells through the mass- 
action law. However, they did not consider the blocking of killer cells 
as their blocking was deemed unimportant in tumour immunology. 
The densities of the three types of lymphocytes can be tracked via 
the differential equations below where the constants (a a a, ,′ ′′and ) 
denote the strengths of antigen– lymphocyte interactions and AgT is 
the total amount of antigen (Ag AgT = + Ag′):

 
dX

dt
s e X a X eY tT= − − + −( )′ Ag τ  

dY

dt
a X a Y dYT= − −′Ag Ag  

dZ

dt
a t Y t cZ= −( ) −( ) −′′ ′ ′Ag τ τ . 
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The dynamics of tumour cells were then tracked via the following 
equation where k  is a proportionality factor:

 
dAg

dt
b b b Ag b Ag

k aAgZ

Ag

T
T= + + ′′( ) − ′′ +

−

+






′
( )1

1
α

β

 

Next, they performed stability analysis on steady- state solutions and 
concluded that the existence of a stable steady state depends on an-
tigen density in a manner that leads to minimal immune responses 
to slow and rapidly growing threats. Thus, Grossman and Berke suc-
cessfully captured the ‘sneak- through’ phenomenon of slow- growth 
threats using an ODE [105].

Another application of ODE models is in the context of immune- 
mediated tumour dormancy to understand escape mechanisms. 
Through these models, whereby cancer cells grow as a function 
of immune cells, tumour cell resistance to the immune system’s 
line of defence can be modelled via reduced immune predation 
strength and immune recruitment potential. This set of models can 
be utilized to interrogate mechanisms of escape that prolong the 
tumour’s dormant state and thus improve patient therapeutic out-
comes [106].

33.8.5. Stochastic models of   
tumour- immune coevolution

To address some of the limitations of deterministic models men-
tioned previously, George and Levine devised a stochastic model 
to explain the coevolution of an adaptive immune system and 
cancer [107]. Their model considered cancer as a dynamic threat 
that may acquire a fully immune- evasive phenotype, such as class- 
I MHC down- regulation. They assumed cancer immune detection, 
should it occur, is possible once the population has exceeded a lower 
threshold, which may be determined by total size or total net growth 
rate, the latter reflecting the growth- threshold conjecture of immune 
detection [107,108]. Immune recognition probability was param-
eterized by TCR repertoire diversity and turnover, and from this 
they calculated the likelihood and mean arrival time of an immune- 
evasive phenotype. Their results demonstrated that the dynamical 
behaviour resulting from the growth- threshold conjecture yields 
tumours with slow and fast growth rates to have larger escape prob-
abilities, providing the first analytic argument of ‘sneak- through’ as 
an emergent phenomenon resulting from stochastic cancer immune 
evasion. Size- limited detection, on the other hand, generates eva-
sion probabilities that vary monotonically with net growth. These 
dynamics, while less relevant for understanding passive tumour evo-
lution, could be applied to understand therapies where immune ac-
tivation may largely be independent of cancer growth rate, such as 
CAR T- cell therapy [107].

This mathematical framework was further applied to account 
for the fact that TCR repertoire diversity and thymic output de-
crease as a function of age to predict acute myeloid leukaemia 
(AML) incidence. There, they modelled T- cell turnover, and rep-
ertoire diversity declines as a function of age using available data 
on T- cell receptor excision circles [109]. Their results showed that 
cancer, which can either arise due to immune- evasive mutations 
or population escape of immune recognition, mostly occurs due 
to the rare arrival of immune- evasive mutations at an early age, 

slightly increases because of a decrease in thymic output, and even-
tually decreases in late age due to lower TCR repertoire diversity. 
Moreover, this model of immune- specific cancer incidence sig-
nificantly outperforms the multi- stage carcinogenesis model in 
describing AML incidence [107]. This finding seems to be general 
to many cancer types for models of cancer incidence that focuses 
on immune function [110].

This model was later extended [107] to intermediate threats 
such as neoantigen down- regulation or mutation in the continual 
presence of adaptive immunity. Through this model, a parent 
clone grows as a pure birth process, may face immune recogni-
tion, and die through a pure death process. However, the evolution 
of the tumour may continue if the parent clone successfully ac-
quires a resistant phenotype prior to extinction. This process re-
peatedly continues until either elimination or escape occurs. This 
model evolves through a Galton– Watson branching process [111]. 
Through fitting the model to empirical data of multiple cancer 
types, they discovered a significant correlation between early 
cancer incidence (ages 0– 40 years) and per- cell evasion rate. Thus, 
their model highlighted the importance of immunosurveillance in 
the early stages of the disease. Next, they applied their model to 
TRACERx ccRCC and NSCLC data. From the ccRCC data, they 
found that the tumour undergoes 27 recognition cycles before 
immune escape. From the parameter estimation of their model, 
they identified that initiation events are significantly higher than 
incidence, highlighting the existence of an active immune system. 
While they found that squamous cell carcinoma and smoking were 
related to an immunosuppressed system, from their calculations 
of the mean– variance of clonal non- synonymous mutations, they 
observed an opposite behaviour for non- smokers and adenocar-
cinoma. Overall, their results demonstrate the immense need for 
cancer- type- specific treatment strategies. Their model successfully 
related immune evasion and the branched pattern of tumour evo-
lution [111].

Recent work has explicitly modelled tumour evasion via antigen 
loss and considers the aggressiveness of the cancer evasion strategy 
as a key model parameter. Cancer optimal evasions strategies can 
be solved for using stochastic dynamic programming, and immune 
microenvironmental features, including T- cell recognition rates, are 
predicted to affect the immunogenicity, ultimately resulting in ‘cold’ 
or ‘warm’ tumours [112].

33.9.  Conclusions

In this chapter, we reviewed the key concepts in the history of 
cancer immunotherapy and evolution, wherein mathematical 
modelling has played a central modern role in improving patient 
outcomes. With the current popularity of immunotherapy and the 
widespread availability of high- resolution data, there is an even 
larger need for data- driven and theoretical models to better under-
stand individual therapeutic failure resulting from patient- specific 
intra- tumoral heterogeneity. Stochastic modelling is an attractive 
framework for advancing our understanding, given the inherent 
random nature of tumour progression along with significant un-
certainty in every detailed parameter required to fully define the 
relevant problems.
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Mechanistic modelling and machine 
learning to establish structure– activity 
relationship of nanomaterials for 
improved tumour delivery
Maria Jose Peláez, Shreya Goel, Vittorio Cristini, Zhihui Wang,  
and Prashant Dogra

34.1.  Introduction

Cancer continues to be among the leading causes of death world-
wide, with systemic therapy (e.g. chemotherapy and immuno-
therapy) being an important treatment option for the majority 
of cancers [1] . The challenges of drug insolubility, fragility, or 
instability in vivo, and the collateral damage to healthy cells as-
sociated with non- targeted delivery of cytotoxic agents have 
prompted the need for innovative methods to improve the safety 
and efficacy of systemic cancer therapies. As a result, engineered 
nanomaterials have emerged as the putative ‘magic bullets’ cap-
able of targeted tumour delivery of the encapsulated cargo. By 
preserving drug stability and improving its systemic pharmaco-
kinetics, nanomaterials enhance the safety and efficacy of sys-
temic cancer therapies [2].

The past two decades have witnessed a surge in preclinical re-
search and development activities in cancer nanomedicine (Figure 

34.1) [3,4]; however, the pace of clinical translation of these 
novel nanomaterials has failed to keep up, with only a handful of 
nanomaterials arriving to clinical trials or in the clinic [5] . As per a 
comprehensive meta- analysis of preclinical studies, the tumour de-
livery efficiency of nanoparticles (NPs) has stagnated at a median 
value of 0.7% of the injected dose, across a range of nanomaterial 
and tumour types [6]. This delivery problem has primarily con-
tributed to the limited clinical success of cancer nanomedicine [7]. 
Additionally, the associated potency of nanomaterials to induce 
deleterious effects in blood and healthy tissues presents a major bar-
rier to regulatory approval of cancer nanomedicines [8– 10].

For this, experimental efforts to better understand the effect of 
NP physicochemical properties (e.g. size, shape, Zeta potential, 

surface chemistry, hardness, porosity, core material type, state of 
aggregation, and crystallinity) on the systemic pharmacokinetics, 
tumour delivery efficiency, and safety of NPs, referred to here as the 
structure– activity relationship (SAR), have been made [6,7,11– 13]. 
Based on the divide and conquer strategy, experimental efforts to 
establish the SAR of NPs have been made in isolation [14– 16], i.e. 
various physicochemical properties have been studied separately 
for their effect on the biological behaviour of NPs. Generalization 
of outcomes from such studies is useful, but the occurrence of non- 
linear effects of particle properties on biological outcomes may 
preclude the elucidation of a comprehensive SAR of NPs in vivo. 
Also, it becomes an upheaval task to experimentally study param-
eter combinations in the vast, multidimensional parameter space 
of the NP- mediated drug delivery process to establish a universal 
SAR of NPs.

To this end, mathematical modelling has been a critical tool 
employed by scientists to unravel the mechanistic underpinnings 
of pharmacokinetics, safety, and tumour delivery of NPs [17]. 
Through data- driven and mechanistic modelling, various bio-
chemical and biophysical nano– bio interactions, physiological 
processes, and tumour dynamics can be investigated for their non- 
linear effects to obtain a comprehensive SAR map of NPs, which 
can generate design guidelines for developing NPs with optimized 
pharmacokinetics and improved safety and tumour delivery effi-
ciency. In this chapter, we cover the fundamental nano– bio inter-
actions and transport phenomena relevant to this problem and 
discuss the various mathematical modelling and machine- learning 
approaches that have been developed to study NP SAR pertaining 
to systemic pharmacokinetics, toxicity, and tumour- targeted de-
livery of NPs.
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34.2. Nano– bio interactions and transport 
phenomena in vivo

To better appreciate the complexity of the delivery problem 
mentioned above, it is important to understand the relevant 
nano– bio interactions and transport phenomena that deter-
mine the in vivo fate of NPs. As shown in Figure 34.2, the pas-
sage of NPs from the site of injection to the site of action (i.e. 
cancerous cells) can be divided into three stages: (i) vascular, 
(ii) transvascular, and (iii) interstitial [17,18]. Along this path, 
NPs encounter several biochemical, biophysical, anatomical, and 
physiological challenges that ultimately govern their biological 
fate, and determine the toxicity and tumour delivery efficiency of 
NPs, as described below.

Following injection, as NPs enter the blood stream, they are ex-
posed to a high concentration of plasma proteins (60– 80 g/ l), namely 
albumins, apolipoproteins, and opsonins that adsorb on the sur-
face of NPs and form a (bio)molecular corona around the particles. 
Corona formation alters the synthetic identity of NPs and imparts 
them a new in vivo identity, thereby influencing other nano– bio 
interactions (e.g. NP interactions with cell surface receptors or cell 
membranes). The corona around the particles is a dynamic entity, 
and depending upon the physicochemical properties of the NPs, the 
relative affinity of plasma proteins for NP surface can vary, and thus 
the corona can have a varied composition at steady state. As a re-
sult, the effect of the biomolecular corona on microscopic nano– bio 
interactions can vary based upon the properties of the NP, which can 
manifest at the global scale in the form of altered pharmacokinetics 

Figure 34.1. A historical timeline of the major advancements in cancer nanomedicine. Source: Adapted from Dogra et al. [17].

Figure 34.2. Nanoparticle transport in tumours. Biophysical barriers involved in the delivery of NPs to tumours via microcirculation. 
Source: Adapted from Dogra et al. [17,18].
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and tumour delivery efficiency of NPs. To minimize such undesired 
NP interactions, surface coating of NPs with hydrophilic polymers, 
such as polyethylene glycol (PEGylation), is a commonly used 
strategy to sterically block plasma protein binding of NPs. However, 
optimization of the density of the grafted polymer is necessary to 
ensure protection from plasma proteins without compromising NP 
activity [3] .

Further, perfusion of the tumour (i.e. passage of blood through the 
vasculature of tumour) carries the NPs from the systemic circulation 
into the tumour vascular space. Perfusion is quantified as the blood 
flow rate per unit mass of organ and is a property of the biological 
system, varying across tissues and species [19]. Blood flow rate Q  is 
measured as the ratio of the pressure difference between arterial and 
venous ends of blood vessels (∆P) and flow resistance (FR):

 Q P= ∆ / FR, (34.1)

where flow resistance is the product of apparent viscosity (due to 
erythrocyte density) and geometrical resistance, which tends to be 
greater in tumours compared to healthy tissues, due to vessel de-
formations and abnormalities, thus lowering tumour perfusion. 
Therefore, the perfusion- dependent influx of NPs into the tumour 
vascular volume, as defined by the product of Q  and NP concen-
tration in the systemic circulation, largely determines the fraction 
of injected dose of NPs arriving in the tumour vasculature [20]. 
Simultaneously, NPs are also being transported through perfusion to 
the healthy tissues and organs of the body based on their respective 
blood flow rates, which partly governs the systemic pharmacokin-
etics of NPs.

Once NPs arrive at the finest blood vessels, (i.e. microcapillaries), 
they encounter a highly dynamic environment because of the en-
gagement of the capillary network in the exchange of materials (i.e. 
nutrients and wastes) with tissue interstitium. This exchange is made 
feasible by the porous nature of the capillary wall, allowing easy ex-
change of fluid and solutes driven by a combination of diffusion and 
advection. The combined effect of diffusion and bulk transport that 
governs the flux J  of molecules through the capillary wall into the 
interstitium can be expressed as

⋅ = −( ) + −( ) −( ) − −( ) J PS C C LS p p Cp i v i v i p

Diffusion A
� �� ��

1 σ σ π π ,

ddvection
� ������� �������

 (34.2)

where P  represents permeability of solute across vascular wall, S 
is the vascular surface area, Cp and Ci are the molecular concen-
trations in systemic circulation and interstitium, respectively, L is 
the hydraulic conductivity of fluid across the endothelial barrier, 
σ is the reflection coefficient that determines the impedance to 
solute passage across the vascular wall, p pv i−  represents the differ-
ence between hydrostatic pressures between microvasculature and 
interstitial space, and π πv i−  is the difference in osmotic pressure 
across the wall. P , L, and σ are the critical transport parameters 
that govern the tendency of a substance to undergo transvascular 
extravasation and are a function of NP physicochemical properties 
(especially NP size and surface charge) and porosity of the vascular 
wall [20].

Note that based on the pore size of vessel walls, microcapillaries 
in healthy tissues are classified as (i) continuous, (ii) fenestrated, 
and (iii) sinusoidal. Continuous capillaries have pore sizes <5 nm 
(e.g. brain, lungs, muscles, and skin), fenestrated capillaries haves 

pores <15 nm (e.g. kidneys), and sinusoids in liver have pores 
<200 nm, while those in spleen are ~5 μm [21]. Thus, the NP 
to pore size ratio becomes a critical determinant (in addition to 
NP surface charge) of NP extravasation into tissue interstitium, 
which comprises the transvascular stage of NP transport [22]. 
Similarly, due to malformed neoangiogenic vessels, tumour 
vessel walls have larger pores (~1,700 nm) [23], which enhances 
their permeability, allowing passive accumulation of NPs in tu-
mour interstitium. On the other hand, the enhanced perme-
ability of tumour vessels also causes greater leakage of fluid into 
the interstitium, which builds up the interstitial fluid pressure 
in tumours that counters the hydrostatic pressure necessary for 
advection. This is further aggravated by dysfunctional lymphatic 
drainage caused by solid stress in a growing tumour, ultimately 
leading to diffusion being the primary means of NP extravasa-
tion in tumour interstitium [24].

Finally, once NPs are in the tumour intersitium, they diffuse 
through the dense extra- cellular matrix (ECM), with little to no sup-
port from advection (due to high interstitial fluid pressure) [25], to 
arrive in the vicinity of cancerous cells, described by

 
∂
∂

= ∇
C

t
D Ci

i
2  (34.3)

where Ci is the concentration of NPs in tumour interstitium and D 
is the diffusion coefficient of NPs (which is a function of NP size). 
Diffusion- mediated interstitial transport of NPs limits their pene-
tration distance and thus delivery of cargo to cancerous cells distant 
from the tumour- feeding capillaries is challenging [26,27]. Readers 
are referred to the following review for a detailed discussion on intra- 
tumoral transport barriers to drug delivery [28]. Once in the prox-
imity of cells, NPs maybe internalized through clathrin- dependent/ 
independent endocytosis, caveolin- dependent/ independent endo-
cytosis, or receptor- mediated endocytosis, depending upon their 
size and surface characteristics [29– 32].

The preferential accumulation of NPs in the tumour interstitium, 
as discussed above, is exploited to achieve passive tumour targeting 
of NPs, referred to as the enhanced permeability and retention 
(EPR) effect [33]. However, such preferential accumulation of NPs 
is also observed in mononuclear phagocytic system (MPS) organs 
(particularly, liver and spleen). This is driven by the high porosity of 
sinusoidal vessel walls and the occurrence of resident macrophages 
(such as Kupffer cells in liver and splenic macrophages in spleen) 
in the lumen of sinusoids, which causes immediate sequestration of 
circulating NPs in the intersitium of these organs [34,35]. Given the 
large physical dimension of MPS organs, compared to tumours, a 
major fraction of the injected dose of NPs is captured in the liver 
and spleen, thereby reducing NP circulation time and their avail-
ability for accumulation in the tumours. Prolonged retention of NPs 
in MPS organs also raises the possibility of NP- induced toxicity due 
to oxidative stress caused by the generation of reactive oxygen spe-
cies, cell membrane damage, possible interactions of NPs with intra-
cellular organelles, such as mitochondria and nuclei, to alter cellular 
metabolism and induce DNA damage [36,37]. Thus, the optimiza-
tion of NP design to reduce uptake in MPS organs, which can prevent 
potential toxicities and improve NP circulation time to improve tu-
mour accumulation, is the holy grail for clinical translation of cancer 
nanomedicine.
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As evident in the description above, NP delivery to the tumour is 
a multiscale process accompanied by microscopic nano– bio inter-
actions and transport processes (dependant on NP properties, MPS 
physiology, and tumour characteristics), which govern the systemic 
pharmacokinetics, safety, and tumour delivery efficiency of NPs. To 
effectively study NP- mediated tumour drug delivery, integration of 
experimental work with mechanistic mathematical modelling and 
machine learning is critical to enable exploration of the vast, multi-
dimensional parameter space and establish universal SAR of NPs to 
guide rational design of NPs for improved tumour- targeted delivery.

34.3. Mechanistic modelling to characterize  
SAR of NPs

To support the preclinical development and clinical translation 
of NPs, the characterization and improvement of their systemic 
pharmacokinetics, safety, and tumour delivery efficiency is of ut-
most importance. To this end, several mathematical modelling 
approaches have been developed to study the SAR of NPs [17]. 
These models have been developed to study processes spanning 
across multiple spatiotemporal scales; depending upon the length 
and timescales to be modelled, a particular modelling approach 
is selected, keeping the computational efficiency and model com-
plexity in context. Broadly, mechanistic modelling approaches can 
be classified as discrete, continuum, and hybrid (Table 34.1).

Discrete or agent- based models generally operate at the level of 
autonomous agents or entities, which in the current context can be 
cells or NPs. The high spatiotemporal resolution of such models al-
lows the inclusion of detailed molecular or cellular level processes, 
which is particularly relevant to the investigation of microscopic 
nano– bio interactions. However, the computational cost associ-
ated with the modelling of multiple agents and their interactions 

limits the scalability of such models. To overcome this limitation, 
continuum models are used, which model the behaviour of agents 
as continuous mass rather than discrete particles. Assuming homo-
genous distribution of agents in the occupied volume (e.g. NPs in 
the tumour vasculature), these models study the bulk behaviour of 
the system by considering spatiotemporal averages of the underlying 
(smaller scale) processes and randomness. Thus, due to reduced spa-
tiotemporal resolution, these models are computationally less ex-
pensive and thus can easily be extended to study large- scale systems, 
e.g. whole- body biodistribution dynamics of NPs. These models 
however limit the study of the effects of heterogeneity within the 
system, (e.g. polydispersity of NP samples or intercellular differences 
in expression of cancer cell surface receptors), which necessitates 
the hybridization of discrete and continuum modelling approaches, 
leading to hybrid models. Leveraging on the strengths of the two 
approaches, in hybrid models, some components are modelled as 
discrete entities, while the rest are modelled as continuous mass. In 
the following sections, we review selected mechanistic modelling 
methods (with a focus on physiologically based pharmacokinetic 
(PBPK) models) that are fundamental to the characterization of NP 
pharmacokinetics, safety, and tumour- targeted drug delivery for 
establishing the SAR of NPs.

34.3.1. Models pertaining to NP 
pharmacokinetic characterization

One of the most fundamental types of continuum models used for 
the whole- body pharmacokinetic characterization of drugs is PBPK 
models. PBPK models involve compartmentalization of the body 
into physiological volumes representing organs and tissues, con-
nected in an anatomical fashion via physiological fluid (blood and 
lymph) flow (Figure 34.3). The model is formulated as a system of or-
dinary differential equations (ODEs) to describe the transport phe-
nomena responsible for mass transfer between compartments and 

Table 34.1. Common quantitative approaches to study SAR of NPs (systemic pharmacokinetics, safety, and tumour delivery efficiency).

Model type Applications Advantages Disadvantages

Mechanistic models Continuum
(ODE/ PDE)

Model the average spatiotemporal 
dynamics of NP biodistribution

- Low computational cost
- Model centrally based large- scale 
processes
- Allows data- driven empirical 
description or mechanistic 
formalism of the system
- (ODE) has a high clinical 
applicability

- Hard to describe heterogeneity
- Inclusion of phenomenological 
model parameters, which may not 
have a direct biological meaning, 
proving difficult to measure 
experimentally
- Solutions are deterministic

Discrete Model the spatiotemporal dynamics 
on a cellular level, studying NP– cell, 
cell- to- cell, and cell– environment 
interactions

- Captures heterogeneity of 
biological entities and their 
underlying mechanisms
- Solutions are non- deterministic

- High computational cost
- Harder development (multiscale 
modelling) and implementation
- Impractical for large- scale global 
systems

Hybrid Model the spatiotemporal global 
dynamics between populations, 
including cellular level interactions

- Captures heterogeneity of 
biological entities and their 
underlying mechanisms
- Multiscale modelling technique
- Model large- scale processes

- High computational cost
- Harder to develop
- Use of many numerical techniques
- Difficult to do model 
parameterization

Artificial intelligence Predict, classify, and find relationships 
regarding drug delivery and 
distribution, patient status, and 
treatment efficiency

- Can handle non- linear relationships
- High predictive capability
-  Has a high clinical applicability

- High computational cost
- Requires large amount of consistent 
data, which may be hard to find in 
medical databases
- Use of complex algorithms
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sub- compartments, thereby characterizing the concentration kin-
etics of drugs across the body. Since the PBPK modelling framework 
is based on mechanistic and physiological parameters, it can help 
with interspecies extrapolation of drug PK, thereby allowing pre-
dictions for humans (based on physiological differences) from ani-
mals, to support investigational new drug applications. Additionally, 
these models allow the characterization of drug PK in patients or 
special populations (e.g. paediatrics, elderly, and pregnant women) 
based on the PK in healthy volunteers. Further, PBPK models can 
be integrated to drug– response (or pharmacodynamic) models to 
characterize drug safety and efficacy. Since the model incorporates 
physiological parameters (organs volumes, blood- , and lymph- flow 
rates), drug- related parameters (permeability and lipophilicity), 
and treatment regimen parameters (dose, route of administration, 
and treatment frequency), it can investigate the mechanistic basis 
of drug PK and support the optimization of control parameters to 
achieve a target PK profile for optimal treatment outcomes.

To accurately characterize the systemic PK of NPs, it is critical for 
a PBPK model to capture the key nano– bio interactions and trans-
port processes (detailed in the previous section). Due to physical 

differences between small molecules and NPs, the adoption of trad-
itional PBPK models to study NP dynamics in vivo requires modi-
fication of modelling assumptions and model reparameterization to 
account for the effect of NP properties (such as size and shape) on 
absorption, distribution, metabolism, and excretory processes. Thus, 
experimental studies that can quantify nano– bio interactions and 
systemic PK of NPs are critical to the development of well- calibrated 
PBPK models. For this purpose, non- invasive, whole- body imaging 
techniques to quantify the time- dependent biodistribution of NPs 
are commonly used [18]. The most used imaging modalities in-
clude magnetic imaging, nuclear imaging (PET and SPECT), and 
optical imaging (fluorescence and bioluminescence), which involve 
labelling of NP surface with small molecules (i.e. imaging agents) 
that upon stimulation with an input signal, or without, produce a 
reporter signal detectable by the receiver of the imaging device. This 
generates a time series of images, which upon quantification provide 
the necessary NP biodistribution kinetics data across the body for 
the development and calibration of a PBPK model. Also, key mech-
anistic and physiological parameters relevant to NP pharmacokin-
etics and tumour delivery, such as fluid (blood and lymph) flow 
rates, compartment volumes (vascular and extravascular), vascular 
permeability and surface area, and cellular internalization rates, can 
be quantified through the above imaging techniques. Note that the 
choice of the imaging modality is based upon the chemical limi-
tations of NP labelling and the requirements of spatial resolution, 
tissue penetration depth, sensitivity, and cost effectiveness of the 
imaging modality. Over the past decade, several data- driven PBPK 
modelling efforts have helped characterize the systemic pharmaco-
kinetics of novel NPs. Readers are referred to a detailed review of NP 
PBPK models by Kumar et al. [7] .

As a representative example, here we discuss an imaging data- 
driven PBPK model developed by Dogra et al. to study the effect 
of NP physicochemical properties on the whole- body pharmaco-
kinetics and tumour delivery efficiency of mesoporous silica NPs 
[38]. As shown in Figure 34.3, the model is composed of 12 com-
partments that represent major organs and tissues of interest. Each 
compartment comprises two sub- compartments that represent the 
vascular (red) and extravascular (blue) volumes of the organs. NPs 
upon injection into systemic circulation are transported via blood 
flow to the vascular sub- compartments of various organs, from 
where a fraction of freely circulating NPs extravasate into the extra-
vascular sub- compartment (depending upon the corresponding 
lymph flow rate), while the remaining fraction exits the vascular 
sub- compartment to re- join the systemic circulation. Note that 
in the vascular sub- compartment, depending upon their physico-
chemical properties, NPs bind and unbind from the vascular endo-
thelium, which affects their circulation time and the tendency to 
extravasate through vessel wall pores or be phagocytosed by macro-
phages. The extravasating NPs enter the lymph node compartment 
to re- join systemic circulation, which enables the conservation of 
mass. In this model, based upon experimental evidence, the liver, 
spleen, and kidneys are considered to participate in the excretion 
of NPs, with the liver and spleen also comprising an additional 
sub- compartment representing the macrophages of the MPS. The 
various nano– bio interactions (except plasma protein binding) and 
transport phenomena discussed in the sections before are captured 
in this model through a system of ODEs that are solved numerically, 
and the solution is compared for its accuracy against in vivo data 

Figure 34.3. Structure of whole- body PBPK model. Notation: red 
arrows: plasma flow; dashed blue arrows: lymph flow; bright yellow 
arrows: extravasation; white arrows: phagocytosis; mustard 
arrows: excretion; dotted white arrows: NP deposition on the vascular 
wall; dotted black arrows: NP dislodging from the vascular wall. 
Source: Reproduced with permission from Dogra et al. [38].
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obtained through SPECT- CT imaging of radiolabelled mesoporous 
silica NPs [14]. The model predictions of whole- body pharmacokin-
etics showed excellent agreement with in vivo data, with predictions 
of tumour delivery also leading to physiologically plausible results. 
The model was then used for local and global sensitivity analyses 
that unravelled the key roles of NP degradation rate, tumour blood 
viscosity, NP size, tumour vascular fraction, and tumour vascular 
porosity in determining the tumour delivery efficiency of these NPs. 
The physiological structure of the model, along with the inclusion 
of mechanistic parameters to represent NP- specific in vivo inter-
actions, allows the application of this model to NP types other than 
mesoporous silica, as demonstrated by the adaptation of this model 
to study ultrasmall porous silica NPs [15] and microparticles [39].

34.3.2. Models pertaining to NP- mediated 
tumour- targeted drug delivery

To evaluate the bulk accumulation of NPs in the tumour, based on 
the EPR effect, and their penetration into the tumour tissue, con-
tinuum or discrete modelling approaches have been employed. From 
a continuum modelling perspective, an obvious extension of whole- 
body PBPK models, as shown in Figure 34.3, involves the inclusion 
of an additional compartment representing the tumour [7,11,38]. 
NPs administered into the systemic circulation are fed into the tu-
mour vasculature through perfusion, and as discussed before, from 
the tumour vascular sub- compartment, NPs exit into the tumour 
interstitial sub- compartment in a vascular permeability- limited 
fashion, i.e. based on the relative size of NPs and vessel wall pores. 
Such a modelling approach allows the understanding of the effect of 
NP parameters simultaneously on systemic pharmacokinetics and 
tumour delivery efficiency, which can be used for multiobjective op-
timization, i.e. simultaneously identifying NP design sub- space that 
minimizes NP accumulation in the MPS and maximizes accumula-
tion in the tumour. Given that the timescale of NP clearance from 
the body (hours– days) is short compared to tumour growth time-
scales (weeks– months), therefore, to investigate the SAR of NPs fol-
lowing a single injection, a static tumour- integrated PBPK model is 
sufficient [38]. However, if required to understand the effect of treat-
ment regimen parameters on tumour outcomes, it can become ne-
cessary to include a growth component in the tumour compartment 
to accurately simulate the time- dependant changes in the tumour 
parameters that can affect NP delivery efficiency over the course of 
treatment. Note that the healthy compartments in this scenario are 
modelled to be static, which can also be simplified and lumped into 
one or two compartments, based on the compartmental PK mod-
elling approach [40]. As a representative example, a minimal mod-
elling approach was developed by Dogra et al. [41,42], where they 
lumped the healthy organs into a single compartment representing 
the systemic circulation, which connected to a tumour compartment 
through blood flow. Since their modelling approach was oriented to-
wards improving the understanding of tumour delivery efficiency 
of NPs and optimizing treatment outcomes of NP- mediated gene 
therapy, the tumour compartment was then sub- compartmentalized 
into vascular, interstitial, and cellular volumes, and tumour growth 
dynamics was modelled to evaluate the effect of changing tumour 
physiology on NP delivery and to include a pharmacodynamic com-
ponent in the model. Their analysis identified novel combinations 
of NP- delivered gene therapy with standard- of- care drugs for breast 
cancer to improve treatment outcomes.

While the continuum modelling approaches mentioned above 
(which at times rely on phenomenological descriptors of biological 
interactions and process) allow the investigation of multiple param-
eters simultaneously (i.e. NP- related, physiology- related, tumour- 
related, and treatment- regimen- related parameters) for their effect 
on NP accumulation in the tumour, it is challenging to investigate 
intra- tumoral NP transport dynamics, interactions with the tu-
mour microenvironment, and cellular or nuclear internalization of 
NPs from a detailed, mechanistic perspective with such multiscale 
models. As such, discrete or hybrid modelling approaches are often 
used for a detailed description of the tumour microenvironment 
and the associated transport phenomena to study intra- tumoral 
NP SAR. As an example, to understand the effects of NP size on 
tissue distribution and penetration efficiency, a multiscale model 
was developed by Islam et al. using a time- adaptive Brownian dy-
namics algorithm that accounted for advection, diffusion, and 
cellular uptake of NPs [43]. This model included particle– cell inter-
actions, cell– surface adhesion, particle dispersion, particle capture, 
and penetration. The results showed that in a system that considers 
the interaction of NPs with the cell walls and advection, NP size 
(10 and 100 nm) effects on NP distribution and penetration were 
less pronounced than that in a cell- free in vitro system. Similarly, 
Sykes at al. performed Monte Carlo simulations to study diffusion 
of NPs through tumour ECM [44]. They modelled the tumour ECM 
in three dimensions as an anisotropically oriented network of col-
lagen fibres to study the mobility of NPs through collagen matrices 
of varying densities. Collagen fibres were approximated as immo-
bile cylinders, and NP– fibre collision was assumed to be elastic. NP 
movement was simulated as a discrete random walk following the 
Stokes– Einstein relation for the diffusion of spherical particles in a 
fluid with low Reynolds number. Their model helped elucidate the 
mechanisms underlying particle size- dependent retention of NPs 
in clinically relevant tumour conditions. Also, Wirthl et al. studied 
tumour delivery of NPs by adapting a multiphase tumour growth 
model to include tumour microenvironmental transport barriers 
(Figure 34.4) [45]. The model included fives phases, with the ECM 
being the solid phase, and tumour cells, host cells, and interstitial 

Figure 34.4. Components of the multiphase tumour growth model. 
The model comprises a solid phase, the ECM, three fluid phases, 
host cells, tumour cells and interstitial fluid (IF), and the vasculature 
that is modelled as an independent porous network. In addition, the 
phases transport species, namely necrotic tumour cells, oxygen, 
and nanoparticles. Source: Reproduced with permission from Wirthl 
et al. [45].
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fluid representing fluid phases flowing through the pores of the solid 
phase. Additionally, the vasculature was modelled as an independent 
porous network with blood flow and as the source of injected NPs. 
Furthermore, the model assumed that oxygen and nutrients were 
mainly transported by the vasculature and interstitial fluid. To 
model the extravasation of the NPs to the interstitial fluid, both the 
transendothelial (diffusion through capillary vessel walls, dependent 
on particle size) and the interendothelial pathways (convective pro-
cess influenced by pressure gradients) were included; additionally, 
lymphatic drainage (interstitial fluid to the lymph system) was also 
modelled. Simulation results showed that solid tumours developed 
a non- perfused core and increased interstitial pressure, which were 
identified as the two features of solid tumours that limit NP delivery. 
Only in the case of small NPs, the transport was dominated by dif-
fusion, and NPs reached the entire tumour. The permeability of the 
blood- vessel endothelium had a major impact on the amount of de-
livered NPs. Readers are referred to the following review for more such 
modelling examples [17].

34.3.3. Models pertaining to NP 
safety assessment

While NP parameter optimization to achieve the target systemic PK 
profile and efficient tumour delivery are critical to support the clin-
ical translation of cancer nanomedicines, it is equally important to 
ensure the safety associated with exposure of healthy tissues to the 
administered NPs. Modelling efforts to understand the effect of NP 
properties on their toxic potential include the application of con-
tinuum and hybrid modelling approaches, with representative ex-
amples discussed below.

Laomettachit et al. designed a hybrid model based on the PBPK 
framework to estimate NP concentration in the liver and used this 
value as input to a cell- response model, which predicted the extent 
of cell death in the liver due to the accumulation of the titanium di-
oxide NPs [46]. This model demonstrated the dose- dependent tox-
icity of titanium dioxide NPs in liver, i.e. the tissue damage from a 
low dose of NPs is negligible and reversible due to compensation 
by cell proliferation, while high exposure can cause irreversible 
tissue damage unless a large fraction of cells undergoes cell div-
ision to renew the damaged tissue mass. Also, Lin et al. developed 
a PBPK model of gold NPs that described the tissue distribution of 
NPs across different species to be integrated to in vitro or in vivo 
toxicity data for quantitative risk assessment [47]. The model con-
sisted of seven compartments, which represented the major organs 
of the body (plasma, liver, spleen, kidneys, lung, brain, and others), 
including transcapillary membrane transport, endocytosis, different 
distribution coefficients for the plasma and the tissue, and biliary 
and urinary excretion. The model was validated using data from 
mice, rats, and pigs, and extrapolations made to predict behaviour 
in humans, with rats and pigs identified as the more appropriate spe-
cies for human extrapolations.

34.4. Artificial intelligence 
to characterize SAR of NPs

In addition to mechanistic models discussed above, an increasing 
number of studies are now leveraging the strengths of artificial in-
telligence at handling large volumes of in vitro and in vivo data to 

identify correlations between NP properties and various aspects 
of NP SAR, including NP toxicity [48,49]. Machine- learning tech-
niques use learning- based algorithms to establish relationships and 
patterns from the available data (high quantity of data of fixed struc-
ture and periodicity). These types of algorithms can be divided into 
supervised learning (task- driven), unsupervised learning (data- 
driven), and reinforcement learning (learning from mistakes). Now, 
we briefly discuss some important advances in this direction.

Lin et al. used various machine- learning algorithms (classic 
models, ensemble models, support vector machines, and neural 
networks) to determine the effect of NP physicochemical prop-
erties (e.g. size, zeta potential, shape, and core material), tumour 
models, and cancer types on tumour delivery efficiency [50]. The 
results from the analysis suggested that cancer type, zeta potential, 
and the core material of NPs have the greatest effect on tumour 
delivery efficiency. Further, to analyse NP transport and predict 
NP distribution, Stillman et al. developed a modelling platform 
called EVONANO (Figure 34.5), which included three central 
modules: (i) virtual tumour model (simulation of virtual tumour 
growth using agent- based model), (ii) virtual tissue model (simula-
tion of NP– tissue interactions using stochastic reaction– diffusion 
equations), and (iii) genetic algorithm- based machine- learning 
module (for optimization of NP design) [51]. This platform gen-
erated different representative scenarios to model and optimize 
NP distribution in the tumour under different conditions. Results 
show that the ML algorithm can find a treatment solution that kills 
95% of the cancer cells with a low dosage for the homogeneous 
tumour environment. Meanwhile, the best solution for the hetero-
geneous tumour environment showed that a combined treatment 
was able to kill 99% of cancer cells and 80% of cancer stem cells. 
Additionally, the study showed that NPs with a high diffusion co-
efficient and low binding affinity showed the best results for both 
types of tumours.

Nademi et al. used three different machine- learning algorithms 
(random forest, multilayer perceptron, and linear regression) to 
identify design insights to improve cellular uptake of short inter-
fering RNA (siRNA) by hydrophobically modified polyethylenimine 
(PEI) NPs into various breast cancer cell lines [52]. For this, the 
complete dataset included 197 data points from which 75% was 
used for model training and the remaining 25% for model testing. 
The models identified that the most significant determinants of cel-
lular uptake were PEI- to- siRNA weight ratio, type of hydrophobic 
substitution, total number of C, unsaturation level of C on the lipid 
substitution, and the total number of thioester groups on the modi-
fied PEIs.

Kingston et al. created an imaging (3D microscopy) and image 
analysis machine- learning workflow to study the interactions of NPs 
with cells in metastatic tumours, as well as analyse the physiology 
of micrometastases [53]. Due to their small size and sparse distri-
bution, the interaction and distribution of NPs in micrometastases 
has been limited, but, due to their proximity to blood vessels, the 
authors hypothesized that they would be a good target for NP de-
livery. Thus, the authors combined tissue clearing, 3D microscopy, 
and machine learning (segmentation and image analysis algo-
rithms) to assess their hypothesis. Results showed that on average 
the primary tumour cells were found at 16 μm from the closest blood 
vessel, while micrometastases were found at 8 μm. Additionally, an 
eight times higher density of NP- positive cells in micrometastases 
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compared to primary tumour cells was observed. Moreover, 24 h 
post injection, in micrometastases 50% of the cells were positive for 
NPs, whereas only 17% were positive in the primary tumour cells. 
Finally, in both cases, NP intensity decreased with higher distance 
from blood vessels.

To study the delivery and accumulation of anticancer drugs 
(DOX) transported by NPs, Goswami et al. developed a framework 
consisting of computer vision and a machine- learning module [54]. 
In the first module, images obtained from a fluorescence microscope 
were analysed and the average luminance (direct measure of fluor-
escence directly correlates with cell uptake) value was extracted. 
Later, this information was used to predict and observe general ac-
cumulation trends of DOX by using least- squares regression. Results 
showed that initially free DOX showed higher concentrations (~0.42 
times higher at 4 h) than DOX- loaded NPs, whereas after 24 h, DOX- 
loaded NPs showed higher intensity values than free DOX in the cell 
cytoplasm (~1.98 times higher at 24 h) and at the whole cell level 
(~1.35 times higher at 24 h). Thus, concluding that free DOX accu-
mulates fast at initial times, but also effluxes fast, while DOX- loaded 

NPs initiate with a slower accumulation, which later increases, and 
are retained in the cell for an extended period.

34.5.  Conclusions

In the past two decades, preclinical research in cancer nanomedicine 
has focused on the development of novel nanoformulations for 
the optimization of tumour- targeted drug delivery. However, due 
to biological interactions and physiological processes in vivo, the 
tumour delivery efficiency of NPs has remained consistently low, 
which has manifested in the form of limited clinical translation of 
cancer nanomedicine. To this end, establishing the quantitative 
relationship between NP properties and their in vivo behaviour 
pertinent to systemic pharmacokinetics, safety, and tumour de-
livery efficiency is critical to optimize the design of NPs or iden-
tify treatment regimen strategies for improved treatment outcomes. 
Integration of experimental studies with mathematical modelling 
and/ or machine learning enables efficient investigation of the vast 

Figure 34.5. Schematic of the EVONANO platform. The EVONANO platform begins by specifying tumour and possible nanocarrier properties 
that are then used as assumptions within the EVONANO simulation platform. This proceeds as follows: (i) a virtual tumour is first grown to a sufficient 
size using the virtual tumour model; (ii) summary statistics, such as necessary penetration distance, are calculated from the virtual tumour and used 
to generate representative treatment scenarios; (iii) parameter values are then optimized using the tissue module and machine- learning module. The 
nanocarrier and treatment parameters can then be designed and tested using in vitro/ in vivo methods. Source: Reproduced with permission from 
Stillman et al. [51].

 

   

 

  

  

 



CHAPTER 34 Mechanistic modelling and machine learning 355

parameter space of this multiscale system. We presented the key 
challenges associated with NP- mediated drug delivery and the 
most common methods used for the investigation of NP SAR, with 
a focus on systemic pharmacokinetics, safety, and tumour delivery 
efficiency of NPs.

Acknowledgements

This work was supported in part by the National Institutes of Health 
(NIH) Grants 1R01EB035545 (P.D.) and 1R01CA253865 (Z.W.).

REFERENCES

 1. Butner JD, Dogra P, Chung C, Pasqualini R, Arap W, Lowengrub 
J, et al. Mathematical modeling of cancer immunotherapy 
for personalized clinical translation. Nat Comput Sci. 
2022;2(12):785– 96.

 2. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas 
NA, Langer R. Engineering precision nanoparticles for drug 
delivery. Nat Rev Drug Discov. 2021;20(2):101– 24.

 3. Noureddine A, Butner JD, Zhu W, Naydenkov P, Peláez MJ, 
Goel S, et al. Emerging lipid- coated silica nanoparticles for 
cancer therapy. In: Saravanan M, Barabadi H, editors. Cancer 
nanotheranostics. Vol 1. Cham: Springer International 
Publishing; 2021. p. 335– 61.

 4. Hosoya H, Dobroff AS, Driessen WH, Cristini V, Brinker LM, 
Staquicini FI, et al. Integrated nanotechnology platform for 
tumor- targeted multimodal imaging and therapeutic cargo 
release. Proc Natl Acad Sci. 2016;113(7):1877– 82.

 5. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer 
nanomedicine: progress, challenges and opportunities. Nat Rev 
Cancer. 2017;17(1):20.

 6. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis 
of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):1– 12.

 7. Kumar M, Kulkarni P, Liu S, Chemuturi N, Shah DK. 
Nanoparticle biodistribution coefficients: a quantitative approach 
for understanding the tissue distribution of nanoparticles. Adv 
Drug Deliv Rev. 2023;194:114708.

 8. Simak J, De Paoli S. The effects of nanomaterials on blood 
coagulation in hemostasis and thrombosis. WIREs Nanomed 
Nanobiotechnol. 2017;9:e1448.

 9. Sharma S, Parveen R, Chatterji BP. Toxicology of nanoparticles in 
drug delivery. Curr Pathobiol Rep. 2021;9(4):133– 44.

 10. Yu T, Malugin A, Ghandehari H. Impact of silica nanoparticle 
design on cellular toxicity and hemolytic activity. ACS Nano. 
2011;5(7):5717– 28.

 11. Cheng Y- H, He C, Riviere JE, Monteiro- Riviere NA, Lin Z. Meta- 
analysis of nanoparticle delivery to tumors using a physiologically 
based pharmacokinetic modeling and simulation approach. ACS 
Nano. 2020;14(3):3075– 95.

 12. Labouta HI, Asgarian N, Rinker K, Cramb DT. Meta- analysis 
of nanoparticle cytotoxicity via data- mining the literature. ACS 
Nano. 2019;13(2):1583– 94.

 13. Yu T, Greish K, McGill LD, Ray A, Ghandehari H. Influence 
of geometry, porosity, and surface characteristics of silica 
nanoparticles on acute toxicity: their vasculature effect and 
tolerance threshold. ACS Nano. 2012;6(3):2289– 301.

 14. Dogra P, Adolphi NL, Wang Z, Lin Y- S, Butler KS, Durfee PN, 
et al. Establishing the effects of mesoporous silica nanoparticle 

properties on in vivo disposition using imaging- based 
pharmacokinetics. Nat Commun. 2018;9(1):4551.

 15. Goel S, Ferreira CA, Dogra P, Yu B, Kutyreff CJ, Siamof CM, et al. 
Size- optimized ultrasmall porous silica nanoparticles depict 
vasculature- based differential targeting in triple negative breast 
cancer. Small. 2019;15:1903747.

 16. Shukla SK, Sarode A, Wang X, Mitragotri S, Gupta V. Particle 
shape engineering for improving safety and efficacy of 
doxorubicin— a case study of rod- shaped carriers in resistant 
small cell lung cancer. Biomater Adv. 2022;137:212850.

 17. Dogra P, Butner JD, Chuang Y- l, Caserta S, Goel S, Brinker CJ, 
et al. Mathematical modeling in cancer nanomedicine: a review. 
Biomed Microdevices. 2019;21(2):40.

 18. Dogra P, Butner JD, Nizzero S, Ruiz Ramirez J, Noureddine 
A, Pelaez MJ, et al. Image- guided mathematical modeling for 
pharmacological evaluation of nanomaterials and monoclonal 
antibodies. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 
2020:e1628.

 19. Shah DK, Betts AM. Towards a platform PBPK model to 
characterize the plasma and tissue disposition of monoclonal 
antibodies in preclinical species and human. J Pharmacokinet 
Pharmacodyn. 2012;39(1):67– 86.

 20. Jain RK, Stylianopoulos T. Delivering nanomedicine to solid 
tumors. Nat Rev Clin Oncol. 2010;7(11):653– 64.

 21. Sarin H. Physiologic upper limits of pore size of different blood 
capillary types and another perspective on the dual pore theory of 
microvascular permeability. J Angiogenes Res. 2010;2(1):14.

 22. Stylianopoulos T, Soteriou K, Fukumura D, Jain RK. Cationic 
nanoparticles have superior transvascular flux into solid 
tumors: insights from a mathematical model. Ann Biomed Eng. 
2013;41(1):68– 77.

 23. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston 
G, Roberge S, et al. Openings between defective endothelial 
cells explain tumor vessel leakiness. Am J Pathol. 
2000;156(4):1363– 80.

 24. Frieboes HB, Wu M, Lowengrub J, Decuzzi P, Cristini V. A 
computational model for predicting nanoparticle accumulation 
in tumor vasculature. PLos ONE. 2013;8(2):e56876.

 25. Terracciano R, Carcamo- Bahena Y, Royal ALR, Messina 
L, Delk J, Butler EB, et al. Zonal intratumoral delivery of 
nanoparticles guided by surface functionalization. Langmuir. 
2022;38(45):13983– 94.

 26. Wang Z, Kerketta R, Chuang Y- L, Dogra P, Butner JD, Brocato 
TA, et al. Theory and experimental validation of a spatio- 
temporal model of chemotherapy transport to enhance tumor 
cell kill. PLoS Comput Biol. 2016;12(6):e1004969.

 27. Brachi G, Ruiz- Ramírez J, Dogra P, Wang Z, Cristini V, 
Ciardelli G, et al. Intratumoral injection of hydrogel- embedded 
nanoparticles enhances retention in glioblastoma. Nanoscale. 
2020;12(46):23838– 50.

 28. Brocato T, Dogra P, Koay EJ, Day A, Chuang Y- L, Wang Z, 
et al. Understanding drug resistance in breast cancer with 
mathematical oncology. Curr Breast Cancer Rep. 2014:1– 11.

 29. Perera RM, Zoncu R, Johns TG, Pypaert M, Lee F- T, Mellman I, 
et al. Internalization, intracellular trafficking, biodistribution of 
monoclonal antibody 806: a novel anti- epidermal growth factor 
receptor antibody. Neoplasia. 2007;9(12):1099– 110.

 30. Belleudi F, Marra E, Mazzetta F, Fattore L, Giovagnoli MR, 
Mancini R, et al. Monoclonal antibody- induced ErbB3 receptor 
internalization and degradation inhibits growth and migration of 
human melanoma cells. Cell Cycle. 2012;11(7):1455– 67.

 

    

  

    

   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 



Cancer Systems Biology356

 31. Zhang S, Gao H, Bao G. Physical principles of nanoparticle 
cellular endocytosis. ACS Nano. 2015;9(9):8655– 71.

 32. Haqqani AS, Bélanger K, Stanimirovic DB. Receptor- mediated 
endocytosis and brain delivery of therapeutic biologics. Front 
Drug Deliv. 2024;4:1360302.

 33. Ikeda- Imafuku M, Wang LL- W, Rodrigues D, Shaha S, Zhao Z, 
Mitragotri S. Strategies to improve the EPR effect: a mechanistic 
perspective and clinical translation. J Control Release. 
2022;345:512– 36.

 34. Tsoi KM, MacParland SA, Ma X- Z, Spetzler VN, Echeverri J, 
Ouyang B, et al. Mechanism of hard- nanomaterial clearance by 
the liver. Nat Mater. 2016;15(11):1212.

 35. Cataldi M, Vigliotti C, Mosca T, Cammarota M, Capone 
D. Emerging role of the spleen in the pharmacokinetics of 
monoclonal antibodies, nanoparticles and exosomes. Int J Mol 
Sci. 2017;18(6):1249.

 36. Yao Y, Zang Y, Qu J, Tang M, Zhang T. The toxicity of metallic 
nanoparticles on liver: the subcellular damages, mechanisms, and 
outcomes. Int J Nanomed. 2019;14:8787– 804.

 37. Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, 
Nabiev I. Dependence of nanoparticle toxicity on their physical 
and chemical properties. Nanoscale Res Lett. 2018;13(1):44.

 38. Dogra P, Butner JD, Ramírez JR, Chuang Y- l, Noureddine A, 
Brinker CJ, et al. A mathematical model to predict nanomedicine 
pharmacokinetics and tumor delivery. Comput Struct Biotechnol 
J. 2020;18:518– 31.

 39. Goel S, Zhang G, Dogra P, Nizzero S, Cristini V, Wang Z, et al. 
Sequential deconstruction of composite drug transport in 
metastatic breast cancer. Sci Adv. 2020;6(26):eaba4498.

 40. Hendriks BS, Reynolds JG, Klinz SG, Geretti E, Lee H, Leonard 
SC, et al. Multiscale kinetic modeling of liposomal Doxorubicin 
delivery quantifies the role of tumor and drug- specific 
parameters in local delivery to tumors. CPT Pharmacometrics 
Syst Pharmacol. 2012;1(11):e15.

 41. Dogra P, Ramírez JR, Butner JD, Peláez MJ, Chung C, Hooda- 
Nehra A, et al. Translational modeling identifies synergy between 
nanoparticle- delivered miRNA- 22 and standard- of- care drugs in 
triple- negative breast cancer. Pharm Res. 2022;39:511– 28.

 42. Dogra P, Ramírez JR, Butner JD, Peláez MJ, Cristini V, Wang 
Z, editors. A multiscale model to identify limiting factors in 
nanoparticle- based miRNA delivery for tumor inhibition. 
2021 43rd Annual International Conference of the IEEE 
Engineering in Medicine & Biology Society (EMBC), Mexico. 
2021:4230– 33.

 43. Islam MA, Barua S, Barua D. A multiscale modeling study of 
particle size effects on the tissue penetration efficacy of drug- 
delivery nanoparticles. BMC Syst Biol. 2017;11(1):113.

 44. Sykes EA, Dai Q, Sarsons CD, Chen J, Rocheleau JV, Hwang 
DM, et al. Tailoring nanoparticle designs to target cancer 
based on tumor pathophysiology. Proc Natl Acad Sci. 
2016;113(9):E1142– E51.

 45. Wirthl B, Kremheller J, Schrefler BA, Wall WA. Extension of a 
multiphase tumour growth model to study nanoparticle delivery 
to solid tumours. PLoS ONE. 2020;15(2):e0228443.

 46. Laomettachit T, Puri IK, Liangruksa M. A two- step model of 
TiO(2) nanoparticle toxicity in human liver tissue. Toxicol Appl 
Pharmacol. 2017;334:47– 54.

 47. Lin Z, Monteiro- Riviere NA, Kannan R, Riviere JE. A 
computational framework for interspecies pharmacokinetics, 
exposure and toxicity assessment of gold nanoparticles. 
Nanomedicine (Lond). 2016;11(2):107– 19.

 48. Huang Y, Li X, Cao J, Wei X, Li Y, Wang Z, et al. Use of 
dissociation degree in lysosomes to predict metal oxide 
nanoparticle toxicity in immune cells: Machine learning boosts 
nano- safety assessment. Environ Int. 2022;164:107258.

 49. Concu R, Kleandrova VV, Speck- Planche A, Cordeiro M. 
Probing the toxicity of nanoparticles: a unified in silico machine 
learning model based on perturbation theory. Nanotoxicology. 
2017;11(7):891– 906.

 50. Lin Z, Chou W- C, Cheng Y- H, He C, Monteiro- Riviere NA, 
Riviere JE. Predicting nanoparticle delivery to tumors using 
machine learning and artificial intelligence approaches. Int J 
Nanomed. 2022:1365– 79.

 51. Stillman NR, Balaz I, Tsompanas M- A, Kovacevic M, Azimi S, 
Lafond S, et al. Evolutionary computational platform for the 
automatic discovery of nanocarriers for cancer treatment. NPJ 
Comput Mater. 2021;7(1):150.

 52. Nademi Y, Tang T, Uludağ H. Modeling uptake of polyethylenimine/ 
short interfering RNA nanoparticles in breast cancer cells using 
machine learning. Adv NanoBiomed Res. 2021;1(10):2000106.

 53. Kingston BR, Syed AM, Ngai J, Sindhwani S, Chan WCW. 
Assessing micrometastases as a target for nanoparticles using 
3D microscopy and machine learning. Proc Natl Acad Sci. 
2019;116(30):14937– 46.

 54. Goswami S, Dhobale KD, Wavhale RD, Goswami B, Banerjee 
SS. Computer vision and machine- learning techniques for 
quantification and predictive modeling of intracellular anticancer 
drug delivery by nanocarriers. Appl AI Lett. 2022;3(1):e50.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 



SECTION 8

Ecology, evolution,  
and cancer

 35. Decoding cancer evolution through 
adaptive fitness landscapes 359

Rowan Barker- Clarke, Eshan S. King, Jeff Maltas, J. Arvid 
Ågren, Dagim Shiferaw Tadele, and Jacob G. Scott

 36. A case against causal reductionism in acquired 
therapy resistance 373

Andriy Marusyk

 37. Group behaviour and drug resistance in 
cancer 379

Supriyo Bhattacharya, Atish Mohanty,  
Govindan Rangarajan, and Ravi Salgia

 38. The fundamentals of evolutionary therapy in 
cancer 389

Jeffrey West, Jill Gallaher, Maximilian A.R. Strobl,  
Mark Robertson-Tessi, and Alexander R.A. Anderson

      

 

 

   

 



 



35

Decoding cancer evolution through 
adaptive fitness landscapes
Rowan Barker- Clarke, Eshan S. King, Jeff Maltas, J. Arvid Ågren,   
Dagim Shiferaw Tadele, and Jacob G. Scott

35.1.  Introduction

Cancer is a disease that starts and ends with evolution. In all non- 
transmissible forms, the tumour cells are directly descended from 
the healthy cells of the patient. It is host- derived cells undergoing 
mutation or modification that eventually evolve into a cancerous 
state. These expanding tumour cells outcompete healthy, non- 
malignant cells for space and resources.

The clinical treatment of cancer aims to successfully eradicate tu-
mour cells without harming the host, yet total eradication via cancer 
treatment is still difficult to achieve across many cancers. This is in 
part due to heterogeneity within and between patients, alongside the 
nature of the similarity between healthy and malignant cells in a pa-
tient [1] . Unfortunately, the most difficult problem to address is the 
deadliest: the evolution of resistance in cancer cells, arising in re-
sponse to the treatment designed to eradicate them.

The initial treatment- naive expansion of tumour cells often re-
sults in plasticity and diversity [1] ; however, it is subsequent treat-
ment pressure that promotes the expansion of resistant cancer cells 
[2]. Thus, the standard approach to cancer treatment, aimed at rap-
idly reducing initial tumour volume, can do little to prevent sub-
sequent therapy- resistant tumours in the patient [3]. The intrinsic 
notion that treatment impacts the evolution of patient tumours has 
motivated research aimed at altering existing treatment paradigms 
[4– 6]. Due to the nuance and mathematical precision required, the 
development of these novel therapeutic approaches often consists of 
interdisciplinary work with mathematical and computational biolo-
gists. One such approach aiming to better inform treatment regi-
mens is ‘adaptive therapy’. Adaptive therapy uses predictive models 
informed and parameterized by the patient’s disease combined with 
the real- time response of a patient’s tumour to therapy to improve 
patient response [6– 8]. Although adaptive therapy leverages some 
aspects of tumour evolution, we introduce in this chapter the notion 
of ‘evolutionary therapy’ which aims to advance these ideas. The aim 
of evolutionary therapy is not only to predict the future evolution of 
a tumour but also to actively steer it. To achieve this goal, we require 

a suite of control approaches and a deep understanding of the dif-
ferent evolutionary pathways available to cancer cells over time. It is 
the object at the heart of this chapter, the adaptive fitness landscape, 
which encapsulates predictability, encoding the map of all possible 
evolutionary trajectories [9].

In this chapter, we examine the adaptive landscape, its history, 
and its successes. We illustrate how the adaptive landscape pro-
vides the road map for evolution and thus for successful cancer 
treatment. We introduce the models and mathematics used to 
study adaptive landscapes and review successful studies that as-
sess how the underlying landscape structure impacts evolution. 
We also discuss the unique evolutionary mechanisms present in 
cancer and highlight some experimental methods that allow us 
to study cancer evolution. We consider and demonstrate how fit-
ness landscapes may shed light on cancer initiation and treat-
ment resistance and finally explore some of the exciting future 
directions available for study at the intersection of adaptive land-
scapes and cancer research.

35.1.1. What is an adaptive fitness landscape?

 Fitness broadly refers to the ability of an organism to survive and 
reproduce. The term ‘fitness landscape’ was coined by Sewall Wright 
in 1932 [10] and has since been used to analyse and discuss so many 
systems that the exact meanings of landscape and fitness, even within 
biology, vary by context [11– 15]. Fitness landscapes have been used 
to study various phenomena undergoing biological evolution, such 
as the evolution of antibiotic resistance in bacteria and the evolution 
of protein sequences and RNA folding [16– 19].

In the context of cancer, fitness typically refers to the growth rate 
of the tumour cells. This can be genotype- specific, meaning that dif-
ferent genetic changes in tumour cells impart different fitness effects. 
In a traditional 3D representation of a fitness landscape, the x-  and 
y- axes represent different genotypes (i.e. different combinations of 
genetic traits), and the z- axis represents the fitness of each genotype. 
The landscape is then a graphical representation of the relationship 
between genotype and fitness (see Figure 35.1 for examples).
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One important concept in fitness landscapes is the ‘peak’ or ‘op-
timal’ genotype; the genotype that has the highest fitness in the 
landscape. In a smooth landscape, the peak genotype is directly 
accessible via a simple adaptive walk, and thus the fitness increase 
should be relatively smooth over time. In a rugged landscape, the 
peak genotype may be more difficult to reach, and the fitness in-
crease may be very variable over time. Fitness landscapes can also 
be understood in terms of ‘adaptive valleys’ and ‘adaptive peaks’. 
An adaptive valley is a region of the landscape where there are few 
genotypes with high fitness, while an adaptive peak is a region of the 
landscape where there are many genotypes with high fitness. Just as 
particles are drawn to attractive potential wells in classical physics, 
selection pressure upon mutating populations guides the evolving 
populations towards peaks in the landscape. The shape of the fitness 
landscape can influence the direction and speed of evolution as well 
as the probability of population extinction.

The ruggedness of a landscape is caused by a property called epis-
tasis. Without epistasis, a fitness landscape is smooth with a gentle 
slope; small differences in genotype space correspond to set differ-
ences in fitness. This smoothness means that there are many viable 
paths towards high fitness such that the shortest paths towards global 
peaks are linear. On the other hand, a rugged fitness landscape has 
many peaks and valleys, with relatively small differences in genotype 

leading to large differences in fitness. This means that there may be 
a few viable paths towards high fitness and that adaptation may pro-
ceed slowly or unpredictably [20].

Fitness landscapes can also be used to understand how popula-
tions evolve. In a population, the distribution of genotypes may shift 
over time as different genotypes become more or less common. Both 
random fluctuations and various variable factors, such as the size 
of the population, the rate of reproduction, the mutation rate, and 
the presence of selective pressures, can influence this. Evolution via 
selective pressures can be modelled as an adaptive walk, which is a 
form of optimization on the fitness landscape. Survival of the fittest 
‘moves’ the population genotype distribution across the landscape 
towards fitness peaks. Under selection, adaptive mutations become 
more frequent as a population evolves, approaching peaks in the 
landscape. Overall, fitness landscapes are a powerful tool for under-
standing the evolution of organisms and populations, providing 
a representation of the relationship between genotype and fitness 
and helping researchers to understand how different factors, such 
as interactions between genes, mutation and selection, influence the 
evolution of a population.

35.1.2. Mapping the vastness of evolutionary space

In the 1930s, prior to the discovery of the structure of DNA, Wright, 
among others, understood that information stored in chromosomes 
in the nucleus was inherited by offspring. Scientists discovered 
through experiments that the information within genes could be 
randomly mutated, and these mutations could impact the proper-
ties of a species and thus broadly its fitness. The landscape metaphor 
came into being partly because, at the time, scientists already appre-
ciated that there were likely hundreds to thousands of possible mu-
tations in each species. They reasonably concluded that the number 
of possible different combinations of mutations in a population was 
intractably large. The vastness of evolutionary space, which Wright 
described as ‘an almost infinite field of possible variations’, motiv-
ated the development of the fitness landscape to help explain evolu-
tion within it. His initial paper on the roles of mutation and selection 
in evolution was published in 1931 [21]. He soon followed this with 
a description of a metaphorical landscape complete with the aid of 
illustrative mutational hyper- cubes (higher dimensional punnet 
squares) and contour maps [10] (see Figure 35.1).

Today, we know that the human genome consists of approxi-
mately 20,000 genes and over three billion base pairs. A combinator-
ially complete landscape would consist of all possible combinations 
of mutant alleles in a genome. The resultant number of possible gen-
omes has been described as hyper- astronomical [22]. For example, 
given just the possibility of only one type of mutation in each gene 
region allows for 220,000 or 4 × 106,020 different possible combinations. 
This number dwarfs the number of atoms in the observable universe 
(approximately 7 × 1072). Thus, the idea of mapping all possible ver-
sions of the human genome to their effects is infeasible.

This realization, rather than halting all attempts to understand 
this space, has driven many different scientific questions, aided by 
physicists, computer scientists, and abstract mathematicians about 
how the size of the theoretical genotype space impacts evolution. 
Focused experimental studies have analysed smaller sub landscapes 
in depth, while mathematical studies have used abstract mathem-
atics and algebraic approaches to explore how species can adapt and 
evolve in such intractable spaces [20,23,24].

Figure 35.1. Different representations of fitness landscapes. 
(A) A generic and rugged 3D landscape with two valleys and two peaks 
is shown. In three dimensions, the x– y plane is the space of possible 
genetic combinations and fitness is elevation. Genotypes at local 
maxima are less fit than the genotype of the global maxima. Similarly, 
minima in the landscape also vary in depth. (B) Two comparative 
2D examples of three allele landscapes with and without epistasis 
are shown. In the smooth landscape, mutations increase fitness in 
predictable independent ways. (C) Examples of how specific bases at 
certain positions within a genotype could convey differing fitness. Here, 
the third base in a sequence is mapped to a different fitness. (D) If more 
bases are incorporated, higher dimensional maps like this 2D heat map 
can represent fitness landscapes. Fitness landscapes can represent any 
kind of mutation, e.g. using alleles (01) or base pairs (ATCG).
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35.1.3. Genetic, RNA, and protein landscapes

One advantage of fitness landscapes is that the mechanistic link 
between genetic information and fitness needs not be known such 
that the formalism lends itself to various proxies or analogies for 
adaptive fitness. Adaptive landscapes have been studied experimen-
tally and theoretically to better understand both macroscopic and 
microscopic evolutionary scales. The same techniques for studying 
genotype– fitness landscapes have also been leveraged to explore 
genotype– phenotype mappings. Many of these systems have been 
studied theoretically within the framework of adaptive walks. As 
such, there is a large body of successful work aimed at probing 
the nature of evolution across genetic, transcriptomic, and protein 
spaces using similar techniques [16,17,24– 28].

Proteins and RNAs, as shorter and simpler structures than the 
genome, have formed more tractable spaces for mechanistic the-
oretical and experimental landscape work. Combined with a good 
understanding of the underlying biophysics of RNA and protein 
folding, early RNA folding and protein folding models have been 
used to understand the power of genotype– phenotype– fitness map-
pings [16,25]. For example, the physical chemistry of base pair inter-
actions has been used to build landscape studies on the evolution of 
RNA folds and protein binding domains [17]. Pitt and co- worker 
calculated the reaction rate constant for every point mutant of a 
catalytic RNA and were able to use biochemical activity measures 
and sequencing to rapidly construct the fitness landscape of 107 
unique RNA sequences [17]. These works have supported the no-
tion that fitness landscape objects are informative in understanding 
mechanistic aspects of evolution and have helped develop experi-
mental landscape measuring techniques.

To date, genomic and protein adaptive landscapes have typic-
ally been reduced to a focal subsystem of interest for experimental 
studies. When measuring a landscape, experiments may be focused 
on mutations to a single gene, to a binding site of interest, or ab-
stracted to a generalized mutation within a combination of genes 
related to a function or pathway. An important example is of a fitness 
landscape in HIV, where measurement of the protein landscape has 
aided the development of anti- viral compounds [26]. Examples of 
experimental genotype– fitness landscape exploration include work 
elucidating the response to antibiotics of bacterial populations con-
taining all different possible mutations in β- lactamase [29]. Chen 
et al. expanded this to quantify all single mutational effects on fitness 
and EC50 of VIM- 2 β- lactamase across a 64- fold range of ampicillin 
concentrations [30].

Fitness and adaptive landscapes attempt to describe phenomen-
ally large genotypic spaces and encode our phenotypic understand-
ings. These mappings have a long history and a demonstrated utility 
across many biological systems, including bacteria, protein, and 
RNA evolution. This solid basis has driven experimental and math-
ematical evolutionary study and provides an excellent framework 
with which to study the complex evolutionary dynamics present in 
cancer.

35.2. Modelling fitness landscapes

To the systems biologist or mathematician, the idea of mapping 
a genotype to a high- dimensional fitness surface is conceptually 
simple, yet the biological importance and implications of the shape 
of this surface are profound. The landscape model and mapping have 
formed the basis of many theoretical and empirical studies and have 
fortified and expanded upon traditional notions of the relationship 
between genotype and fitness. In this section, we discuss the math-
ematical modelling of landscapes, evolution, and the non- linearity 
of the fitness surface. We highlight how the shape of this landscape 
impacts theoretical population dynamics and evolvability, and 
how the non- linear interactions, or epistasis can be measured and 
modelled.

35.2.1. Theory of landscapes

The fitness landscape is a specific type of mathematical map-
ping, resulting in an n- dimensional surface where the fitness w 
depends on the position in the state space. The state could be, 
for example, the DNA sequence, RNA sequence, protein folding, 
or genes and their mutational state. Fitness, w, can be a direct 
or resultant phenotypic property, such as reproductive fitness, 
stability, or binding affinity. For each mapping there exists a mut-
able basis (e.g. genotype) and a resultant fitness property (e.g. 
division rate) to be selected upon.

In the simplest case, each gene or mutation is selected upon in-
dependently, and this linear or additive behaviour produces what is 
known as an additive landscape. Under this assumption, the fitness 
of a genome with n mutations is just a linear function, i.e. a sum of 
the fitness changes associated with individual mutations (Equation 
35.2). The central concept that allows alteration of the shape of this 
fitness landscape is ‘epistasis’. This refers to the interaction between 
different genes and how they affect each other’s contributions to fit-
ness. In some cases, one gene may have a strong effect on fitness, 
while in other cases, the effect of a gene may depend on the presence 
or absence of other genes. The degree to which these fitness effects 
are additive and the relative importance of epistasis has been a sub-
ject of discussion for many decades [10,31– 34].

35.2.2. Epistasis in the genome

Long understood to be present through experimental evidence, gen-
etic epistasis refers to the non- additive interaction between different 
genes and how they affect each other’s contributions to an organism’s 
traits. This interaction can be either positive, negative, or neutral, 
depending on the specific genes involved and the context in which 
they are expressed. Epistasis describes how genes interact with each 
other and explains the resultant shape of the high- dimensional sur-
face of a fitness landscape.

Box 35.1 Mathematics of fitness and epistasis

Fitness landscapes represent mappings from a basis to fitness,

 mutable basis → fitness. (35.1)

Without epistasis, fitness is just a linear sum of the fitness contribu-
tions from each mutation or allele,

 w = f(w1. . .n) = ∑
n

i=1
 wi. (35.2)

The degree of epistasis, ε, is defined as

  ε ≡ ln wa,b − ln wa − ln wb. (35.3)
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Although epistasis has been described using various terms across 
biology, Weinreich et al. describe the following forms of epistasis 
relative to the genetic background [31]. These forms are sign and 
magnitude epistasis. Sign epistasis means that the mutation is bene-
ficial (positive) on some genotypic backgrounds and deleterious (re-
ciprocal) on others. In magnitude epistasis, the mutation has a fixed 
direction of impact on the fitness of an organism or cell but a magni-
tude dependent upon the background genome.

Genetic epistasis can also occur at different levels of the gen-
etic hierarchy, such as between different genes, between different 
chromosomes, or between different genetic pathways. For example, 
one gene may affect the expression of another gene, or one chromo-
some may affect the expression of genes on another chromosome. 
This can have important implications for the evolution of popula-
tions. In some cases, it can lead to the evolution of complex traits 
that are composed of multiple genes rather than being controlled by 
a single gene.

The evolution of complex traits is common in cancer where it is 
often the case that multiple adaptive steps are required for tumour 
evolution [35]. In the human genome and within cancer, increased 
genetic diversity and mutation rate increase the importance of 
understanding epistatic effects. These epistatic effects can influence 
the direction and speed of a tumour’s evolution, as well as the prob-
ability that a targetable mutation fixes in the population [36].

35.2.3. Evolution with epistasis

In the additive landscape, evolution is simple; there is a single global 
maximum and, as a result, an accessible evolutionary path to the 
maximum from any point. Wright and others had, however, ob-
served and considered the possibility of epistasis. This non- linear 
interaction between alleles is mathematically defined in Equation 
35.3, where wi is the fitness of a genome with mutation at site i.

This value, ε, is positive in the presence of positive sign epistasis— 
a supplemental positive effect due to the interactions of two alleles 
or mutations such that ε > 0 and for reciprocal sign epistasis, ε < 0, 
refers to a more negative effect on fitness compared to the effects of 
these mutations alone.

Epistasis was a key motivation for the creation of adaptive land-
scapes, for if a mutation did not confer a constant and guaranteed 
benefit to a cell, the fitness landscape would not be smooth and 
additive. Epistasis is therefore an important factor that shapes the 
surface of fitness landscapes, which are representations of the rela-
tionship between genotypes (i.e. combinations of genetic traits) and 
fitness. In the presence of epistasis, a landscape is multi- peaked and 
the accessibility of trajectories to the global fitness maximum may 
be entirely dependent on the starting genotype, and the full impact 
of epistasis on evolution by natural selection is still an open question 
[31,37].

The adaptive fitness landscape helps illustrate how epistasis is crit-
ical in determining whether a population can quickly explore a land-
scape and access global peaks in fitness. As epistasis influences how 
smooth or rugged a landscape is, it affects the direction and speed 
of evolution. The nature of adaptation to environmental pressures, 
such as oxygen or drug concentration, would be far more complex 
in landscapes with strong epistatic effects. Understanding the nature 
of epistasis present in cancer and its effect on the fitness of cells can 
help scientists to better understand the evolution of tumours and 
their composite subpopulations.

35.2.4. Modelling evolution on landscapes

If the landscape is already defined experimentally or numerically, 
fitness landscapes can be used to simulate the evolution of popula-
tions over time and to test different hypotheses about evolution. In 
cancer, our aim is to use this surface and models on it to predict the 
evolution of a tumour. Many mathematical approaches have been 
developed to model cancer progression, but two types of mathem-
atical models are commonly used to study resistance evolution in 
tandem with fitness landscapes: population genetics (typically con-
tinuous) models and individual- based stochastic models [38].

One popular model is the strong selection weak mutation model 
of evolution [39], which models evolution as a stochastic point pro-
cess in which mutations are immediately fixed or eliminated; the 
evolving population is represented as a moving point in genotype 
space. In general, population genetics models are used to study 
the evolution of populations by considering the changes in the fre-
quency of different genes over time and modelling the changing 
mean and variance of allele frequencies in the population. These 
models are often based on the Hardy– Weinberg equilibrium and 
Wright– Fisher processes, which describe the relationship between 
genotype frequency and gene frequency in a population.

Population- based models can be written in the form of ordinary 
or stochastic differential equations, and examples include models 
that successfully predict clinical drug synergies or patient outcomes 
[40,41]. These models can assess how different selective pressures 
might influence the time to cancer initiation or the evolution of re-
sistance within a population [42– 44].

Individual- based models are used to study the evolution of popu-
lations by simulating the behaviour of individual organisms and the 
interactions between them [45]. These cellular- automata models can 
incorporate intrinsic heterogeneity and can be used to understand 
how different factors, such as competition for resources or cell– cell 
interactions, might influence the evolution of a population [2,46,47]. 
Platforms, such as PhysiCell, and specific libraries, such as HAL, 
have enabled easier agent- based modelling of populations [48,49]. 
The use of agent- based models allows cells to explore complex evo-
lutionary landscapes while encoding spatial dependencies, particu-
larly allowing for dynamic environmental properties and ecological 
interactions.

35.2.5. Evolvability and epistasis

In order to assess the effect of epistasis on these evolutionary models, 
mathematicians have developed methods of both quantifying epis-
tasis in landscapes and generating landscapes with varying epistasis 
[23,50]. Although the exact measure of epistasis between two genes 
can be quantified (Equation 35.3), other measures have been de-
veloped to quantify the magnitude of average epistatic effects over 
larger landscapes.

One notable landscape generation methodology produces the 
‘NK’ set of model landscapes [23], which were developed in 1989 
by Kauffman. Initially applied to model the binding affinity of anti-
body molecules to antigens, NK landscapes were quickly adopted as 
a useful general model of epistasis. NK landscapes mimic the adap-
tive landscapes underlying the adaption of the immune system to 
novel pathogens, particularly in that the K parameter can be tuned 
to match the observed average number of mutations needed to reach 
a peak within the landscape. Generated statistically, N and K define 
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the landscape and epistasis where N represents the number of sites 
in the genotype or protein sequence and K is the degree of epistatic 
interaction. These model landscapes are popular for their ‘tunably 
rugged’ properties, in which the fitness distribution and the nature 
of epistasis are predetermined.

Many studies have used simulated landscapes, such as the NK 
landscapes, to reinforce the intuition that the navigability of a land-
scape depends on its structure and the idea that evolutionary plasti-
city is a mechanism of escape from local maxima and is required to 
traverse large spaces [51– 54]. The exploration of high- dimensional 
landscape topology and its ruggedness or high- order epistasis is one 
of the most powerful uses of abstract mathematics in the study of 
evolutionary spaces [36,55,56]. More recently, these ideas have been 
expanded to discuss the nature of complexity in evolution, under-
standing complexity as a restriction to evolvability, and the impli-
cations on natural evolution and its mechanisms [20]. Numerical 
solutions derived through computation have also allowed higher 
dimensional systems to be studied numerically as well as allowing 
exhaustive simulation of evolution on combinatorially complete 
theoretical landscapes.

As the availability of experimentally derived landscapes has in-
creased, studies such as those by Aguilar et al. have allowed the 
exploration of landscapes in the natural world and how these com-
pare to the range of theoretical possibilities [57]. Studies in the 
β- lactamase gene have reinforced ideas around adaptability, dem-
onstrating that epistatic interactions increase the number of indirect 
paths accessible to evolution, delaying commitment to a specific 
evolutionary trajectory [19]. The idea of epistasis that motivated the 
landscape description has been the study of many works including 
the emphasis on the role of epistasis in evolution [34]. Experimental 
work investigating the presence of epistasis has shown that it can in-
crease evolvability, i.e. the ability of a species to reach a global fitness 
peak [50,53].

The structure of generic genotype– phenotype mappings has also 
been examined to further understand evolution. The structure and 
connectivity of a high- dimensional genotype– phenotype space 
can promote certain phenotypes through frequency alone [58]. 
Exhaustive explorations of relatively simple spaces, such as RNA 
folding, show fascinating insights including observations that the 
landscape places limits on naturally observed RNA folds and that 
common folds predicted by landscapes reflect the frequency of folds 
in nature [24,58,59].

35.3. Cancer evolution

Large quantities of experimental and patient data have aided the 
study and understanding of cancer and its evolution. Spatial tissue 
sampling, single- cell DNA and RNA sequencing, and techniques 
such as genetic ‘barcoding’ add unprecedented levels of detail to evo-
lutionary experiments. Paired with CRISPR knockouts in mice and 
high- throughput drug assays in cell lines, these experiments allow a 
fine- grained approach to understanding treatment responses. The 
availability of this data has allowed for comparative phylogenetic, 
experimental, mathematical, and observational methods to be util-
ized in cancer studies.

In this section, we review the different evolutionary processes 
and their study in cancer. We illustrate how different evolutionary 

experiments aim to sample the adaptive landscapes underlying 
cancer evolution and discuss how evolutionary therapy can aim to 
control evolution within patient tumours.

35.3.1. Evolution of cancer cells

Cancer is a disease state characterized by common features including 
rapid and uncontrolled growth [60]. As cancer biologists, we know 
that cell- intrinsic mechanisms that prevent rapid and uncontrolled 
growth are eroded during cancer development while mutation rate 
and proliferation are increased [60]. Tumour growth comes ultim-
ately at the host’s expense and is then maintained under therapy 
when cancer cells access therapy- resistant states.

Understanding how and why cancer develops and proliferates 
has highlighted two particularly interesting features in the context 
of evolution, the increased rate of mutational supply and the ma-
nipulation of selection pressures. There exist several mechanisms 
by which mutational rate is increased and selection decreased, e.g., 
cancer commonly has reduced efficacy of DNA repair [61] and de-
fects within the pathways that signal apoptosis in the event of gen-
omic error [60]. In the absence of genome correction, resulting in 
higher mutation rates, individual genomes within a tumour popula-
tion gain mutations that can be advantageous, neutral, or deleterious 
[62,63].

The ability of a tumour to manipulate selection pressure also 
involves the manipulation of the microenvironment [60,64,65]. 
Immune evasion through the modification of immune cells and 
antigen presentation reduces the negative selection pressure upon 
tumour cells, and the recruitment of macrophages also reduces the 
likelihood of the host’s immune system eradicating cells via phago-
cytosis [66]. Tumour cells have also been shown to modify their 
microenvironment via the recruitment of cancer- associated fibro-
blasts in their surroundings, cells that promote tumour growth [67] 
or modify vasculature [64].

This accelerated evolution and modified selection permits cancer 
populations to alter their fitness landscape and more rapidly explore 
it. In this accelerated evolution regime, predictability and control 
become increasingly important factors in cancer treatment. By 
understanding which specific mutations are driving the growth and 
progression of cancer, we can construct a more realistic landscape 
and thus create better evolutionary models and design better control 
protocols.

35.3.2. Driver mutations in the landscape of cancer

Driver mutations are genetic changes that contribute to the devel-
opment and progression of cancer by enabling cells to survive, grow, 
and divide in an uncontrolled manner. These mutations can occur in 
various genes, including oncogenes (genes that promote cancer) and 
tumour suppressor genes (genes that inhibit cancer).

Driver mutations reflect repeatability in cancer evolution, as the oc-
currence of specific driver mutations is seen across large numbers of 
distinct cancers and patients. Specific ‘driver’ mutations reflect strong 
peaks, or ‘global epistasis’, in the cancer landscape, promoting the gain of 
these mutations during adaptive evolution and increasing predictability 
[68]. In recent studies, such as those by Hosseini et al., the analysis of tu-
mour genomes reveals predictable pathways inferred from phylogenetic 
analysis [69]. Understanding the many pathways available and involved 
in cancer evolution is equivalent to fully understanding the adaptive 
walks that are possible on a cancer fitness landscape. Knowledge of 
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driver mutations is intrinsic to the idea of the fitness landscape and the 
development of targeted therapies.

There exist many identified genes in cancer which are commonly 
mutated. TP53, PI3KCA, and KRAS are three such drivers, with TP53 
mutations found in almost 35% of all cancer cases in the United 
States [70]. One of the most commonly mutated genes, TP53, is a 
clear example of positive sign epistasis. Mutations in this gene are 
often deemed necessary, but not sufficient, for tumour growth, and 
the presence of TP53 mutations in combination with other driver 
mutations is strongly associated with cancer progression. There is 
evidence for widespread epistatic interactions in the human genome 
in cancer [71].

While common mutations are repeatedly seen across cancer pa-
tients, similar cancer phenotypes can arise via distinct mechanisms. 
As a consequence, genomic studies in cancer provide strong evi-
dence for both repeatable and convergent evolution [72]. By iden-
tifying both epistasis and robust peaks in fitness landscapes, we can 
elucidate whether specific mutations demonstrate epistasis and how 
strongly they are selected for [72].

35.3.3. Clonal selection and 
cancer landscapes

Due to the random nature of genetic mutation during cell division, 
mutations constantly occur within the genome of both normal and 
cancer cells. However, these mutations usually undergo negative 
selection and most mutations do not undergo expansion. In de-
veloping tumours, evolution typically occurs through soft or hard 
sweeps involving the selection and dominance of the fittest mul-
tiple or single sub- clones, respectively. However, the macroscopic 

tumour can often contain heterogeneous populations, and alternate 
types of selection of the sub- clones can be reflected in the phylogen-
etic tree of clones within tumours. Monitoring the strength of selec-
tion and frequency of mutation has led to four standard models of 
cancer evolution (Figure 35.2): linear, punctuated, branching, and 
neutral evolution [73]. These modes reflect differences in how the 
tumour population diversifies over time and contains implications 
about the underlying fitness landscape.

Linear evolution describes a stepwise increase in the fitness of 
tumour cells, and hard sweeps of the new fittest genome reflect a 
gradual increase in fitness. This mode of evolution reflects an addi-
tive genetic or epigenetic landscape, reflecting stepwise cell modifi-
cation or mutation. Genome- wide punctuated evolution describes 
the evolution of a population via a hard sweep occurring via a spe-
cific genome- wide event from which the population rapidly diver-
sifies. Such an event, by the nature of a hard sweep, involves a large 
genomic change arriving at a local maximum with strong global 
epistasis where the tumour expands and the genome of the tumour 
population remains. Branched evolution reflects the divergence of 
a population and the expansion of multiple clones. This would be 
more commonly seen in rugged or epistatic landscapes where mul-
tiple local peaks are present and branched evolution occurs as dif-
ferent subpopulations of cells evolve independently to nearby fitness 
maxima. In flat landscape regions, neutral evolution can also play 
a role in the development and progression of tumours [62] These 
neutral mutations (those which confer no benefit) can be amplified 
by the selection of associated driver mutations and contribute to the 
overall genetic diversity of the tumour, which can influence its be-
haviour and response to treatment [62].

Figure 35.2. Possible evolutionary modes as reflections of the local landscape. The variable selection pressures and mutational accessibility in 
the landscapes, as well as the size of the population, can result in different ‘modes’ of evolution. These modes can be understood as reflections 
of the local fitness landscape to which the tumour or population has access. (A) Linear evolution involves the stepwise gradual movement of the 
entire population upwards in fitness through different genotypes. (B) Sudden or complex genome- wide events in punctuated evolution reflect a 
large single- step movement across landscape space resulting in subsequent diversification and expansion. (C) Branching evolution involves the 
divergence of a population resulting in a mixture of the fittest genotypes. (D) Neutral evolution involves an apparent lack of selection, resulting in 
populations acquiring and retaining random mutations with no sweeps or predictable clonal dominance.
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Modern work aims at disentangling and estimating these modes 
of selection and their strength using temporal inference from the 
sequencing of clones with evolution and selection in mind [74]. 
Sequencing can reveal expected mutations within known pathways, 
epistasis in the presence of background mutations, as well the ex-
istence of multiple pathways to resistance [75]. The prevalence of 
mutations can inform us about the underlying landscapes and how 
treatment has altered selection pressures on cancer sub- clones 
[76,77].

35.3.4. Experimental and 
engineered landscapes

Evolutionary experiments validate or challenge our ideas of evolu-
tion and our understanding of the fitness landscape. The required 
approach to probe a landscape entirely depends upon the nature of 
the landscape of interest. Experimental evolution and engineered 
fitness landscapes provide two distinct methods aimed at under-
standing the underlying landscape. In the presence of epistasis, it 
is uncommon that an entire landscape is easily accessible under ex-
perimental evolution, and thus the direct engineering of cells with 
mutations associated with resistance can be used to probe specific 
landscapes of interest.

When engineering fitness landscapes, a complete genetic space 
can be measured whether it is accessible to adaptive evolution or not. 
In the analysis of some small protein landscapes, engineering allows 
fully exhaustive experimental construction [29]. In cancer cell lines, 
transfection and genome- editing techniques allow the insertion of 
specific genes into cell lines with specific point mutations. This al-
lows us to measure the fitness of mutations and their combinations 
within specific regions of genotype space. Within cancer cells, once 

the stable expression of specific mutations of interest is established, 
growth or viability assays can be used to assess fitness.

Evolved resistance mirrors more closely the existing process 
within cancer patients and is useful in exploring larger regions of 
genotype space. Evolving resistance typically involves exposing cells 
to gradually increasing concentrations of a drug over time. In this 
way, the tumour cells studied undergo linear evolution via an adap-
tive walk, and the possible mutations to the genome are restricted 
only by increasing fitness. Sequencing the genomes present within 
the population over time allows experimental evolution to measure 
the trajectory of an evolving population upwards in a fitness land-
scape by measuring its genotypic coordinates over time. Although 
this method is less biased towards specific regions of the genome, 
measuring any low- fitness areas is unlikely under adaptive evo-
lution. In vivo or in vitro evolutionary experiments in cancer are 
usually carried out using xenografts in mice or using cell lines, as 
illustrated in Figure 35.3A (adapted from [2] ).

Combining cell engineering with measurements and sequencing 
from experimental evolution allows examination of the adaptive 
landscape while controlling for off- target mutations. Such studies 
have so far been carried out predominantly in bacterial populations. 
These successes include the complete landscape of mutations to 
genes in a malaria strain [78] and in Escherichia coli, the β- lactamase 
gene [29]. Although engineering stable gene mutations in cancer cell 
lines is more difficult than in bacteria, similar landscape construc-
tion methods are underway.

As tumours collect mutations, selection under treatment re-
sults in the expansion of drug- resistant clones, ultimately re-
sulting in a drug- resistant tumour. For the clinical translation of 
fitness landscapes, there must be something actionable we can 

Figure 35.3. Experimental evolution of resistance informs us about the underlying fitness landscape. (A) An example experiment aimed at 
evolving resistance is shown. At each time point a population is plated on a dish of increasing drug concentration. Evolution is fundamentally a 
function of time and selection pressure. Evolutionary experiments implement selection pressures, and the expansion of clones within drug gradients 
represents restricted linear evolution. Experimental repeats and sequencing elucidate global epistatic effects and alternate resistance pathways. 
(B) In collateral sensitivity experiments, cells undergo evolutionary selection under a first drug. These resistant cells (red) undergo high- throughput 
drug assays used to measure their sensitivity to a selection of other drugs. By repeating this technique, initially evolving resistance to separate drugs 
within the entire drug panel, a collateral sensitivity map can be constructed. Collateral effects are revealed by comparing resistance in one drug to a 
second, with red in the heat map showing collateral (cross) resistance and blue showing collateral sensitivity.
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gain from them. Having discussed the measurement of cancer fit-
ness landscapes and experimental evolution, we examine multi- 
drug resistance and how fitness landscapes encode a potential 
clinical solution.

35.3.5. Collateral sensitivity

Collateral sensitivity occurs when the evolved mechanism of 
resistance to the therapeutic drug results in an increase in sen-
sitivity to a different drug; experimental outline for this type 
of experiment is shown in Figure 35.3B. Recently, a number of 
studies have suggested exploiting the evolution of collateral sen-
sitivity as a potential method to slow, or even reverse, the devel-
opment of resistance [4,79,80]. In the fitness landscape paradigm, 
this is analogous to the population being driven towards a fitness 
maximum in the therapeutic fitness landscape, while that same 
evolutionary trajectory results in the population being driven to-
wards a fitness minimum in the collaterally sensitive fitness land-
scape. The more anti- correlated the fitness landscapes are on this 
evolutionary trajectory, the more collaterally sensitive the popu-
lation will be [81].

Unfortunately, collateral evolution can also result in decreased 
sensitivity, typically referred to as collateral resistance, cross- 
resistance, or multi- drug resistance. Further complicating the pic-
ture is the recent observation that these collateral effects are often 
transient, and ever- changing with continued therapy and evolution, 
giving only a small window to deliver effective treatments [4,82]. 
While these observations greatly increase the complexity of a poten-
tial optimal treatment, they also offer hope that properly judicious 
and thoughtful therapies may significantly prolong treatment effi-
cacy or reverse resistance entirely.

35.3.6. Steering evolution

Modern treatment approaches involve adapting to the changing gen-
etic characteristics of a tumour over time [83]. The goal of adaptive 
therapy is to optimize treatment in real time to maintain a sensitive 
tumour volume and extend survival. This treatment is based on the 
specific genetic, molecular, and phenotypic characteristics of the tu-
mour rather than using a one- size- fits- all aggressive treatment plan.

There are several ways that adaptive therapy is currently envisaged 
and implemented, depending on the specific goals and objectives of 
the treatment. For example, adaptive therapy can involve:

 • Dynamic treatment scheduling: This involves adjusting the timing, 
frequency, or intensity of treatment based on the response of the 
tumour to treatment. For example, if a tumour is responding well 
to treatment, the treatment may be continued or intensified. If 
the tumour is not responding, the treatment may be changed or 
stopped.

 • Targeted therapy: The use of drugs or other therapies that are spe-
cifically designed to target the genetic changes that are driving the 
development and progression of the tumour.

 • Combination therapy: Combinations of multiple drugs or ther-
apies are used to target different aspects of the cancer cells or the 
tumour microenvironment at once.

Clinical trials of adaptive therapy and many in silico models have 
demonstrated strategies aimed at reducing and controlling tumour 
burden through the careful application of therapies aimed at redu-
cing population size and thus resistance evolution [84,85].

Evolutionary therapy aims to leverage ideas from adaptive therapy 
along with fitness landscapes and growth dynamics to plan protocols 
directly aimed at preventing resistance or guiding a population to a 
collaterally sensitive region [4,86]. Collaterally sensitive genotypes 
allow evolution to be leveraged for patient benefit. Work like that 
of Yoon et al. specifically looks at scheduling to achieve maximum 
therapeutic results from collateral sensitivity [44]. In bacteria, ex-
perimental and theoretical combined work has also demonstrated 
the ability to steer populations both towards and away from resist-
ance [27]. The use of therapies aimed at predicting, anticipating, and 
guiding tumour composition falls under the scope of evolutionary 
control. The fitness landscape formalism also allows for methods of 
steering evolution borrowed from more complex control theory [87].

Populations can be considered to traverse evolutionary spaces 
between genomic states in a probabilistic manner, and this inter-
pretation has inspired applications derived from quantum control 
theory. The work of Kimura and others has previously shown how 
the evolution of allele frequencies in genetic populations can be de-
scribed using equations traditionally used for describing fluids [88]. 
These equations are analogous in some ways to the Schrodinger 
equations describing quantum particles. Iram et al. built upon this 
to show that populations could be controlled in silico using paral-
lels derived from quantum counter- diabatic control theory [89]. 
Control of tumour populations is ideally both rapid and accurate, 
in the same way that counter- diabatic driving moves quantum par-
ticles between states.

As understandings of both tumour populations and the fitness 
landscape develop mathematically, it is likely that more cross- 
disciplinary methods to decode and control complex cancer evolu-
tion will become available.

35.4. Future directions

The fitness landscape can easily be integrated with modern tech-
niques or experiments in the pursuit of further understanding and 
control over clinical cancer evolution. In this section, we discuss 
some of the more recent developments aimed at integrating fitness 
landscapes into more realistic or complex models of patients.

35.4.1. Dose- dependent fitness landscapes

What is the translational potential of fitness landscapes? How might 
we leverage fitness landscapes to predict or control the evolution of 
cancer within a patient undergoing therapy? To address these ques-
tions, it is important to consider pharmacokinetic and pharmaco-
dynamic effects. Importantly, the drug concentration experienced 
by a tumour in vivo will vary in time and space due to variables, 
such as drug diffusion, metabolism, and drug dosing schedules. This 
raises another important question: how does changing drug dose or 
the tumour environment shape the adaptive landscape?

Dose- dependent evolutionary trade- offs, or fitness costs to resist-
ance, often arise as a consequence of resistance mechanisms [84,90– 
92]. Drug resistance mechanisms often impose metabolic burdens 
or impair vital functions of the organism. In other words, a mutant 
may ‘trade’ its drug- free growth rate in exchange for drug resistance. 
For instance, in an experiment with laboratory- evolved non- small- 
cell lung cancer subject to a targeted inhibitor, drug- resistant cells 
incurred a growth- rate penalty relative to drug- sensitive cells [93]. 

   

 

 

   

 

 

 

 

 

 

 

 

 

   

  

   

 

 

 



CHAPTER 35 Decoding cancer evolution through adaptive fitness landscapes 367

When considering trade- offs in growth rate, it is clear that the fitness 
landscape is context (or dose) dependent— the relative fitness of dif-
ferent mutants will change as the drug- selective pressure changes. 
To model these dynamics, fitness seascapes extend the fitness land-
scape model to include dose- dependent effects [12,94– 96]. While 
others have previously used the term fitness seascapes to describe a 
time- varying fitness landscape, here we use fitness seascape to refer 
to a fitness landscape that changes due to any arbitrary variable (or 
variables), such as drug concentration, pH, or temperature.

A straightforward way of modelling fitness seascapes is with col-
lections of genotype- specific dose– response curves; canonical fit-
ness landscapes, as described earlier in this chapter, are then vertical 
cross- sections of this structure. This is illustrated in Figure 35.4 with 
data from bacteria (adapted from King et al [97]). Here, genotypes 
are represented by a string of 4 bits, with each bit representing the 
presence or absence of a specific drug- resistance- conferring muta-
tion. Each genotype is associated with a dose– response curve, and 
this collection of dose– response curves forms a fitness seascape, 
encoding fitness trade- offs. For instance, in Figure 35.4, the four al-
lele genotypes encoded by 0111 and 1111 (most mutated), which ex-
hibit a high level of drug resistance, incur a growth- rate cost relative 
to other less resistant genotypes, including 0011 and 0000 (the wild 
type). Fitness landscapes, which are represented as the rank order 
of the growth rate at a given drug concentration, are then vertical 
cross- sections of this structure. We can use these cross- sections to 
visualize the stark changes in the fitness rank of different genotypes 
as a function of drug concentration.

Although the data within Figure 35.4 comes from an experiment 
in bacteria, dose– response curves in cancer often exhibit a similar 
pattern of dose- dependent trade- offs, resulting in fitness landscapes 
that vary as a function of drug concentration. Future work will in-
volve characterizing more complete fitness seascapes in cancer 

and modelling multiple genotypes that may arise during the evo-
lution of a tumour. Owing to these dose- dependent effects, it will 
be important to understand the pharmacokinetic dynamics within 
a tumour environment to gain a more realistic model of evolution. 
Furthermore, it is well known that tumour populations modify the 
microenvironment, affecting variables, such as pH and oxygen gra-
dients [98]. These variables likely alter the adaptive landscape in 
a dose- dependent manner, resulting in distinct fitness seascapes. 
Understanding fitness landscapes as high- dimensional genotype- 
by- environment interactions will be important to predict, and ul-
timately control the evolution of drug resistance in cancer.

35.4.2. Landscapes and machine learning

Machine- learning techniques, with their ability to solve complex 
classification and prediction problems, are an important tool in 
understanding increasingly large biological datasets. Currently, 
deep neural net classifiers have been trained to predict the fitness 
of different genotypes based on their genetic characteristics. Using 
classifiers to predict drug response based on cell- intrinsic factors 
such as gene expression enables scientists to abstractly model the 
underlying fitness landscape [77,99,100].

Machine- learning approaches can also address the problem of 
immeasurably large landscapes via the imputation of missing fit-
ness values [101,102]. Dimension reduction techniques provide 
possible solutions to address the high dimensionality of complete 
fitness landscapes. As demonstrated across bacterial and cancer 
studies, background mutations and ecological effects can also influ-
ence population distributions [103]. In these cases, higher dimen-
sional landscapes become essential to model [104]. Certainly, the 
integration of cutting- edge image classification and convolutional 
and recursive neural network machine- learning techniques across 
pathological and experimental studies of evolution will facilitate 

Figure 35.4. Seascapes as dose– response curves model evolutionary trade- offs. Dose– response curves with respect to drug concentration are 
shown for all 16 possible genotypes in a four- allele system. 0000 corresponds to the wild- type and 1111 to the presence of four mutant alleles. The 
wild type has a sharp reduction in growth rate at low drug concentrations. Traditional fitness landscapes coloured by rank fitness are vertical cross- 
sections of this seascape and are shown above the drug– response curves. These individual landscapes result from relative growth rate at three 
different drug concentrations. Source: Adapted from King et al. [97].
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novel approaches to mapping and interpreting fitness landscapes 
and controlling tumour evolution.

35.4.3. Beyond genetic fitness landscapes

Although many existing cancer landscape studies focus on the pres-
ence and control of genetic mutations, additional layers of biological 
complexity and fluctuations require higher dimensional mappings 
and modified control theorems. Cancer’s ability to modify its fitness 
landscape through intrinsic properties and environmental factors 
drives a desire to apply adaptive landscape principles across these 
dimensions. For example, it is clear that some cancers enormously 
benefit from structural changes and copy number alterations [105]. 
Epigenetic modifications also allow for cancer fitness plasticity and 
more evolvability on a landscape, potentially allowing the epigenetic 
landscape to combine with the genetic one permitting escape from a 
suboptimal local maximum [106].

Fitness landscape theory also has similar potential in under-
standing the evolution of metastasis, a critical factor in patient out-
comes. In a metastatic landscape, fitness could be understood as 
the ability of a cell to metastasize or to establish itself at a different 
site. Work by Jolly et al. demonstrates that plasticity in the form of 
the epithelial– mesenchymal transition allows cancer cells to escape 
local maxima, priming cells for metastasis [107]. Metastatic poten-
tial remains an understudied measure of cell fitness and presents an 
axis to control in future studies. Although increasing the dimensions 
that require control, these wider studies provide an explanation for 
the evolutionary divergence between experiments and patients, 
and incorporating these dimensions brings us closer to accurately 
predicting evolution.

The ideas developed in fitness landscape theory translate into the 
predictability of other facets of tumour- relevant evolution, such as 
an understanding of the dynamics of immune adaptation [66,108], 
neo- antigens [109], or metabolism [110]. Successful long- term 
approaches will involve the modelling and control of the multiple 
interacting dimensions of these complex systems. The combination 
of wider landscape ideas with game theory models will develop 
more complex evolutionary models for an investigation into the co-
evolution of different populations.

35.5.  Conclusions

The allure of predictability in biology and the clinical necessity of 
evolutionary and ecological control in the face of cancer resistance 
will continue to drive the field [87,94]. Although the fitness land-
scape is sometimes understood as simply a useful metaphor, scien-
tists and mathematicians across disciplines have proven it to be more 
powerful than this [111]. As both a measurable and a mathematical 
object, it allows for predictive simulations of evolution and pro-
vocative theoretical questions about evolution itself. As an effective 
framework that can help explain the observations of convergent and 
repeatable evolution, the fitness landscape provides a powerful the-
oretical basis for questions about the nature of evolution. The fitness 
landscape presents a figurative, analysable, and measurable map of 
evolution, and the expansion of fitness landscape ideas can help to 
explain how cancer evolves and evades treatment via the traversal 
and modification of its fitness surface.

Within cancer, the accelerated evolution of hyper- mutating im-
mortal cells results in evolutionary dynamics that promote an ac-
celerated exploration of the fitness landscape. In this regime of 
accelerated evolution, the existence of an underlying landscape has 
aided the inference of drug sensitivity and forms the basis for new 
therapeutic approaches and intelligently derived protocols aimed 
at steering evolution. Determined exploration of these landscapes 
across different tumour types and drug combinations will permit 
novel control methods aiming to target tumours using collaterally 
sensitive drug combinations.

Whether we choose to study cancer from an evolutionary perspec-
tive or not, evolutionary forces shape patient outcomes. The lens of fit-
ness landscapes looks only to aid this perspective. The majority of the 
limitations and criticisms of landscape formalisms lie in the simplicity 
of some approaches and assumptions around the limits of their utility. 
These limitations are challenged when the fitness landscape is extended 
to multiple dimensions, and many approaches are as yet unexplored. 
For example, when models require the inclusion of background muta-
tions or alternate evolutionary mechanisms, fitness landscapes can pro-
vide a starting point and context for these discussions. Furthermore, the 
fitness landscape framework is not limited to purely genetic evolution 
or evolution via single mutational steps. As a result, fitness landscapes 
permit many possibilities, including integrating various stochastic tools 
to model the probabilistic nature of evolution when background noise 
or epistatic effects are at play.

With increasing evidence for epistatic interactions with back-
ground mutations [104], there will be a need to lean on the the-
oretical tools within stochastic mathematics and physics to model 
non- linear surfaces and diverse populations as probability distribu-
tions [89]. Evolutionary landscape models encapsulating alternate 
mechanisms of evolution or this stochasticity will likely produce 
models more effective at explaining the scope of cancer outcomes 
and the possibility of control. As an understanding of tumour- 
specific evolution grows, so does the understanding of the tumour 
in its environment as a whole. The study and popularity of tumour 
microenvironments, through ecological interactions and environ-
mental constraints, has highlighted the need for models of tumour 
evolution that incorporates the microenvironment. The fitness 
landscape provides a basic graph- like framework for analysing in-
dividual and community evolution, providing a mathematical and 
conceptual basis for an interesting exploration of cancer evolution 
and treatment. Fitness landscapes provide a broad enough frame-
work within which the essential aspects of cancer ecology and com-
munity dynamics can eventually be integrated. The evolutionary 
understanding of the cancer landscape’s multiple dimensions can be 
combined with treatment information and control theories to form 
predictive and clinically relevant approaches to cancer therapy.
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A case against causal reductionism in 
acquired therapy resistance
Andriy Marusyk

36.1. Introduction: how do tumours escape 
initially effective targeted therapies?

The reductionistic molecular biology studies identified many 
cancer- associated mutations and specific molecular mechanisms 
underlying malignant phenotypes. Many of these oncogenic mu-
tations occur in cell signalling genes, resulting in constitutive 
context- independent signalling, enabling cells to ignore con-
straints to proliferation and survival. Cancer cells are often ‘ad-
dicted’ to this abnormal signalling, i.e. its suppression can halt cell 
proliferation and induce cell death, even though other genetic and 
epigenetic alterations associated with the oncogenic progression 
remain unaffected. This phenomenon paved the way for the devel-
opment of highly specific pharmacological inhibitors that target 
different oncogenic addictions. Often, these targeted therapies 
induce strong and durable clinical responses while avoiding se-
vere toxicities associated with less selective traditional cytotoxic 
therapies. Therefore, for cancers defined by the presence of strong 
‘druggable’ oncogenic addictions (such as EML4– ALK fusion in a 
subset of lung cancers), targeted therapies became the preferred 
frontline therapeutic option. In turn, the success of many types of 
targeted therapies fuelled the development of precision oncology, 
i.e. the search for druggable oncogenic addictions in cancers that 
lack targeted therapy options. While precision oncology is getting 
overshadowed by immune therapies, it remains one of the main 
directions of cancer research.

Despite typically eliciting strong and durable responses, targeted 
therapies are not curative in advanced metastatic cancers. Some of 
the tumours with targetable mutations fail to respond (so- called in-
trinsic resistance). In tumours that do respond, regression eventu-
ally reaches a plateau, with tumour burden stabilized at a certain 
level. This stabilization, called minimal residual disease (MRD), re-
flects the ability of some of the tumour cells to resist elimination. 
Following the seminal paper that described the phenomenon in tar-
getable EGFR mutant lung cancers, the residual cells are referred to 
as drug- tolerant persisters [1] . Stabilization of MRD burden under 
continuous treatment reflects a near- neutral proliferation/ death 

balance in populations of persisters, with cell proliferation substan-
tially suppressed by cytostatic effects of therapy. If the treatment is 
stopped, residual tumours typically resume fast growth. However, 
even under continuous treatment, the persistent populations evolve 
resistance over time, losing sensitivity to the cytostatic and cyto-
toxic effects of therapy. This leads to a transition from near- neutral 
to net- positive tumour growth relapse. While persistence and re-
sistance are typically considered qualitatively distinct phenomena, 
a growing body of evidence suggests a substantial heterogeneity of 
persistent tumour cells and a lack of clear boundaries. Recent ana-
lyses of genetic and phenotypic progression from residual disease 
to relapse suggest a continuum of resistance, from barely surviving 
under therapy (categorized as persistence) to complete loss of drug 
sensitivity and everything in between [2,3].

36.2. How do we approach the challenges  
of persistence and resistance?

The success of targeted therapies paved the way for a near- consensus 
opinion that the solutions to the challenges of persistence and resist-
ance could be found within the same precision oncology paradigm 
that produced the strong initial gains. That is, overcoming both the 
residual disease and relapse requires identifying specific molecular 
mechanisms responsible for persistence and resistance and devel-
oping specific inhibitors directed against these mechanisms. This 
paradigm led to the identification of a large spectrum of mechan-
isms, including both mutational (copy number and nucleotide- level 
changes) and epigenetic (expression- level changes without changes 
in the DNA) cell- intrinsic changes, as well as environmentally me-
diated resistance, where specific paracrine signals from local or sys-
temic environment compensate for the suppression of the targeted 
addiction. These discoveries spurred the development of multiple 
pharmacological inhibitors of varying degrees of specificity and 
on- target activity and the launching of new clinical trials. However, 
these developments failed to meet the high expectations. The clinical 
introduction of more potent inhibitors, capable of negating common 
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on- target mutational resistance mechanisms (such as replacement 
of the first- generation ALK inhibitor crizotinib with second-  and 
third- generation inhibitors alectinib and lorlatinib), enabled a sub-
stantial improvement in the rate and duration of remissions but still 
failed to resolve the inevitability of relapse.

New drugs directed against off- target resistance mechanisms 
with the purpose of being used in combination with the frontline 
inhibitor fared even worse. When not prohibited by increased sys-
temic toxicities, targeting individual persistence/ resistance mechan-
isms in combination therapy settings provided either no measurable 
effects or transient and modest improvement/ recovery of tumour 
responses. At best, these new inhibitors enabled oncologists to play 
an ultimately doomed ‘whack- a- mole’ game, with shallower and less 
durable responses, until running out of options. Precision oncology 
strategies to deal with persistence failed to achieve cures as well. At 
best, adding a co- inhibitor that suppresses the ability of tumour cells 
to survive upon the shutdown of the main ‘driver’ decreases MRD 
size and prolongs remissions. An example of this relative success is 
the addition of MEK inhibitors to the backbone of BRAF- targeting 
therapies in melanomas, now being extended to other targetable 
contexts, such as ALK+  lung cancers. Some of the promising leads 
(such as adding cMET inhibitors to the backbone of EGFR inhibi-
tors in EGFR mutant lung cancers) failed to show strong effects 
in clinical trials [4] . Very often, the ability to co- inhibit a different 
target over extended time frames is limited by systemic toxicities, 
which becomes especially relevant for the accumulation of side ef-
fects when added to the backbones of effective frontline inhibitors 
capable of achieving remissions that last for years (such as alectinib 
and osimertinib).

36.3. Why are we failing?

Why did the precision oncology paradigm in dealing with persist-
ence/ resistance fail to meet the high expectations? One of the most 
obvious challenges is the issue of inter- tumour variability. Each 
patient’s cancer is unique, as it represents a unique ‘evolutionary 
experiment’ shaped by the random nature of mutational processes 
and a degree of stochasticity of clonal dynamics. Moreover, the effect 
of specific mutations can be modified by epistatic interactions with 
other alleles, mutational timing/ order, life histories, sex, age, etc. [5] . 
Thus, cancers with the same main targetable mutational driver can 
have substantially different evolutionary trajectories, with no two 
tumours being identical in karyotypes, genetic mutations, and gene 
expression patterns. This variability can be even higher at relapse, 
as even near- identical experimental tumours can develop resistance 
through various molecular mechanisms.

The challenge of tumour- tumour variability is further exacer-
bated by the issue of mutational, phenotypic, and microenvi-
ronmental intra- tumour heterogeneity [6,7]. The existence of 
intra- tumour heterogeneity was noted well before the introduction 
of targeted therapies [8] . However, these observations were typically 
ignored in favour of a simplistic view of near- homogenous tumours 
arising through a series of clean clonal succession [9]. However, the 
frustrating inevitability of acquired resistance, as well as technical 
development enabling analyses at regional and even single- cell reso-
lution, eventually forced the acceptance of the more complex reality. 
Now, tumours are commonly recognized as heterogeneous entities 

composed of phenotypically and genetically distinct neoplastic 
populations, undergoing continuous diversification through muta-
tional processes and plasticity- mediated state transitions.

Intra- tumour heterogeneity extends to the differences in therapy 
sensitivity, with multiple persistent and resistant phenotypes 
coexisting and coevolving in the same tumours. The coexistence of 
different mutational resistance mechanisms has been described in 
multiple therapeutic contexts [7] . Successful targeting of any indi-
vidual population leads to a competitive release of subpopulations 
with different resistance mechanisms. This mechanism could be un-
derlying the ‘whack- a- mole game’, which is lost with the emergence 
of populations refractory to all of the available therapeutic options. In 
principle, intra- tumour heterogeneity should be less of an issue when 
dealing with persistent cells within the MRD, as smaller residual 
population sizes and more limited phenotypic diversity should, in 
principle, improve the odds of therapeutic success. However, des-
pite identifying multiple persistence mechanisms, there have been no 
success stories of successfully eradicating the residual disease with 
targeted therapy combinations in advanced metastatic cancers.

36.4. The elephant in the room: multifactorial 
causation of resistance

Even though the issues of inter-  and intra- tumour heterogeneity 
pose formidable challenges, one can still argue that the current 
framework for discovering and targeting individual persistence/ re-
sistance mechanisms is fundamentally sound. Given the continuous 
advances in resolution and precision of molecular diagnostics tools, 
it might soon be possible to detect subpopulations with different 
resistance mechanisms. The current limits of ‘druggability’ might 
be overcome by new technological developments, such as tagging 
the targeted proteins for proteasome degradation. Thus, it should 
be, in principle, possible to identify and eliminate all of the resistant 
subpopulations one by one (Figure 36.1A). The progress might be 
slow and incremental, but one could expect to eventually reach the 
goal of eradicating therapy- refractory cancers without redrawing 
current strategies for understanding and treating cancers.

The prospects of eventual success within the current paradigms 
of the war on cancer are tarnished, however, by another issue that is 
currently residing in a blind zone of the mainstream efforts. The cur-
rent strategies of focusing on one (co)target at a time are based on an 
implicit assumption that, at the level of individual tumour cells, the 
phenomena of persistence, as well as intrinsic and acquired resist-
ance, can be reduced to a single or at least a dominant cause. If this 
assumption is correct, disruption of this mechanism should lead to 
the inevitable death of the cell, at least as long as the mechanism was 
correctly identified and the cell has not changed during the treat-
ment. If persistence/ resistance is multifactorial, i.e. if more than one 
mechanism is responsible for the viability of persistent cells, or the 
ability of resistant cells to grow in the face of the initially effective 
drug, effective disruption of any single mechanism could only have 
a partial effect or no effect at all (Figures 36.1B and Figures C and 

36.2). The issues of intra- tumour heterogeneity and the ability of 
neoplastic populations to create new variability in persistence/ re-
sistance mechanisms would further exacerbate the issue.

Despite its critical importance for the soundness of current pre-
cision oncology efforts, the assumption of a single- cause resistance 
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is rarely made explicit except in mathematical modelling studies 
[10,11]. Instead, it is implicit within the rationale for the search 
for the ‘critical regulators’ or ‘drivers’ of resistance phenotype. The 
terminology is sufficiently vague to leave room for multiple inter-
pretations, thus avoiding the need to discuss or defend the subject. 
The single- cause assumption is also relevant for those cases when 
resistance is attributed to ‘cancer stem cells’[12], ‘stemness’[13], or 
epithelial to mesenchymal transition (EMT) [14]. These terms refer 
to cell phenotypes characterized by enhanced phenotypic plasticity, 
i.e. the ability to adaptively rewire and rearrange gene expression, 
signalling and metabolic networks in response to external stimuli. In 
principle, consideration of plasticity- mediated cell state transitions 
should imply complex, multifactorial expression changes affecting 

many genes and multifactorial causation. In practice, the link be-
tween stemness/ EMT and resistance is attributed to enhanced ex-
pression of multidrug resistance genes, regardless of whether the 
drug in question serves as their substrate. Alternatively, stemness 
or EMT is described as proximal, specific resistance mechanisms 
analogous to mutational changes, essentially explaining away the re-
sistance phenomenon and closing the door for deeper interrogation 
of the phenomenon.

36.5. What are the roots of the single- cause  
assumption?

The assumption of single- cause resistance appears to be a specific 
case of the more general issue described as causal reductionism or 
single- cause fallacy [15,16]. This fallacy is a well- described issue that 
impacts many areas of scientific inquiry where standard practices 
do not involve the need to adhere to robust quantitative reasoning 
standards. The prevalence of this fallacy in life sciences is quite 
understandable, given the dominance and success of reductionistic 
paradigms. The molecular biology revolution has provided the con-
cepts, knowledge, and tools that enabled the identification of spe-
cific molecular mechanisms of proximal causation. The mechanistic 
understanding enabled numerous breakthroughs across various 
medical conditions, from diabetes to infectious diseases. The com-
mercial success of tyrosine kinase inhibitors such as Gleevec led to 
the rush to develop new targeted therapies within the pharmaco-
logical industry, which in turn created demand and provided sup-
port for the search for targetable oncogenic addictions across all 
types of cancers. The clinical and commercial success of targetable 
therapies bolstered the case for the sufficiency of reductionistic ap-
proaches to the point where most research studies and grant sub-
missions could be described by the ‘Gene X is a critical regulator of 
hallmark Y in cancer Z’ formula.

Is there solid empirical evidence for single- mechanism causation 
of resistance? To address this question, let us consider the criteria 
for defining a given gene or pathway as the cause of the resistance 
phenotype. In a typical target discovery pipeline, a candidate re-
sistance mechanism is identified through studies that compare 
therapy sensitive/ naive with therapy- resistant primary tumours or 
experimental models. Intermediate steps are omitted from consid-
erations due to convenience or lack of access to relevant samples, 
such as the challenge of sampling MRD in clinics. The comparisons 
could involve searching for recurrent genetic mutations, comparing 

Figure 36.1. Therapeutic implications of multifactorial resistance. 
(A) Single- cause resistance: heterogeneous residual tumours. Tumours 
can be eliminated by sequentially targeting different populations. 
Multifactorial resistance: inhomogeneous (B) and heterogeneous 
(C) tumours. Sequential targeting of different resistance mechanisms 
cannot eliminate tumours. Additional diversification further complicates 
the challenge.

Figure 36.2. Consequences of single- cause fallacy. A tumour cell whose survival relies on a single molecular mechanism (depicted by a tethering 
line) can be eliminated by targeting this mechanism. However, if more than one mechanism underlies cell viability, targeting individual resistance 
mechanism is expected to have limited impact on cell viability.
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gene expression through transcriptomics or proteomics analyses, 
or functional screens (genetic or pharmacological). These analyses/ 
screens typically produce a list of candidate mechanisms. The list 
is then examined to find a few candidates that satisfy novelty, clin-
ical relevance, and targeting potential criteria. Once the short list of 
potential candidates is compiled, functional validation studies are 
performed by assessing the impact of suppression and activation of 
the candidate mechanism. A candidate that passes the functional 
validation criteria is typically selected to become a central player in a 
paper reporting a novel mechanism. If multiple candidates pass the 
criteria, they often become seeds of multiple papers, each reporting 
a new ‘critical regulator’.

A reasonable validation entails the demonstration that the puta-
tive mechanism is both necessary and sufficient to explain resistance. 
However, a few studies strictly adhere to this criterion. A typical val-
idation pipeline entails demonstrating the statistical significance and 
reproducibility of the effects of the suppression and activation of a 
putative mechanism. As long as suppression of the putative mech-
anism enhances sensitivity while its activation reduces it, the boxes 
are checked, especially if this demonstration is performed in several 
experimental systems and with different assays. Whether the mag-
nitude of the observed effect is sufficient to explain the clinically 
observed resistance levels is usually overlooked. To an extent, this 
omission reflects the limitations of available experimental systems. 
In many cases, the assays are performed in experimental models 
that are not directly relevant to the cell/ cancer type being studied. 
For example, the impact of specific hotspot mutation on sensitivity 
to TKIs is commonly studied in an IL3- dependent Ba/ F3 cell line 
[17]. Exogenous expression of kinases enables Ba/ F3 cells to grow 
without IL3, while pharmacological inhibition of the kinases restores 
IL3 dependence. While the Ba/ F3 system provides a highly con-
venient platform for experimental and screening studies, the genetic 
and epigenetic context of this murine Pro- B cell line is highly distinct 
from the contexts of cells that are clinically relevant targets. However, 
even when more relevant in vitro and in vivo experimental systems 
are available, the question of the sufficiency of the putative resistance 
mechanism to fully account for the ability of tumour cells to maintain 
net- positive growth in the presence of treatment is rarely asked.

Thus, considering therapy resistance as a single- cause phenom-
enon is not based on solid first principles or robust empirical evi-
dence. But do we have any evidence to support the alternative 
scenario of the multifactorial nature of therapy persistence/ resist-
ance? The coexistence of multiple resistance mechanisms within the 
same tumour in clinical relapses is a well- documented phenomenon 
[18– 20]. Since such a coexistence can reflect intra- tumour hetero-
geneity, where distinct resistant subpopulations contain distinct 
resistance mechanisms, this type of evidence is only circumstantial 
without further interrogation. However, in some cases, the circum-
stantial evidence is sufficiently strong to speculate that multiple cell- 
intrinsic resistance mechanisms might act within the same neoplastic 
cells [21]. Moreover, ample evidence exists for the existence of com-
pound on- target mutations in the form of multiple nucleotide- level 
changes in the same target or a point mutation plus amplification of 
the DNA locus that is most likely acquired in multiple mutational 
steps. A growing body of direct experimental evidence documents 
the contribution of multiple specific expression- level changes in 
mediating reduced drug sensitivity, mediated by epigenetic mech-
anisms [2,22,23]. Notably, genetic and epigenetic mechanisms are 

not mutually exclusive and can co- occur in the same cells as they 
evolve resistance [23]; drug sensitivities of evolving lineages are fur-
ther modulated by systemic and microenvironmental influences. 
Conceptually, scenarios where resistance can be fully attributed to a 
single mechanism can be viewed as a special, limiting case of multi-
factorial resistance. The opposite, however, is not true. Much like 
an observation of a single black swan is sufficient to refute the ‘all 
swans are white’ statement, a single case of multifactorial resistance 
should be sufficient to refute the single- cause fallacy in therapy re-
sistance. Yet, the question of whether the resistance is reducible to 
a single molecular cause is rarely evoked, discussed, or challenged. 
Therefore, like the possibility of substantial intra- tumour hetero-
geneity at the dawn of targeted therapies, the issue of multifactorial 
resistance appears to be an ‘elephant- in- the- room’- type problem. 
That is, a type of phenomenon that is impossible to ignore when 
scrutinized but preferable to not note due to convenience or comfort 
considerations.

36.6. Implications of multifactorial resistance

Why should we care? After all, the current target discovery pipe-
lines provide pharma with candidates worth focusing on; pharma-
cological inhibition of at least some of these targets does translate 
into longer remissions. Obviously, there is time and place for reduc-
tionistic science as these efforts are balanced by commensurable 
efforts to integrate knowledge. The problem is that the dominance 
of the extreme reductionistic paradigm created a moat where in-
vestigators are incentivized to ignore the complexity and nuances. 
The ability to reduce complex phenomena to a clean, linear chain 
of interactions between genes, proteins, or metabolites became an 
implicit standard for judging the quality of basic research studies. 
Conversely, making a case for more nuanced and complex scenarios 
is a risky proposition. In a highly competitive funding environment, 
deviation from the expectations of neat, linear causation not only 
lacks a clear upside but also presents a tangible danger. Far too many 
investigators, proven right in retrospect, were forced to reconsider 
their research focus or even lost the ability to practice scientific en-
terprise. Thus, the dominance of reductionistic causality freezes the 
development of the field, limiting our understanding of cancer and 
therapy resistance.

In turn, this limitation impacts our ability to advance the ultimate 
purpose of cancer research, i.e. to minimize the toll of cancer- 
related morbidity and mortality. If resistance is not reducible to a 
single cause, at least at the level of individual subpopulations, how 
can we hope to achieve cures while staying within the current target 
discovery- drug development paradigms? Paraphrasing a famous 
saying of Vincent Feliti (‘It’s hard to get enough of something that 
almost works.’), the oncologists might be getting better at playing 
the whack- a- mole game with cancers, but this game is doomed to 
eventual failure unless we re- evaluate our basic assumptions and 
strategies?

36.7. Conclusions and future directions

What is the way out of the impasse? Firstly, the field needs to rec-
ognize the existence of the issue created by the dominance of the 
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single- cause fallacy. However, by itself, acknowledging the com-
plexity and potential existence of an ‘elephant in the room’ of multi-
factorial causation will not solve the problem. We need sensible 
strategies to decipher and conceptualize the interaction of multiple 
causes in a way that enables us to predict the outcomes of these 
interactions. The challenge is exacerbated by the fact that cancers 
are complex dynamic systems that change in response to therapeutic 
perturbations, and we need to account for these changes. While re-
ductionistic studies are indispensable in identifying genes, metabol-
ites, and proteins that influence phenotypes of interest, integrating 
these ‘building blocks’ requires systems biology and mathematical 
modelling concepts and approaches.

Considering all of the complexity of signalling, gene expression, 
and metabolic networks across different scales (cells, cell popula-
tions, and tissues) is an impossible task, especially if we aim above 
a mere description. However, perfect understanding through sim-
ultaneous consideration of everything is not necessary for useful 
predictability, which can be achieved at a level of approximation 
and abstraction. For example, meteorology can make reasonably ac-
curate near- future weather forecasts based on a limited set of meas-
urements and parameters without the need to account for every 
factor that has been linked with influencing weather at progres-
sively increased spatiotemporal resolution. Instead, predictability 
is achieved by developing adequate conceptual and mathematical 
models that capture the interplay of several germane factors that in-
fluence weather changes. These abstract models guide the selection 
of the parameters that need to be measured, as well as the spatial and 
temporal resolution of measurements, sufficient to achieve a desired 
level of accuracy. The resulting predictions are not perfect, but they 
are clearly superior to both random guesses or trying to make sense 
and predict weather changes by focusing on a single ‘key driver’ 
(such as temperature) in isolation.

Analogously, achieving more than incremental progress in 
dealing with therapy resistance would require stepping beyond cata-
loguing individual resistance mechanisms and matching the list to 
a clinical scenario to identify a single factor, continuing the treat-
ment until it becomes obvious that it no longer works, and then 
repeating the cycle. Instead, we must develop adequate conceptual 
models of tumour therapy responses using systems biology and 
mathematical modelling tools. The predictive power of the models 
should be harnessed to develop a flexible therapeutic strategy that 
considers the use of all relevant tools within an oncologist’s arsenal 
within clinically feasible constraints (such as frequency of admin-
istration, toxicities, etc.). Tumour responses need to be monitored 
with the parameters (such as tumour burden and phenotypic and 
genetic markers) measured at the level of resolution guided by the 
interplay of feasibility and utility. If warranted by the model’s predic-
tions, therapy is then adjusted to maximize the likelihood of optimal 
long- term outcomes (tumour eradication or maximal prolongation 
of remission while managing toxicity).

Obviously, the models and strategies cannot be produced out of 
thin air. Developing an adequate level of understanding and pre-
dictive capabilities requires dedicated and focused effort, resources, 
time, and patience within an interdisciplinary collaboration be-
tween system biologists, mathematical modellers, clinicians, and 
experimentalists. Much like the re- assembly of a complex mech-
anism is a much more challenging task than its disassembly, inte-
grating multiple causes responsible for a complex phenotype is a 

much more daunting task than identifying individual molecular 
mechanisms. Thus, it calls for at least matching the scale of the 
investment and support received by the reductionist molecular 
biology/ drug development enterprise in a futile search for the elu-
sive silver bullet.
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Group behaviour and drug resistance  
in cancer
Supriyo Bhattacharya, Atish Mohanty, Govindan Rangarajan, and Ravi Salgia

37.1.  Introduction

Group behaviour refers to the collective property of a group or popu-
lation that emerges due to interactions among individual members 
of the group [1] , often benefiting the group as a whole. Cancer cells 
reside in a communal environment, in close proximity to one an-
other as well as other cell types that constitute the tumour micro-
environment (TME). These cells communicate and influence each 
other’s behaviour through exchange of chemical messengers [2,3]. 
Such mutual interactions, coupled with the heterogeneity of the 
TME, give rise to complex ecological dependencies (e.g. competition 
and cooperation) within the tumour. Therefore, group behaviour is 
a major mechanism that is relevant to every aspect of cancer evolu-
tion, from initial progression to metastasis and therapy resistance.

One critical yet overlooked property of cancer cells is phenotypic 
plasticity that allows rapid adaptation to environmental changes 
without undergoing genetic mutations [4] . Mechanisms such as 
phenotypic plasticity and group behaviour facilitate the survival of 
cancer cells, especially during stressful events such as therapeutic 
intervention. These mechanisms are of considerable relevance to the 
emergence of drug resistance, alongside the more familiar mech-
anism through genetic mutations. Therefore, understanding the role 
of group behaviour, and the underlying non- genetic mechanisms, 
can lead to more efficacious treatment designs and minimize or 
delay the emergence of resistance.

For well over the past 150 years, cancer has been thought to be 
a predominantly genetic disease, where individual clones acquire 
driver mutations of increasing fitness through natural selection [5– 
11]. Furthermore, this thinking has also helped ingrain the idea that 
drug resistance in cancer, whether innate or acquired, is primarily 
driven by genetic mutations [12,13]. However, there is a growing 
appreciation that genetic evolution is unlikely to represent the only 
mechanism for acquiring drug resistance. Emerging evidence in-
dicates that non- genetic mechanisms such as epigenetic modifica-
tions and rewiring of protein interaction networks also contribute 
to various aspects of cancer, including its origin, progression, and 
emergence of drug resistance [14– 16].

A hallmark of cancer cells is their phenotypic plasticity, that is the 
ability to exhibit different phenotypes when exposed to variable en-
vironmental conditions without undergoing any genotypic changes 
[17]. The underlying mechanisms contributing to the development 
of phenotypic plasticity are non- genetic. Cancer cells can switch 
phenotypes reversibly which allows them to evade the toxic effects 
of a drug without acquiring any mutation or genetic alteration(s) 
while contributing to intra- tumour heterogeneity. Indeed, such het-
erogeneity induced through non- genetic mechanisms serves as an 
effective bet- hedging strategy that can help overcome the varying 
selection pressures faced by cancer cells [18,19]. Therefore, it is im-
portant to recognize the pervasive contribution of phenotypic plasti-
city and to develop strategies to effectively counteract this feature of 
cancer cells, in addition to the genomic- guided approach frequently 
used with targeted therapies. Of note, while genetic and non- genetic 
mechanisms of drug resistance are often recognized as separate 
entities to illustrate the concepts associated with them, most cancers 
appear to leverage both processes for therapeutic evasion that are 
not mutually exclusive evolutionary trajectories [14,20].

There is evidence that drug- resistant clones pre- exist within tu-
mours prior to drug treatment, whereas the emergence of a drug- 
tolerant (i.e. weakly or moderately resistant) state is stochastic 
which could be exhibited by any cell in the tumour [21– 23]. The 
cells exhibiting tolerance phenotypes are called persisters that are 
not very well characterized and usually present as a minor fraction 
of drug- sensitive cells [24]. Different processes, such as pathway 
rebound through the release of negative feedback loops, transcrip-
tional rewiring mediated by chromatin remodelling, and autocrine/ 
paracrine communication among tumour cells and between tumour 
cells and other cell types in the TME, are thought to contribute to 
the emergence of these cells [25]. Nonetheless, this begs the question 
how drug- sensitive and tolerant or resistant cells in a tumour in-
fluence each other’s fitness (growth), and whether cooperation and 
competition (group behaviour) between the sensitive and tolerant 
cells influence their response to drug treatment. Several studies in 
the literature have demonstrated the power of game- theory- based 
approaches to understand group behaviour and its contribution to 
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drug resistance in different cancers. Furthermore, with advances in 
technology enabling live cell imaging and in the power of computing 
with big datasets, discerning group behaviour by monitoring inter-
actions between drug- tolerant and drug- sensitive cells in real time 
in the absence or presence of the drug has emerged as a powerful 
tool to elucidate the role of group behaviour [26– 34].

In this chapter, firstly, we briefly review game- theory- based 
models developed for understanding drug resistance, especially in 
non- small- cell lung cancer (NSCLC) [31,32,34], and draw attention 
to some of the challenges associated with applying classical game 
theory to cancer. We then discuss Phenotype Switch Model with 
Stress Response (PSMSR), a new mathematical approach with game 
theoretical underpinnings that we developed to model real- time 
growth data of NSCLC cells to discern patterns in response to treat-
ment with cisplatin [1,35]. We show that the cisplatin- sensitive and 
cisplatin- tolerant NSCLC cells, when co- cultured in the absence or 
presence of the drug, display dynamic group behaviour strategies. 
Tolerant cells exhibit a ‘persister- like’ behaviour and are attenuated 
by sensitive cells; they also appear to ‘educate’ sensitive cells to evade 
chemotherapy. Further, tolerant cells can switch phenotypes to be-
come sensitive, especially at low cisplatin concentrations. Finally, 
switching treatment from continuous to an intermittent regimen 
can attenuate the emergence of tolerant cells, suggesting that inter-
mittent chemotherapy may improve outcomes in NSCLC. We con-
clude by summarizing the enormous potential of mathematical 
modelling and quantitative cancer biology.

37.2. Introduction to game theory

Game theory is the mathematical framework for studying the stra-
tegic interactions between competing players in a communal envir-
onment. A strategy refers to a set of choices or actions adopted by 
a player at a certain time. The type of strategy that a player chooses 
will depend on their goals, the goals of the other players, and the 
rules of the game. Mathematically, each strategy is associated with 
a payoff matrix that lists the possible outcomes of the strategy and 
the costs and benefits incurred by different players under alterna-
tive scenarios. Classical game theory was developed to analyse the 
behaviours and strategies followed by human players or organiza-
tions, whose decisions are often expected to be rational and geared 
towards maximizing their payoffs [36]. This often leads to zero- sum 
games (one player’s win is counterbalanced by the opponent’s loss), 
equilibrium situations (e.g. Nash equilibrium, where a single- player 
strategy change does not lead to any gain, unless others change their 
strategies as well), or various forms of cooperations and collabor-
ations [37].

The branch of game theory that studies evolutionary processes 
involving biological species is called evolutionary game theory. 
Unlike human players, the strategies adopted by biological entities 
(e.g. animal or plant species, microorganisms, and cancer cells) are 
not rational rather inherited through generations and evolved for 
the survival benefit of individuals or communities under a given 
environment. The dynamics of evolutionary games are driven by 
competition, cooperation, or other more complex strategies (e.g. 
bet- hedging and defection) among groups of individuals, where 
the outcomes (payoffs) of the strategies depend on the opponent 
strategies as well as relative group populations. In recent years, 

researchers have shown that phenotypic plasticity exhibited by cer-
tain microorganisms and cancer cells can lead to complex game 
landscapes [35,38], where strategies need not be fixed through in-
heritance rather switch depending on the environment or, in some 
cases, learned de novo from other players, as seen in the case of drug- 
sensitive lung cancer cells in the presence of drug- tolerant cells [35].

37.3. Game theory and drug resistance 
in cancer

Evolutionary game theory has been a valuable conceptual tool to 
understand the behaviour of cancer cells, the role of tumour het-
erogeneity, interaction with the microenvironment and immune 
system, and forecast disease prognosis and design effective therapy 
[2,27,28,30,31,33– 35, 39– 44]. The tumour ecosystem is comprised 
of multiple cell types, such as proliferative cancer cells, supportive 
stromal cells, immune cells, and fibroblasts (Figure 37.1A), each of 
which can be treated as players in an evolutionary game. Interaction 
among these cell types and with the microenvironment shapes the 
cellular phenotypes within the tumour. The group behaviours of 
individual clones and subclones that result from such interactions 
can be considered as heritable game strategies. For example, the co-
operative subclones in the cancer milieu benefit each other by se-
creting diffusible factors [45]. However, non- cooperative subclones 
(cheaters) can compete with the cooperative cells to free ride on the 
diffusible factors for their own benefit.

These game strategies are subject to selection pressure from the 
microenvironment, and their payoffs (survival benefit) depend on 
the group populations. The more successful strategies that increase 
survival of the tumour as a whole become dominant over time. The 
strategies dominant within a tumour determines the type of evolu-
tionary game being played. Several studies have elegantly demon-
strated that games, such as Prisoner’s dilemma, Hawk- Dove, stag 
hunt, snowdrift, rock– paper– scissors, and Leader and Deadlock, are 
excellent models to explain many of the observations in clonal dy-
namics [31,39,41,42].

Therapeutic intervention represents a significant change in the 
tumour environment that reshapes the clonal composition by al-
tering the fitness of existing clones and promoting newer ones. 
Drug treatment also leads to the emergence of new game strat-
egies tailored towards evading drug toxicity. Conceptually, treat-
ment and the emergence of drug resistance may be considered as 
an evolutionary predator– prey game between the cancer (prey) 
and the oncologist (predator). By analysing the nature of the game 
being played by the tumour (and carefully anticipating its future 
moves), the oncologist can design treatment strategies to effect-
ively defeat the tumour [45]. Such strategies typically leverage the 
evolutionary costs associated with synthesis, maintenance, and op-
eration of the molecular mechanisms necessary for evading and 
surviving drug treatment. Here, the benefit of resistance outweighs 
the costs. However, in the absence of treatment, particularly in the 
TME where resources are limited, the cost renders resistant cells 
less fit than their drug- sensitive counterparts. Thus, treatment 
withdrawal at regular intervals interspersed between treatment 
cycles (intermittent therapy) can encourage residual populations 
of drug- sensitive cells to exploit their fitness advantage at the ex-
pense of the less- fit resistant phenotypes. While withholding 
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Figure 37.1. (A) Overview of the tumour microenvironment. Few of the common diffusible factors released by proliferating cancer cells are shown in 
the box. Role of each diffusible factor is depicted on the right. Cancer cells utilize the functional effects of such diffusible factors as part of their game 
strategies to survive in the host environment and compete/ cooperate with other cells. Source: Created using Biorender (https// www.bioren der.com). 
(B) High- resolution image of a growing tumour obtained using transparent tumour tomography, showing spatially heterogeneous regions expressing 
different biomarkers. Source: Obtained from https:// www.fli ckr.com/ pho tos/ nih gov/ 2739 0448 613 under license CC BY 2.0. Credit: Steve 
Seung- Young Lee, University of Chicago Comprehensive Cancer Center, National Cancer Institute, National Institutes of Health. (C) Description of 
evolutionary graph theory that studies evolutionary games in a spatially restricted environment. Parents and offsprings are organized as nodes in a 
graph. Mutants (blue nodes) can replace parental population only along the edges of the graph, in the direction specified by the arrows. Under such 
scenarios, fixation probability (taking over the entire population through successive generations) of a mutant, ρ, depends on the graph topology. 
Several topologies are shown along with their respective fixation probabilities. Here, r denotes the relative fitness of a mutant (compared to the 
parental population) and N is the population size. Topology names are according to Nowak et al. (D) Comparison of tumour growth in zebrafish over 
time, seeded with a mixture of fluorescence- tagged drug- sensitive (red) and drug- tolerant (green) cells under untreated, continuous, and intermittent 
therapy conditions. Source:
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treatment allows tumour regrowth, the resistant subpopulation 
remains small so that retreatment with the same drug(s) remains 
effective [44]. Thus, it follows that game theory- based studies have 
provided a novel framework for evolutionarily informed ther-
apies wherein the physician aims to guide the eco- evolutionary 
dynamics of cancer towards better outcomes or outright cure 
[32,46,47]. Taken together, it is obvious that mathematical models 
provide valuable tools for formulating hypotheses and evaluating 
different scenarios pertaining to the interactions between cancer 
cell types and therapy [44].

Despite the apparent success, the complexity of cellular be-
haviour, such as soluble factors with non- linear effects on dif-
ferent cells as well as phenotypic plasticity, remains considerable 
challenges. For example, as discussed below, unlike in classical 
ecology models where players do not switch identities, cancer 
cells, drug- resistant, and drug- sensitive cells can switch their 
phenotypes because of their innate plasticity. Furthermore, since 
the behaviour of cancer cells is highly dependent on their unique 
microenvironment, it is often challenging to translate the find-
ings from in vitro studies to in vivo. Secondly, the stochasticity 
involved at different levels of cellular behaviour, from intracel-
lular biochemical networks to interactions among groups of 
cells, can result in multistability, and therefore, challenge claims 
of causal connection between quantitative phenotypic markers, 
such as the expression of cell surface receptors and their behav-
ioural effects [48].

37.4. Tumour heterogeneity and significance  
of the spatial dimension

Cellular heterogeneity is a hallmark of cancer progression and re-
flected in the coexistence of multiple clones within the tumour 
and the diversity of the microenvironment. Much work has been 
carried out to explore the mutational landscape of developing tu-
mours and its effect on treatment and resistance [49,50]. For in-
stance, the positive correlation between tumour heterogeneity and 
worse clinical prognosis has been reported in multiple cancer types 
[51– 54]. Recently, it was shown that linear (same clone successively 
acquiring multiple mutations) vs. branched (driver mutations dis-
tributed among multiple clones) evolution, as well as the sequence 
of acquiring mutations, makes a difference in clinical outcome in 
acute myeloid leukaemia [55]. Moreover, the frequency of cer-
tain mutations among subclones determines drug sensitivity. Such 
studies suggest that tumour heterogeneity evolves in response to se-
lection pressure rather than as a by- product of cancer proliferation. 
In addition to mutations, non- genetic mechanisms play a major but 
underappreciated role in conferring phenotypic heterogeneity to 
the tumour ecosystem, which has been extensively discussed in sev-
eral recent reviews by us and others [20,56,57]. Difficulty of meas-
urement and the mutation- centric view of cancer are some of the 
reasons why non- genetic mechanisms are less appreciated. Besides 
clonal diversity, another major source of tumour heterogeneity is 
the TME (Figure 37.1A and B). As the disease progresses, cross-
talk between the tumour and the TME shapes each other’s hetero-
geneity and spatial organization, and this interaction is likely to be 
critical for the long- term survival of the disease. The benefits of the 
TME include providing proliferative and metabolic factors to the 

tumour and maintaining an immunosuppressive environment for 
the tumour to thrive. The ecological forces that shape tumour com-
position are challenging to study using current experimental tech-
niques, leading to the development of theoretical and simulation 
frameworks as discussed next.

Solid tumours proliferate within a dense environment of host cells 
and extra- cellular matrix, where each cell mainly interacts with its 
nearest neighbours. This is in sharp contrast to scenarios, such as 
leukaemia, where cells are fully mobile and free to interact with any 
other cell in the environment. For example, in a spatially restricted 
environment, beneficial diffusible elements such as growth factors 
will primarily affect the near neighbourhood of the source cells since 
their levels will fall off with distance from the origin. Therefore, it 
has been proposed that spatial organization plays a vital role in tu-
mour evolution, heterogeneity, and development of game strategies. 
To understand these effects from a theory standpoint, Nowak de-
veloped the evolutionary graph theory, where cells are organized 
as nodes in a graph [58]. Competition and cooperation are only al-
lowed between neighbouring cells that share common edges in the 
graph network (Figure 37.1C). Nowak and co- workers have showed 
that evolutionary dynamics follows different trajectories in a spa-
tially constrained environment [59], depending on the graph layout 
(i.e. fully connected, scale free or circular, etc.). Key properties, such 
as fixation probability (certain graph layouts can amplify or suppress 
natural selection) and payoffs, vary depending on the graph layouts, 
thus highlighting the importance of spatial dimension in tumour 
evolution. One interesting outcome of such theoretical analysis is the 
emergence of cooperation. In simulations of cooperator– defector 
dynamics on a spatial grid, it was shown that defectors invade the 
cooperator cells and outcompete them when the benefit to defection 
was above a certain threshold. However, the cooperators were never 
completely wiped out, and they survived by organizing themselves 
into tight clusters.

The above narrative carries a strong parallel to our observation 
of the interplay between drug- sensitive and drug- tolerant NSCLC 
cells in in vivo zebrafish model [35], where the drug- tolerant cells 
(cooperators) formed tight clusters, surrounded by the drug- 
sensitive cells (defectors) (Figure 37.1D). NSCLC can be classified 
as adenocarcinoma or squamous cell carcinoma or large cell car-
cinoma histologically. There are a number of oncogenes that can be 
abnormal in NSCLC, such as EGFR mutation, ALK fusions, ROS1 
fusions, MET exon 14 splice variants, and others. There is large 
heterogeneity of lung cancer; however, the majority of NSCLC re-
spond to platinum- based therapy. Independent in vitro studies, 
coupled with mathematical modelling, confirmed the coopera-
tive trait of the drug- tolerant cells in the form of diffusible fac-
tors. Works like the above that explore cancer progression from 
the ecological perspective are rare due to the challenges faced in 
monitoring the phenotypic behaviour of tumour components at 
the cellular level. One exciting development in this field is the 
microfluidic death galaxy developed by Austin and co- workers 
who can monitor the growth and spatial organization of mul-
tiple cell types under different ecological conditions, such as drug 
concentrations [43]. Combining experimental observations with 
game theory models, such constructs, can estimate hard to ob-
tain parameters such as payoffs under varying selection pressures, 
which can be used for future prediction of prognosis under thera-
peutic intervention.
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37.5. Group behaviour via non- genetic   
mechanisms facilitates therapy  
resistance

Historically, cancer research has focused on genetic alterations (e.g. 
mutations, copy number variations, and chromosomal instability) 
as the primary drivers of the disease. Emergence of resistance- 
conferring mutations in response to therapy is typically ascribed to 
the cause of tumour survival and disease relapse. Recently, however, 
the importance of non- genetic resistance mechanisms has come to 
light. Due to their genetic and epigenomic alterations, cancer cells 
are adept in rewiring their signalling networks to bypass the effect 
of anti- cancer drugs, as shown in the case of melanoma [60,61], or 
more recently through our own works on NSCLC [35,62]. These 
network rewiring acts are typically carried out at the transcrip-
tional (e.g. regulation of transcription factors, DNA looping, and 
chromatin accessibility), post- transcriptional (e.g. alternative spli-
cing and selective RNA degradation), translational (e.g. ribosomal 
regulation), or post- translational (e.g. protein phosphorylation and 
ubiquitination) levels and through various autocrine and paracrine 
processes. By network rewiring, cancer cells can temporarily switch 
to a different phenotype that enables them to survive under a rapidly 
changing environment, such as ambient drug concentrations. This 
behaviour is called phenotypic switching and has a strong presence 
in the fungal and bacterial world, where such mechanisms are used 
to combat sudden toxicity or invasion by competing microorgan-
isms [63,64]. In the cancer world, one prime example of phenotypic 
switching is melanoma cells transitioning from a proliferative (drug 
sensitive) to an invasive phenotype (drug resistant) in response to 
mitogen- activated protein kinase (MAPK) pathway inhibitors, 
without undergoing genetic mutations [60].

An important indicator of non- genetic resistance mechanisms 
is drug- tolerant persister (DTP), a small subpopulation of drug- 
tolerant cancer cells that naturally exist within an otherwise sensitive 
population and survive drug treatment without undergoing genetic 
alterations. DTPs have been studied and referred to multiple times 
in the literature over the past decade, after they were first reported in 
2010 [25,65]. Upon extended drug exposure, the DTPs were found 
to proliferate and reestablish in vitro colony of drug- tolerant cells, 
and these cells reverted to drug sensitivity upon drug withdrawal 
within a few cell divisions (~30). These reversible phenotypic tran-
sitions within a few generations indicate that heritable epigenetic 
modifications can stabilize drug- tolerant phenotypes and are sup-
ported by the involvement of histone demethylation, as in the case 
of melanoma cells.

Available evidence therefore indicates that in some cases non- 
genetic mechanisms, such as phenotypic switching and heritable 
epigenetic modifications, may be preferred over genetic mutations 
in developing therapy resistance. The question is why? From a game 
theory perspective where cells or groups of cells can be considered 
players, both non- genetic and genetic mechanisms are survival 
strategies that evolve under environmental pressures. If we ana-
lyse the benefits and costs associated with each type of strategy, it 
may be understandable why one would be preferable over the other. 
Non- genetic mechanisms are rapid and reversible and are therefore 
capable of addressing sudden changes in the environment. Genetic 
mechanisms lead to the fixation of heritable alterations in the 

genome that once acquired are not easily lost. However, evolution 
of such strategies through fitness conferring mutations require cel-
lular proliferation and selection over multiple generations (through 
stochastic trial- and- error attempts) and are typically slower in re-
sponse to environmental changes. Moreover, genetic changes are 
permanent since reversing a mutation is not a spontaneous pro-
cess. In comparison, non- genetic mechanisms can be reversible. 
While switching from a proliferative to an invasive phenotype, mel-
anoma cells still retained their proliferative potential so that when 
the drug pressure was lifted, they were able to switch to the prolif-
erative phenotype and reestablish their colony [60]. However, it is 
important to note that non- genetic mechanisms often come with a 
cost. For instance, they may require increased energy expenditure 
due to elevated transcription, protein synthesis, and kinase recruit-
ment for phenotypic switching mechanisms.

The choice between non- genetic mechanisms and permanent 
genetic alterations as survival strategies depends on a careful as-
sessment of the associated benefits and costs. In situations where 
the advantages of rapid response outweigh the costs, non- genetic 
mechanisms become the preferred option. It is hypothesized that the 
administration of anti- cancer drugs can induce an environmental 
shift that favours non- genetic mechanisms during the initial phase 
of adaptability as opposed to genetic alterations. Currently, the pro-
posed hypothesis by our research team and other experts in the 
field suggests that non- genetic mechanisms can serve as a survival 
strategy for tumours facing environmental stress, such as exposure 
to cytotoxic drugs. These mechanisms provide a temporary solution 
until more permanent modifications, such as genetic mutations or 
epigenetic changes, evolve [1,20,66]. It could also mean that ther-
apists can manipulate the environmental conditions that promote 
the dominance of non- genetic mechanisms within the tumour and 
delay the emergence of permanently resistant clones [35,66]. We will 
hold that thought and revisit it in a subsequent section (intermittent 
therapy).

37.6. Phenotypic switching, stress response,  
and intra- tumour cooperation

In the previous section, we have argued how drug- sensitive cancer 
cells can avert the effect of environmental stress by temporarily 
switching to a drug- tolerant phenotype. We recently addressed the 
question whether drug- tolerant phenotypes can also cooperate 
with drug- sensitive phenotypes and assist their survival under 
stress [35]. Such cooperation (and altruism) will benefit the tu-
mour as a whole, being embodied in the theoretical framework of 
the Price equation, and was explored in the context of drug resist-
ance evolution in bacteria [67]. To this end, we monitored the in 
vitro growth of drug- sensitive and tolerant NSCLC cells (shown to 
undergo phenotypic switching [62]) both in monotypic cultures 
and mixed at various ratios over a period of several weeks, in the 
presence or absence of the chemotherapeutic drug cisplatin. The 
growth rates of these cells when cultured together showed signifi-
cant differences compared to their respective monotypic cultures. 
Additionally, the growth rates varied according to the proportion 
of sensitive to tolerant cells. Clearly, these cells altered their behav-
iour by sensing each other’s presence in a frequency- dependent 
manner, underscoring the importance of group behaviour in 
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tumour growth. We quickly realized that the complex growth dy-
namics of these cells could not be explained by invoking simple 
competition or cooperation, thus necessitating more intricate 
models. We also observed two interesting characteristics of these 
cells: (1) the sensitive cells secreted a diffusible factor that nega-
tively affected cellular growth, including that of tolerant cells; 
(2) the tolerant cells could be reverted to cisplatin sensitivity by 
using a histone deacetylase inhibitor, indicating an epigenetic basis 
for their drug tolerance. These observations motivated us to de-
velop a mathematical theory of drug resistance that incorporates 
the role of phenotypic switching, stress response, and cooperation 
of cancer cells in a community environment.

37.7. Phenotypic switching enables cancer cells 
to adapt to rapid environmental changes

Detailed formulation of PSMSR is already published elsewhere [35], 
so we briefly discuss it here. The chief hypothesis behind PSMSR 
is that cancer cell phenotype is not rigid but stochastically switch 
between drug- sensitive and drug- tolerant states. Further, this 
phenotypic switching can be influenced by environmental factors 
that adversely affect cellular growth, such as stress elements, lack 
of oxygen, or diffusible factors (collectively referred to as stress 
in this model) (Figure 37.2A). We also explored competition and 
cooperation through dissemination of ‘public goods’ and neutral-
ization of stress by the drug- tolerant phenotype. As a result, evolu-
tionary strategies dynamically altered with the level of stress in the 
environment (Figure 37.2B). The different parameters of PSMSR 
(e.g. cellular growth, phenotypic switching, and stress generation/ 
neutralization rates) were derived by fitting real- time growth data 
of sensitive and tolerant cells in mixed cultures at different ratios 
(Figure 37.2C) [35]. In comparison to several other cellular growth 
models that account for group interactions, PSMSR fits the experi-
mental data the best.

PSMSR predicted that in addition to the cellular frequencies the 
level of growth- retarding diffusible factors released by the sensi-
tive cells (termed stress in the model) determined the evolutionary 
strategy adopted by the tolerant cells. At low stress, passive compe-
tition existed between the two phenotypes, which quickly changed 
into cooperation by the tolerant cells (due to increased stress neu-
tralization, thus benefiting the whole community) as stress built 
up (Figure 37.2D). The optimum fraction of tolerant phenotypes 
in the ecosystem (to ensure positive payoff for the whole commu-
nity) was determined by the phenotypic switching rates, which 
dynamically altered in response to stress and cellular frequencies. 
By combining PSMSR with competitive Lotka– Volterra model, we 
determined the magnitude of cooperative interaction between the 
sensitive and tolerant phenotypes as a function of time and seeding 
ratio, thus generating evolutionary strategy landscapes for both cell 
types (Figure 37.2D and E). We found that compared to the sen-
sitive phenotype, the tolerant phenotype was more flexible in al-
tering their game strategies depending on the environment. This 
suggests that the tolerant phenotype is more adaptive to increased 
stress, such as therapeutic pressure, and their cooperation with the 
sensitive cells could ensure the survival of the tumour as a whole. 
One caveat is that these inferences are drawn from in vitro studies 
and therefore cannot account for the effects of a real TME, which 

can alter the strategy landscape of the tumour and direct resistance 
evolution significantly.

37.8. Non- genetic resistance mechanism 
underscores the benefit of adaptive/ intermittent 
therapy in delaying resistance

Traditionally, the first- line therapy in cancer involves continuous 
administration of targeted drugs or chemotherapeutic agents at the 
maximum tolerated dose. This inevitably creates a condition that 
favours the emergence of resistant disease. Recent awareness of the 
role of ecology in resistance development has led to innovations in 
therapy design, such as adaptive therapy, that aims to delay the onset 
of resistance [4,20,30,35,46]. The goal of adaptive therapy is to sup-
press the emergence of the drug- resistant phenotype and maintain 
drug sensitivity of the tumour by adjusting the dosage amounts and 
intervals. Adaptive therapy designs are usually based on assump-
tions, such as (1) pre- existence of drug- resistant clones in the ori-
ginal tumour and (2) low fitness of resistant cells in the absence of 
therapeutic pressure [40]. In a 2018 review article from our group, 
we argued that adaptive therapy through intermittent dosage can 
also be beneficial in cases where the resistance mechanism is non- 
genetic (as opposed to therapy- induced selection of pre- existing 
resistant clones) [20]. As was shown in multiple cases (and dis-
cussed in previous sections of this chapter), drug- tolerant pheno-
types can emerge from drug- sensitive cellular population through 
non- genetic mechanisms, such as phenotypic switching and epi-
genetic alterations. Drug resistance in such cases do not need the 
pre- existence of resistant clones in the tumour. However, adaptive 
therapies can still be beneficial by suppressing the rate of transition 
to the tolerant phenotype or altering the group dynamics among the 
sensitive and tolerant phenotypes as well as the microenvironment.

We have shown that intermittent rather than continuous cis-
platin treatment can suppress the growth of tolerant NSCLC cells 
and retain drug sensitivity in both in vitro and zebrafish models 
[35]. Starting with a mixture of fluorescence- tagged sensitive and 
tolerant cells at different seeding ratios, we cultured them for two 
weeks under continuous exposure to 1 μM cisplatin, as well as an 
initial exposure of three days, followed by growth in cisplatin- free 
media (intermittent dosage). The cellular growth was quantitatively 
measured in real time using Incucyte live cell analyser. As expected, 
we observed a massive expansion in tolerant cell population (60– 80 
times sensitive cell population) under continuous cisplatin treat-
ment with the increasing trend continuing at the end of two weeks 
(Figure 37.2F). Conversely, under intermittent treatment, the 
tolerant- to- sensitive ratio was moderate [4– 6] and was stabilized 
by day 10. Intermittent cisplatin treatment also suppressed the 
proliferation of tolerant cells in vivo in zebrafish, although the ex-
periments had to be concluded within five days due to regulatory 
reasons (Figure 37.1D).

To see the long- term effect of intermittent cisplatin treatment, we 
continued the in vitro experiments for an extended period and noted 
that the tolerant- to- sensitive cell ratio was still low after 43 days 
(Figure 37.2G). Interestingly, a second cisplatin dose added on day 
14 (intermittent: two cycles) after the first cisplatin treatment trig-
gered the proliferation of tolerant cells (Figure 37.2G) suggesting 
that the exposure of the sensitive cell population to the first cisplatin 
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Figure 37.2. (A) Schematic describing the physical process (cellular growth and stress generation over time) that forms the basis of PSMSR. 
(B) Depiction of phenotypic switching between drug- sensitive and drug- tolerant lung cancer cells in response to environmental stress. 
(C) Schematic of cell growth monitoring process to determine group behaviour by fitting to PSMSR. (D, E) Dynamic game strategic landscapes of 
drug- sensitive and drug- tolerant phenotypes as a function of time, under various seeding conditions. Starting from initial populations of sensitive and 
tolerant cells mixed at different proportions (seeding ratios), cellular growth was simulated using PSMSR. Competition/ cooperation was estimated 
by piecewise fitting of the competitive Lotka– Volterra equation to the PSMSR growth trends over a window of three days. Contour plots show the α 
parameters of the LV equation for different time and seeding ratios. Contours are coloured according to quantiles. Positive and negative values are 
indicative of competition and cooperation, respectively. For ease of comparison, the same scale is used in both (D) and (E). For more information, 
see Nam et al. Biomolecules, 2022. (F) Tolerant- to- sensitive cell ratio as a function of time under continuous and intermittent cisplatin therapy, 
monitored using the set- up depicted in (C). Sensitive and tolerant cells were cultured at an initial seeding ratio of 4:1. (G) Comparison of tolerant 
cell expansion under two different intermittent therapy regimens (see the text for more details). Source: Panels (F) and (G) are reproduced under 
Creative Common CC BY license. For more details, see Nam et al. 2021 [35].
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dose may have compromised their proliferative potential, thereby al-
lowing tolerant cells to proliferate. We also used PSMSR to model the 
cellular growth under cisplatin treatment and showed that PSMSR 
captured the difference in growth dynamics between the continuous 
and intermittent conditions [35]. Further experiments are needed, 
potentially using mouse models of NSCLC to further establish the 
effectiveness of such therapeutic strategies under in vivo conditions. 
Mathematical and agent- based models that account for the group 
behaviour of mixed populations of sensitive and tolerant cells can 
be valuable tools to determine the optimal drug doses and intervals 
under intermittent treatment.

37.9. Conclusions and future directions

It is well established that, even within a given cancer type, there 
exist multiple mechanisms that regulate phenotypic switching and 
drug resistance. Furthermore, as discussed here, although intermit-
tent therapy appears promising in some cases, several challenges 
still remain. Nonetheless, from the foregoing, it is obvious that in-
sights from cancer systems biology and mathematical modelling 
can help identify new treatment strategies based on the principles 
of ecology and evolution. By incorporating these new concepts in 
clinical protocols, we could enhance the precision in which we de-
liver personalized medicine to all our patients, regardless of their 
economic status or their ability to access advanced medical centres. 
Furthermore, lowering the dose of the drug and its frequency as a 
result of intermittent rather than continuous therapy could not only 
lower the toxicity and undesirable side effects of the drugs but may 
also positively impact the financial burden carried by the patient and 
insurance providers [68].
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The fundamentals of evolutionary therapy 
in cancer
Jeffrey West, Jill Gallaher, Maximilian A.R. Strobl, Mark Robertson- Tessi, and 
Alexander R.A. Anderson

38.1.  Introduction

38.1.1. The mathematics of treatment scheduling 
in oncology

At its core, a mathematical model contains a set of assumptions 
from which a set of conclusions are deduced. As Gunawardena has 
pointed out: if the model is correct and if you accept its assumptions, 
you must as a principle of logic also accept the model’s conclusions 
[1] . The exercise of writing down a set of equations is precisely the 
exercise of carefully stating those assumptions and seeking their lo-
gical conclusions.
Thus, it comes as no surprise that mathematical modelling has found 
a long tradition within clinical decision- making, especially in sched-
uling treatment with anti- cancer drugs. We begin by tracing the his-
tory of assumptions made in the mathematical modelling of cancer 
treatment response made since the 1960s. We will find that math-
ematical modelling was necessarily limited by the current biological 
understanding of the day, but it still proved useful to periodically 
plant a flag in the ground and identify testable hypotheses or derive 
quantitative predictions.

Mathematics formalizes and crystalizes assumptions, enabling 
clear and concise hypotheses. Viewing the history of treatment 
scheduling as an ever- evolving and refined list of biological as-
sumptions cast into the formalized logic language of mathematical 
modelling helps us understand why models throughout the decades 
provide different and even sometimes contradictory results. Each 
model refines a new set of assumptions that represents the scientific 
community’s maturing view of cancer’s underlying complexity.

For example, early attempts at mathematical models encompass 
only a limited, homogeneous view of tumours (in Skipper’s law [2] , 
every cancer cell is an identical copy), while subsequent models 
aim for a more faithful representation of tumour heterogeneity. In 
this way, the history of mathematics in cancer is nearly inseparable 
from the history of cancer evolution. In this chapter, we explain 
how the nature of cancer as an evolutionary and ecological disease 

[3] renders traditional treatment scheduling paradigms (e.g. max-
imum tolerable dosing) less effective than evolutionary therapy. 
Mathematics has played a key role in the design and implementation 
of these novel paradigms. Firstly, we review the important advances 
in treatment scheduling, aided by mathematics, across each decade 
from the 1960s until present, before turning our attention to evolu-
tionary therapy (Figure 38.1).

38.1.2. Accounting for cellular and microenvironmental 
heterogeneity

The oft- cited first example of the translational utility of mathem-
atics in cancer is the seminal work by Skipper, Schabel, and Wilcox 
introducing the log- kill dosing law in the 1960s. They showed that 
more durable responses could be achieved if treatment is given 
at the highest dose and frequency which toxicity permits [2,4]. 
Each dose kills a constant proportion (e.g. 90%) of tumour cells; 
therefore, to maximize the likelihood of cure, doses should be 
given early and at a high level. This mathematical thinking revo-
lutionized treatment of paediatric leukaemia, wherein the VAMP 
regimen combined four chemotherapies at maximum dose and 
frequency [5] .

The log- kill paradigm proved its utility in leukaemia, but transla-
tion to solid tumours observed the creation of a new modelling para-
digm introduced by Norton and Simon in the 1970s [6] . Motivated 
by the observation that the proliferating fraction of cells is a function 
of tumour size, these authors revised the log- kill model. Maximizing 
cure within the new mathematical model indicates that residual dis-
ease should be treated at maximum dose and frequency. However, to 
mitigate toxicity trade- offs, the authors propose a back- loaded ap-
proach of gradual dose escalation so that residual disease coincides 
with maximal doses while minimizing toxicity breaks.

While Norton and Simon did indeed account for heterogeneity 
in proliferating fraction of cells at each point in time, they did not 
explicitly account for drug resistance [6] . Goldie and Coldman 
popularized a model in the 1980s that considered drug- resistance 

   

 

 

 

      

   

 

 

 

 

   

 

 

 

 

 



Cancer Systems Biology390

heterogeneity. Their mathematical formulation indicated that 
avoiding acquired resistance is most likely when treating early and 
rapidly alternating multiple drugs.

The next leap forward in treatment scheduling introduced con-
sideration of microenvironmental conditions. Folkman, Hannahan, 
Kerbael, and others observed that prolonged rest periods during 
maximum tolerable dosing may allow tumour vasculature to re-
cover, driving subsequent recurrence. Instead, they proposed a low- 
dose metronomic paradigm that avoids such treatment breaks while 
increasing the anti- angiogenic effect of chemotherapies. In contrast, 
in a somewhat controverting fashion, research in different treatment 
and disease settings (e.g. hormone therapy or targeted drugs) sug-
gested that resistance acquisition could be slowed or reversed during 
treatment breaks. This led to the development of intermittent treat-
ment strategies, of which promising preclinical results [7– 10] have 
not yet proved convincing in the clinic [11– 15].

38.1.3. Accounting for inter- patient complexity

The history we have traced so far illustrates a maturing set of assump-
tions that increasingly focuses on the effects of cellular and micro-
environmental heterogeneity. The ensuing decades shift focus to 
inter- patient variability. The fields of pharmacometrics and quanti-
tative systems pharmacology have successfully used mathematical 
modelling to predict drug exposure, response, and toxicity, and are 
routinely used in modern industrial drug development [16,17]. 
One key challenge is addressing differences in physical, genetic, 
metabolic, or environmental factors (body weight, diet, concur-
rent medications, etc.) that drive significant pharmacokinetic or 

pharmacodynamic differences between patients. More recently, 
the fields of therapeutic drug monitoring or model- informed pre-
cision dosing have attempted dynamic adjustment of treatment 
dose for efficacy, safety, and toxicity [18– 20]. These approaches 
have heavily relied upon mathematics, combining patient- specific 
data with drug pharmacokinetics to develop a more holistic 
and personalized medicine approach for designing treatment  
schedules.

38.1.4. Tumours as a complex, dynamic evolutionary 
process

In reviewing the historical timeline above, treatment scheduling 
protocols have undergone steady refinement decade by decade to 
account for either heterogeneity at the tumour scale or variability 
on the patient scale. Yet, up until the later part of the first decade of 
the millennium, missing from the personalized medicine revolu-
tion was the combination of both: evolution- based treatment strat-
egies to directly address tumour heterogeneity and resistance but 
which also address heterogeneity at the patient population level.

To rectify this, Gatenby et al. introduced adaptive therapy, a 
method of maintaining a sizeable tumour population of treatment- 
sensitive cells for a prolonged period of time in order to suppress 
any resistant populations that exist in small numbers [21]. No dif-
ferent than many of the other advancements in treatment scheduling 
protocols, adaptive therapy protocols were designed in coordination 
with mathematical modelling, which encapsulated principles of 
cancer evolution to derive new adaptive algorithms and test hypoth-
eses from clinical data [22– 24].

Figure 38.1. (A) Summaries of key treatment strategies by decade, illustrated schematically by black bars that represent treatment dosing. Boxes with 
solid outlines are static schedules in which the schedule is defined at the start of treatment, whereas boxes with dashed outlines represent dynamic 
schedules that are adjusted according to patient response. (B) The key treatment strategies can be categorized onto two axes: within- patient complexity 
(x- axis) and between- patient complexity (y- axis). As scientific understanding of tumour heterogeneity and evolution was refined, new approaches have 
increasingly sought to incorporate a more holistic picture of the tumour in its microenvironmental context (left- to- right trajectory). Other strategies have 
focused on patient- specific improvements to tailor schedules that account for individual patient differences (bottom- to- top trajectory).
Figure modified from Strobl et al [73] under a Creative Commons CC-BY licence.
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In the next section, we describe the fundamentals of designing 
an evolutionary therapy, providing several canonical examples that 
broadly classify along a spectrum of two goals: cure vs. control 
(Figure 38.2). Some of these therapeutic paradigms, such as adaptive 
therapy or multi- strike therapy, have been successfully implemented 
in clinical trials. Others, such as antifragile therapy or double- bind 
therapy, are in the preclinical development stage, aided through the 
construction of mathematical models to list key assumptions and 
define hypotheses to be tested and validated in the near future.

38.2. The fundamentals of evolutionary 
therapy for control

38.2.1. Adaptive therapy

Adaptive therapy is a dynamic cancer treatment protocol that modi-
fies treatment decisions based on a tumour’s growth and treatment 
response dynamics. The goal is to maintain a stable tumour burden 
by retaining treatment- sensitive cells to compete with and suppress 
the outgrowth of treatment- resistant cells. On treatment, the sensi-
tive cells die off and allow the resistant population to expand, while 
off treatment the sensitive cells rebound faster, often due to a growth 
advantage of sensitive cells. So adaptive therapies, in general, work 
by changing the dosing to control the larger sensitive population and 
thus prevent selection for resistant populations that are ultimately 
not controllable.

With continuous treatment, there may be an initial response, 
but any pre- existing resistant cells will eventually be selected for or 
may be acquired (Figure 38.3A). Fortunately, a strategy was devised 
countering similar behaviour in the agriculture industry with the 
failure to eradicate destructive pests [25]. The widespread use of 
synthetic pesticides in the 1940s in farming progressed like an evo-
lutionary arms race as more resistant species to survive these pesti-
cides evolved in parallel with the development of newer and better 
compounds to kill them [26,27]. The solution to this problem was 
integrated pest management [28,29], in which the goal was modified 

from complete eradication of pests to instead achieve control below 
damaging levels to the crops. By acknowledging that insecticides 
may promote the selection for more resistant bugs, and that more 
sensitive species are an important source of control by competi-
tion, pesticides are used more sparingly and the field is kept in a 
more manageable condition. Similar dynamics may occur with the 
large, proliferative, and invasive populations within heterogeneous 
tumours that originally respond but eventually become resistant to 
current therapies [25].

The concept for adaptive therapy applied to cancer was origin-
ally presented as an information theory formalism to account for 
selection for subpopulations and tested in ovarian cancer cell 
lines with the chemotherapy drug, carboplatin, in mice [30]. The 
theory was developed subsequently alongside preclinical ex-
periments [31,32] that led to the first clinical trials in metastatic 
castrate- resistant prostate cancer (NCT02415621) [33,34]. In the 
years following, this evolution- based treatment approach has been 
implemented into clinical trials for several different cancers, in-
cluding BRAF- mutant melanoma (NCT03543969), metastatic cas-
trate sensitive prostate cancer (NCT03511196) [35], thyroid cancer 
(NCT03630120), ovarian cancer (NCT05080556), and basal cell 
carcinoma (NCT05651828). Open questions remain in designing 
useful adaptive therapies [36], but practically, for successful adaptive 
therapy outcomes in the clinic, it must have a useful tumour burden 
biomarker to facilitate decision- making. Serologic biomarkers are 
relatively cheap and can be noninvasively collected over time, like 
prostate- specific antigen (PSA) for prostate cancer [33– 35] or lac-
tate dehydrogenase for advanced melanoma [37]. In other cancers, 
imaging or circulating DNA markers may be used for burden quan-
tification, but not all cancers have easily accessible ways to track tu-
mour burden dynamics.

Competition and interactions between species are important fac-
tors in the success of adaptive therapy. Competitive release refers 
to the expansion of a species that is usually restricted due to com-
petition with another species when that species is removed. Long 
cyclers in metastatic prostate cancer were found to have a large and 

 Figure 38.2. Evolutionary therapy strategies. The primary goal of treatment shifts from tumour control to disease cure from left to right.
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asymmetrical competitive effect of sensitive cells on resistant cells 
[34]. Trade- offs between therapy effectiveness and competitiveness 
between cell subtypes in the absence of therapy favour adaptive ther-
apies over treat to cure [36]. Many of these models also assume that 
there is a trade- off between proliferation and resistance such that 
some modes of resistance require sufficient energy that slows prolif-
eration. This may account for the often larger numbers of sensitive 
cells. However, trade- offs like this are not always present [38], nor 
necessary for the success of adaptive therapy as long as there is com-
petition and a limited carrying capacity [39].

Other factors that influence the efficacy of adaptive therapy in-
clude tumour burden, space, and plasticity. Adaptive therapy main-
tains high levels of tumour burden to benefit from the competitive 
suppression of treatment- sensitive subpopulations on treatment- 
resistant subpopulations [36]. This large burden may lead to pain 
and other symptoms, or this large sensitive pool may lead to more 
possibilities of cells becoming resistant or metastatic. Hansen and 
Read suggest that the threshold burden may need to be adjusted 
for optimal control [40]. Further, space may play an important role 
in competition as a limited resource. If there is a trade- off, more 
proliferative cells may take over most of the space and leave the 
rarer, more resistant subtypes to be contained within the interior 
[41,42]. Yet, resistant phenotypes can also compete with each other 
[43], and different anatomical architectures present different se-
lective pressures on cells [44]. Spatial context may have an effect on 
cell– cell interactions. The effect of competition and trade- offs may 
lessen if cells are not in direct contact, which could occur from sep-
aration into clusters within the tumour [43], be due to dispersion 
from migration/ invasiveness [40] or distributed among individual 
metastases [45]. Plasticity or switching between sensitive and re-
sistant states has been shown to benefit adaptive therapy control 
if the sensitive cell growth rate is slow [37], but more phenotypic 
drift when there is a trade- off between proliferation and resistance 
can reduce the effectiveness of adaptive therapy [41].

Many possible dynamic treatment protocols can be termed adap-
tive therapy. However, adaptive therapy differs from intermittent 
therapy, which tends to have either regular treatment intervals 
and vacations or switches at fixed burden values, while adaptive 
therapy cycles are determined by the treatment response and re-
growth dynamics, and switch points are generally patient specific. 
Maintenance therapies can also be given for long- term, low- dose, 
low- toxicity control, but they also tend to be fixed and patient gen-
eric [46]. The most common adaptive protocols for single drugs that 
have been tested in clinical, experimental, and theoretical settings 
are treatment vacations and dose modulation. For treatment vaca-
tions, treatment is applied until the tumour burden decreases to a 
certain threshold and then treatment is withdrawn until the burden 
reaches its initial value. This kind of protocol was used in meta-
static castrate- resistant prostate cancer (Figure 38.3B) [33] as it was 
simpler and more practical to take or not take a daily pill. Dose- 
modulation strategies instead adjust the dose to decrease when the 
tumour burden decreases and increase when the burden increases to 
maintain a steady burden. These two strategies were compared using 
chemotherapy for breast cancer in mice [31]. They found that both 
adaptive therapies had less toxicity but still maintained control but 
the dose- modulation better preserved the vasculature, which aids 
drug delivery, similar to the low- dose metronomic schedule. These 
schedules with an anti- proliferative agent were compared in a spatial 
agent- based model with focus on tumour heterogeneity and not the 
microenvironment [41]. They found that the dose skipping allowed 
better control for subsequent cycles, while dose modulations selected 
for more and more resistant cells over time. However, models and ex-
periments designed by Strobl et al. to treat ovarian cancers with poly 
(ADP- ribose) polymerase (PARP) inhibitors adaptively showed that 
treatment vacations gave up too much control during regrowth, so 
a small maintenance dose was needed for control [47]. In that case, 
a stepping algorithm was designed to switch between high and low 

 Figure 38.3. Adaptive therapy. (A) Heterogeneous tumours treated with continuous treatment eventually select for resistant cells, while adaptive 
therapy can delay the outgrowth of resistant cells by keeping more sensitive cells around for competition. (B) Treatment- resistant prostate cancer 
trial and (C) treatment- sensitive prostate cancer trial swimmer plots showing patient- specific schedules with treatment vacations (black bars) and 
treatment application periods (non- black bars).
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similar to dose- modulation switching in [31] but more simplified 
and therefore probably more clinically tractable. Other modifica-
tions include adjusting the 50% switch point [37,40,48] and cycling 
treatment within patient- specific bounds [49].

With just a single drug, the goal is often to shift between tumour 
control with toxicity to restoring sensitivity. However, with more 
drugs, the number of possible treatment combinations, doses, and 
timing increases dramatically. West et al. consider how fixed treatment 
plans can be selected to drive tumours into repeatable evolutionary 
cycles by carefully choosing the ordering and timing of treatment 
combinations based on the dynamics of the subpopulations and their 
interactions [50,51]. In an adaptive therapy clinical trial for metastatic 
castrate- sensitive prostate cancer, androgen deprivation treatment is 
used alongside another novel hormonal agent to prevent castrate re-
sistance. The treatment combination for each time point in that case is 
determined by both the dynamics of the tumour burden (PSA) and the 
testosterone level [35] (Figure 38.3C). Other strategies, for multidrug 
adaptive therapy, that have been considered by Thomas et al. include 
dose- modulation combinations, dose- modulation alternating drugs, 
and switching drugs on progression [52].

38.2.2. Antifragile therapy

This field of antifragile research describes and quantifies the fra-
gility of systems in response to external volatility or perturbations. 

Many such systems (financial systems, manufacturing processes, 
organization structures, etc.) are fragile to external stressors, i.e. 
external stressors can negatively impact the system. The key in-
sight of this field and its application to evolutionary therapy in 
cancer, however, is to recognize that some systems respond to ex-
ternal stressors in a positively beneficial manner. For example, evo-
lution by natural selection can lead to a greater population- level 
fitness in the presence of environmental stressors [53]. Applying 
an antifragile strategy to cancer treatment requires an under-
standing of how the dosing is personalized with the optimal dose 
rate and timing.

These features can be understood within the context of adaptive 
therapy. A keystone of the first prostate cancer adaptive trial is the de-
gree of personalization. The 50% threshold for stopping therapy led to 
differences in the timing of drug holidays between patients. The algo-
rithmic design of the trial allows the schedule to be responsive to inter- 
patient differences in tumour dynamics. Personalization (indirectly) 
leads to a second keystone feature of the trial: a reduction in the cumu-
lative dose delivered within the patient’s treatment course. This second 
feature has a distinct difference: it is an emergent property of the al-
gorithm. The cumulative dose is not prescribed a priori, but it is an 
emergent metric that is the result of how the 50% threshold algorithm 
interacts with the patient’s tumour response over time. Figure 38.4 illus-
trates the emergent dosing metrics in the metastatic castration- resistant 

 Figure 38.4. Panels (A)– (C) illustrate dosing data from the two adaptive pilot trials in Figure 38.3B (panel (A)) and Figure 38.3C (panels (B) and 
(C)). Shown is the distribution of time on treatment (the 12- month rolling average of time on treatment, per patient). Each individual patient has 
an emergent mean and variance associated with the adaptive treatment algorithm. White dot shows median and grey bars show 25th and 75th 
percentiles. Panels (D)– (H) illustrate the utility of antifragile theory, where optimal treatment schedule variance depends on the shape of the dose 
response curve. (D) Example dose– response curves: convex (blue), concave (red), and linear (black). (E) Example treatment schedules ranging from 
low variance (even dosing; purple) to high variance (uneven dosing; green). (F) With a linear response curve (panel (D), black), all schedules result in 
equal control. (G) With a convex curve (panel (D), blue), lower dose variance results in better control, and (H) with a concave curve (panel (D), red), 
higher dose variance results in the best tumour control.

 

   

  

 

  

  

 

 



Cancer Systems Biology394

(Figure 38.4A) and castration- sensitive (Figure 38.4B and C) trials that 
are shown in Figure 38.3B and C, respectively.

Arguably, it is difficult to determine which of these keystone features 
is most important: (1) the degree of dose personalization or (2) the re-
duction in cumulative dose. We have taken steps to address this ques-
tion by disentangling these first-  and second- order effects in treatment 
scheduling. First- order effects are those effects that are driven by the 
average/ mean dose delivered (or the cumulative dose). Second- order 
effects depend on the variance of dose delivered over time (the timing 
of treatment). As stated above, adaptive therapy alters both first- and 
second- order characteristics of a schedule (cumulative dose and dose 
timing). First-  and second- order effects can be quantified by viewing 
the dose– response function through the lens of antifragile theory, 
which we have previously applied to cancer by measuring dose– 
response convexity to predict optimal treatment scheduling [54,55].

38.2.2.1. First- order effects

Firstly, let’s assume that the dose– response function, f(x), is a 
decreasing function of dose (some example decreasing functions 
are shown in Figure 38.4D). Each function describes the per capita 
growth rate of a tumour as a function of the dose concentration, x:

 
n
n

f x= ( ) 

Decreasing functions, f(x), of dose concentration indicate that 
increasing the mean dose delivered always leads to greater tumour 
reduction. Stated in an alternative way, the first- order effects are 
positive (beneficial) with respect to tumour reduction. First- order 
effects are determined by the first derivative of the dose– response 
function, f′(x). If this slope is decreasing, increasing the mean dose 
is beneficial (and vice versa). Thus, first- order effects determine the 
optimal mean dose delivered based on whether the derivative of the 
response function is increasing or decreasing.

Positive first- order effects are commonly seen in mathematical 
models of treatment response. The aforementioned Norton– Simon 
mathematical model developed in the 1970s assumes that the effect 
of treatment is linearly proportional to the instantaneous growth 
rate of a tumour. It is a well- known result that tumour size at time t 
is proportional to the cumulative dose delivered [56].

38.2.2.2. Second- order effects

We have now described the first- order effect as a function of the 
slope of the dose response. Next, we illustrate a second- order effect 
as a function of the curvature (the second derivative) of the dose re-
sponse. Three example functions are shown in Figure 38.4D: linear 
(black), convex (blue), and concave (red) dose– response functions.

As the first derivative of the response function determines the 
optimal mean dose delivered, the curvature (linear, concave, and 
convex) of the dose response determines the optimal dose variance. 
Example treatment schedules are shown in Figure 38.4E, ranging 
from low variance, continuous therapy (purple) to a high variance, 
intermittent therapy (green). To control for confounding first- order 
effects, here we consider only treatment schedules with an identical 
mean dose delivered.

If the dose response is linear (Figure 38.4D, black), then all these 
treatment schedules lead to the same outcomes (Figure 38.4F)— 
indicating the absence of any second- order effects. Again, referring 

back to the Norton– Simon model, we see that linear dose– response 
functions are common in literature. In these models, rearranging 
the pattern of dosing has no effect: front- loaded dosing is as effective 
as back- loaded dosing (and every other arrangement) as long as the 
cumulative dose is identical1. There is a mathematical rule that can 
be employed to arrive at this result simply: because tumour growth 
is a linear function of dose, x, so second- order effects become null 
and all schedules with equivalent cumulative dose lead to equivalent 
outcomes (e.g. see Jensen’s inequality).

In contrast, second- order effects are negative for convex dose– 
response functions (Figure 38.4D, blue). The result in Figure 38.4G 
illustrates that it is most beneficial to reduce dose volatility by 
employing the purple, continuous treatment strategies. The opposite 
is also true: in the event of a concave dose– response function 
(Figure 38.4D, red), it is most beneficial to maximize dose vola-
tility by employing the green, intermittent treatment strategy 
(Figure 38.4H).

38.2.2.3. Second- order effects in evolutionary therapy

Thus far, we have illustrated a series of simple and contrived fixed 
treatment schedules. However, every treatment schedule has an 
associated mean dose delivered and dose variance. The adap-
tive algorithm has an emergent effect on altering each individual 
patient’s mean and variance. More research is required to determine 
how to optimize mean and variance for adaptive algorithms, and 
antifragility theory may provide a path forward.

Adaptive therapy was designed with the purpose of leveraging 
cell– cell interactions for patient benefit: treatment- sensitive cells 
suppress treatment- resistant cells in the absence of treatment. Using 
a theoretical modelling approach, we have recently shown that 
cell– cell interactions also influence second- order effects in cancer 
treatment [57]. Mathematical modelling has shown that pharmaco-
kinetic clearance can expand the range of doses over which second- 
order effects are beneficial for tumour reduction and mitigating 
treatment- induced cachexia [58].

38.3. The fundamentals of evolutionary 
therapy for cure

38.3.1. Multi- strike therapy

Multi- strike therapy is an evolutionary therapy approach that emu-
lates the dynamics of Anthropocene extinction events [59]. What 
is often seen in such events is that a number of factors contribute 
to the extinction by occurring concurrently or in close sequence. 
Furthermore, none of these factors would be able to cause the extinc-
tion individually. In the case of the passenger pigeon (E. migratorius), 
which went extinct in 1914, the coincidence of multiple factors led 
to its demise. The pigeons numbered in the billions, but hunting by 
humans reduced their numbers significantly over the course of a 
century. The decline was further exacerbated by the deforestation 
of land that fragmented the habitat; the species’ dependence on 

1. Note: We do not wish to imply that the back- loading strategy proposed 
via the original Norton– Simon model was incorrect: the dose backloading 
was proposed as a strategy to achieve the minimum tumor size at any point 
in time, not just the final tumor size. Both are mathematically valid points.
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large social flocks for breeding was highly sensitive to this ecological 
change. These factors, coupled with a natural tendency for the spe-
cies to experience large fluctuations in population numbers even 
under favourable conditions, combined to eliminate all members of 
what was North America’s most abundant bird. Interestingly, it is 
thought that none of these factors alone would have necessarily led 
to extinction; it was the combination that led to the outcome.

Today, most conservation efforts seek to avoid extinctions of spe-
cies by preserving habitats, limiting hunting, and similar measures. 
In oncology, however, the idea that a cancer is a ‘species’ that can 
be made extinct within the habitat of the patient is a potential way 
to design therapies aiming for cure. By using lessons learned from 
Anthropocene extinctions, we can combine and sequence available 
agents in ways that affect both the cancer cells and the tumour micro-
environment similar to the illustration above. Tumour- cell killing 
needs not be the only consideration when treating a patient. Indeed, 
one can see analogies between the pigeons and tumours: hunting 
and cytotoxic drugs like chemotherapies; deforestation and agents 
like anti- angiogenics; and population- level breeding dependencies 
and tumour growth within the microenvironment.

Unlike adaptive therapy, where the guiding philosophy is 
preventing the development of drug resistance for as long as possible, 
in multi- strike therapy the aim is maximal tumour burden reduc-
tion with available agents. Ideally, the interventions are sequenced 
for maximal synergy, and unlike most standard- of- care approaches, 
switching should occur before observation of any progression (i.e. 
progressive disease via RECIST or biomarker increase).

Multi- strike therapy is typically applied when the following con-
ditions exist: (1) for cancers where standard of care does not lead to 

cure in the great majority of cases; (2) there are multiple available 
treatment modalities and agents for the disease, with varied modes 
of action; (3) these agents can have a significant effect on reducing 
tumour burden and/ or affecting the tumour microenvironment. 
These three conditions can vary during the course of a given dis-
ease. For example, early stage breast cancer is highly curable with 
current practice; point 1 would not be satisfied. Mid-  to late- stage 
breast cancers often have lower rates of cure, have numerous avail-
able agents, and in many cases these agents have significant ob-
servable efficacy. This phase of disease would be a prime target for 
implementing multi- strike therapies. Very late- stage breast cancer, 
while mostly incurable (point 1) and potentially having multiple 
agents to select from (point 2), often displays very little response to 
therapy, and therefore point 3 would limit the effectiveness of multi- 
strike therapy.

As with any therapeutic approach, there are both opportunities 
and challenges. The most significant advantage is the potential to 
induce cures in patients who would likely see disease progression 
under standard of care. A sequence of closely scheduled strikes has 
the potential to reduce the tumour volume below a minimum viable 
disease (MVD) threshold, whereas the same sequence delivered se-
quentially only upon evidence of progression for each strike might 
not (see Figure 38.5). Conceptually, MVD is the threshold below 
which the tumour will go extinct. At minimum, MVD is one cell, 
representing 100% killing of all tumour cells. However, MVD can be 
greater than 1 cell when considering other mechanisms affecting tu-
mour dynamics. For example, the immune system is known to fight 
tumours and generally would have more leverage over smaller tu-
mours. In principle, if a series of strikes reduces the tumour burden 

 Figure 38.5. Illustration of multi- strike therapy versus standard of care for the same sequence of four treatment agents (T1– T4). The red boxes 
and line plot show the schedule and tumour size respectively for standard of care, where treatment is switched when either (A) the tumour diameter 
grows by greater than 20% from nadir (seen at the end of T1), or (B) when a tumour driven to NED becomes detectable again (shown at the end 
of T2 and T3). The blue boxes and line plot show a multi- strike approach, where the treatments are switched near the nadir of tumour volume. The 
treatments have the same efficacy in both approaches, but the early switching leads to a deeper tumour nadir, and in this case that nadir drives the 
tumour below the level of minimum viable disease.
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below a certain point, the immune system may be able to kill the 
remaining cells after the efficacy of the therapy has concluded. 
Similarly, spatial fragmentation of the tumour, changes to the blood 
supply, and other microenvironmental shifts may lead to MVD sizes 
greater than 1 cell.

Another advantage of multi- strike therapy is that by cycling agents 
more quickly and for shorter periods of time, the potential to reuse 
agents at a later date becomes more likely. This is because selection 
pressures for resistance mechanisms are generally higher the longer 
a treatment continues.

Multi- strike therapy has some disadvantages as well. Designing 
sequences and combinations that will maximize the overall regimen 
efficacy is challenging given the lack of clinical data on using mul-
tiple agents in this fashion. Another issue arises due to the limits 
of tumour detection via current imaging and biomarkers. If the 
patient’s tumour burden falls below the threshold of detection, the 
timing of subsequent strikes will not be informed by the dynamics 
of tumour burden, and therefore the schedule will have to be applied 
in a less patient- specific way. One may miss the optimal switching 
windows. A third challenge is that of toxicity: sequencing therapies 
closer together has the potential to increase side effects and adverse 
events due to dose densities.

Our first approach to delivering the needed decision support for 
multi- strike regimens has been implemented via an ‘Evolutionary 
Tumour Board’. In this approach [60], we work with individual in-
curable patients to identify multi- strike therapy opportunities. We 
developed mathematical models for several diseases of interest; 
collected detailed patient data regarding the dynamics of their dis-
ease; studied retrospective patients within the same disease cohort 
to understand tumour growth and response to treatment; and used 
clinical trial data to constrain our predictions based on population- 
level outcomes for each agent available to the patient.

Growing interest in the eco- evolutionary dynamics of cancer, 
coupled with continuing improvements in both clinical care 
and diagnostic technology, hold great promise for the future of 
implementing multi- strike therapy. Preclinical work is underway 
to explore these approaches for different agents, shedding light on 
mechanism and drug interactions. The advent of blood- based bio-
markers, such as circulating tumour cells and circulating DNA, may 
lower our thresholds of detection for tracking tumour burden as 
well as give insight into tumour and stromal subpopulations and 
their composition. Furthermore, being less invasive than biopsies 
and often less costly than imaging modalities, the potential for high- 
frequency and high- resolution data collection is a significant oppor-
tunity that multi- strike therapy is poised to leverage.

38.3.2. Double- bind therapy

As stated previously, adaptive therapy was designed and imple-
mented based on the premise of a cost to developing resistance 
mechanisms. Resistant subpopulations divert resources to resistance 
mechanisms that would often otherwise be devoted to proliferation 
[22,61,62]. This allows exploitation of this cost of resistance through 
smart allocation of treatment to maintain treatment- sensitive com-
petitors that capitalize on the cost.

By drawing lessons from applied ecology, Gatenby, Brown, and 
Vincent proposed an alternative paradigm that incorporates the 
cost of resistance into therapeutic strategies: an evolutionary double 
bind [63]. In ecology, species that develop compensatory behaviours 

in avoidance of natural predators often come at a trade- off with fe-
cundity. For example, in response to a predatory hawk, mice may 
limit foraging behaviour patterns, leading to less food intake and 
subsequently fewer offspring. Predator avoidance causes an un-
avoidable cost in reproductive fitness, which may have a net effect as 
great as the lethality of predation [64]. This trade- off between adap-
tation and fecundity has been termed an evolutionary double bind.

A single biological agent may be insufficient to produce a true 
evolutionary double bind, owing (for example) to a heterogeneous 
response to the agent, or insufficient loss of fitness. This is evident in 
the field of pest management, where a number of predators, patho-
gens, or treatments may still be insufficient for controlling pests 
[28,29]. Thus, it has been suggested to rely on ‘predator facilitation’ 
as an effective method for producing an evolutionary double bind. 
A classic example in ecology is desert rodents that naturally hide 
within the safety of shrubs in response to owl predation. However, 
predatory snakes lie in waiting underneath these shrubs to ambush 
the rodents, completing the double bind. Similarly, in ovarian cancer 
care, it may be possible to induce sensitivity to chemotherapy or ra-
diation therapy through the use of PARP inhibitors [65].

This concept has other exciting parallels in cancer treatment: de-
signing a treatment protocol where a first- line therapy induces an 
evolutionary double- bind response within the tumour that can be 
exploited using a second- line therapy. First- line therapy resistance 
mechanisms can produce an increased sensitivity to a second treat-
ment or produce specific vulnerabilities that are targetable. Another 
possible example is that first- line epidermal growth factor receptor 
(EGFR) inhibitors (e.g. gefitinib) induce resistance mediated by 
T790M mutations that can be targeted by third- line inhibitors (e.g. 
osimertinib) [66]. Our group has shown the potential synergistic 
double bind between radiation therapy [72]. Radiation therapy in-
duces double- strand DNA breaks, and thus resistance is mediated 
by cells that up- regulate DNA damage response pathways. This up- 
regulation results in an increased natural killer cell ligand expression 
on tumour cells, which we hypothesize would induce increased sen-
sitivity to NK cell- based adoptive therapy.

A promising strategy for identifying double bind in cancer is 
confront cell lines with evolved resistance to front lines with a suite 
of possible candidate second- line drugs, to identify collaterally- 
sensitive options (Figure 38.6A). Collateral sensitivity has been used 
to target multi- drug resistance [67,68] and has demonstrated prom-
ising results in targeting antibiotic resistance [69,70]. However, it is 
important to note that this second therapy may only be effective in 
the context of the double bind but much less so when given as an ini-
tial front- line treatment. Basanta et al., and evolutionary game the-
oretic model of the synergistic effect between a p53 cancer vaccine 
and chemotherapy, showed that chemotherapy first led to optimal 
outcomes but not the reverse [71]. As shown in Figure 38.6B, prop-
erly leveraging a double bind requires inducing the desired resist-
ance (to drug A) mechanism before applying the synergistic drug 
B. Reversing the order negates any advantage of the double bind 
(Figure 38.6C).

38.4.  Discussion

The history of mathematical modelling in cancer treatment can be 
traced back to the 1960s and, just as today, these models were driven 
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by the biological understanding of cancer at the time they were de-
veloped. At the turn of the millennium, the role of tumour hetero-
geneity emerged as part of the molecular revolution and along with 
it came a greater understanding of the impact of drug resistance 
as well as the role of the microenvironment. Surprisingly, it’s only 
been in the past decade that the evolutionary nature of cancer has 
begun to impact clinical decisions. Importantly, this has forced us 
into making a critical but realistic decision concerning patient treat-
ment: cure or control.

While historically the goal of all cancer treatment has been to 
aim for cure, evolutionary therapies also embrace control that may 
be a more realistic goal when metastatic disease is being treated. 
Adaptive therapy is a control strategy and the metastatic prostate 
cancer trial has, so far, been the only evolutionary clinical trial 
(NCT02415621) to be completed and showed significant bene-
fits over the standard of care [33]. There are multiple adaptive 
trials actively underway in a range of cancers, including prostate 
(NCT03511196 and NCT05393791), ovarian (NCT05080556), mel-
anoma (NCT03543969), basal cell carcinoma (NCT05651828), and 
the Evolutionary Tumor Board (NCT03543969). The latter three 
trials are all actively incorporating mathematical modelling as a de-
cision support tool rather than using a simple rule of thumb.

When we consider evolutionary trials that are more focused on 
cure or extinction (NCT04388839 and NCT05189457), the role of 
mathematical modelling in terms of treatment decisions becomes 
even more important. How drugs should be sequenced (or com-
bined), at what dose and duration, and when should switch points be 
made are all important questions in developing a treatment strategy 
for cure that cannot easily be intuited. Mathematical modelling is 
emerging as a key player in helping to forecast the impact of specific 
treatment decisions, and getting these predictions into the hands 
of clinicians in easy to understand and practical ways is still very 
much a work in progress. We have articulated some of this process 
through our recent paper on the first year of the Evolutionary Tumor 
Board [60], but many questions remain. For example, (i) how best 
to combine patient data from different spatial and temporal scales; 
(ii) how often should data be collected on a patient when there are 
financial and practical trade- offs; (iii) how frequently can we ask a 
patient to practically alter treatment; (iv) how statistically confident 
do we need to be in a predicted decision to share it with an oncolo-
gist; (v) how best to balance model complexity with patient data to 
calibrate it; (vi) since any model is an abstraction of reality should we 
generate multiple models and make ensemble predictions.

What has become clear is that, while evolution- based therapeutic 
strategies are only just emerging in the clinic through mostly pilot 

clinical trials, there is so much we do not fully understand, illus-
trating the need to further investigate these ideas in silico, in vitro, in 
vivo, and in the clinic.
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Methods for identifying critical transitions 
during cancer progression
Smita Deb, Subhendu Bhandary, Mohit Kumar Jolly, and Partha Sharathi Dutta

39.1.  Introduction

Casualty due to cancer is increasing with the growing and ageing 
of the world population [1] . The challenges in the treatment of 
cancer can be attributed to factors such as difficulty in discerning 
normal cells from cancer cells and thereby ending up in the sur-
vival of cancer cells or killing normal cells [2]. Other factors, such 
as the rapid evolution of cancer cells [3,4], allow them to get over 
suppressing mechanisms and developing drug resistance and re-
currence post- therapeutic intervention [5,6]. Albeit shreds of evi-
dence advocate a sudden and drastic change in cancer progression 
of a range of organs, detecting the pre- disease stage can save human 
life while utilizing fewer medical resources. In general, cancer and 
a wide range of other disease progressions exhibit alternate stable 
states; the normal state involves acute inflammation duration fol-
lowed by the pre- disease and the disease states (see Figure 39.1A). 
A pre- disease state can be characterized by a tipping point where a 
normal or healthy state may transition to a disease state. Notably, 
at the pre- disease state, diagnosis and suitable treatment can re-
verse the state back to the normal stable state. However, beyond the 
pre- disease state, the system often undergoes an irreversible tran-
sition to the alternate (disease) stable state [7– 10]. This motivates 
the need for detecting the pre- disease state from the normal state 
rather than distinguishing the normal and disease states. Identifying 
the pre- disease state is pivotal to prevent a critical transition to the 
disease state, thereby saving human lives at the hands of numerous 
deathly diseases. Concerning the a priori detection of diseases, re-
searchers have developed biochemical indicators termed as bio-
markers [11,12], which mark the structural and functional changes 
in the cells and tissues. Primarily, biomarkers have been employed 
in differentiating the disease stage from the normal state and meas-
uring the efficiency of the drugs and therapeutic interventions.

Traditional search for biomarkers developed molecular bio-
markers from cell concentrations and network biomarkers using 
information from groups of molecules. Molecular biomarkers in-
clude genes, RNAs, proteins, and metabolites or other biological 
molecules that are key units for proper functioning in a cell. With 
the availability of high- resolution throughput molecular level data, 

researchers have been able to evaluate biological homeostasis, dis-
tinguishing the disease state from the normal state in cancer of 
various organs as well as other diseases [13,14]. With a large number 
of methods developed to detect molecular biomarkers and efforts to 
visualize the severity of the disease from expressions of molecular 
biomarkers, they still bear limitations.

Though molecules are the basic and fundamental units of bio-
logical systems, practically the genesis of complex diseases can be at-
tributed to groups of genes or molecules rather than individual ones 
[15]. The causes of diseases are diverse, correlations or clustering 
of molecules, genes, and proteins play their part. On the contrary, 
network biomarkers [16,17] that are composed of interacting mol-
ecules can provide with more reliable methods for detecting the dis-
ease state. Network biomarkers have gained excellence in analysing 
the occurrence and progression of the disease over their molecular 
biomarker counterpart [18]. Nonetheless, both these approaches are 
static in nature and can only distinguish between normal states and 
disease states (see Figures 39.1B– F). Also, changes at the molecular 
level are only observed once the system has reached the disease state. 
But evidence claims that the system transitions gradually from the 
normal state to the pre- disease state beyond which there is a rapid 
shift to the disease state [7,8]. As mentioned previously, the latter is 
an irreversible transition. To prevent transition to the disease state, 
identifying the critical (pre- disease) state is essential. For achieving 
the same, researchers have developed dynamic network biomarkers 
(DNBs) deploying information contained in the network and inte-
grating non- linear dynamics theory that successfully distinguishes a 
pre- disease state from the normal and disease states [8,19,20]. DNB 
captures correlations between groups of molecules and their fluctu-
ations, and the characteristic changes are observed in the DNB genes 
or proteins uniquely prior to a tipping point (see Figures 39.1G and 
H). DNBs incorporating the dynamics of various biological pro-
cesses within the system are found to detect the pre- disease state 
in cancer and other rare diseases [21] with only a small amount of 
high- throughput data.

In this chapter, we briefly discuss the methods developed till now 
for detecting cancer progression and their applicability in the diag-
nosis and treatment of cancer. We present mathematical and theoretical 
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frameworks that guide the working of conventional biomarkers (mo-
lecular and network biomarkers) and DNBs. We discuss the limita-
tions of each of these methods and outline other available methods for 
detecting cancer progression. Additionally, we discuss some mechan-
isms in cancer cells— cooperation and competition that promote the 
hallmarks of cancer. Cooperation in cancer cells evolves over time 
when cells interact strategically and is better modelled by incorporating 
evolutionary game theory. Such cooperation among cells can influence 
tumour proliferation, stability, and resilience of tumours, and thereby 
trigger tipping points. Altogether, these have implications for the de-
velopment of therapeutic interventions at an early stage. We point this 
out motivating more in- depth study of tumours and associated cancer 

mechanisms exploiting game theory. This will bridge the gap between 
the evolution of cancer cells and the development of DNB and anti- 
cancer drugs a priori.

39.2. Conventional biomarkers

39.2.1. Molecular biomarkers: methods,  
applications, and limitations

Molecular biomarkers for cancer constitute genes, RNAs, proteins, 
and other metabolites that are identified using different methods 

Figure 39.1. A schematic representation of disease states in the course of disease progression and biomarkers. (A) A system state undergoes 
gradual change until it crosses the pre- disease state and experiences an abrupt shift to the alternate (disease) state. (B) Gene expressions from 
samples. (C, D) Classification of normal and disease states by molecular biomarkers. (E, F) Subnetworks or network biomarkers identified which 
distinguish disease and normal phenotypes and detect disease. (G, H) Dynamic network biomarkers (DNBs) identified and a corresponding peak 
observed in the DNB score for these genes as the system approaches the pre- disease tipping point.
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exploiting large amounts of accumulated omics data [18]. Some 
methods for identifying molecular biomarkers are as follows.

39.2.1.1. Multivariate (logistic regression) analysis

Recognizing a molecular biomarker, one can determine the 
number of molecules, the expression of which can distinguish 
normal and disease states in patients. One of the simplest and 
classical approaches for such a classification is logistic regression 
(LR). Multivariate LR [22] is a method used to determine relations 
between dependent and multiple independent variables. It calcu-
lates the probability of an event occurring depending on multiple  

variables and takes the form π
β β β

β β β
( )X
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e

X X
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X X X p1 2, , ,…  are p independent variables.
The corresponding Logit function takes the form
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where X represents the whole set of covariates X X X p1 2, , ,… . Here, 
π is the probability that an observation is in a specified category of 
the response variable Y . The distribution associated with the LR of 
p variables is binomial and the likelihood function takes the form

 
i

p

i

y

i

y

x xi i

=

−( )
∑ ( ) − ( )( )

1

1
1Π Π . 

where yi are the components of the response variable. The coeffi-
cients βi ’s can be estimated by maximizing the likelihood function. 
The multivariate LR analysis draws a boundary clearly separating 
the normal and disease samples, identifying molecular biomarkers 
for disease. Previously, it has been employed in the calculation of 
prostate- specific antigen (PSA) tests to detect the onset of prostate 
cancer. These methods have also been used to identify biomarkers 
for breast cancer [23,24], cardiac complications [25], as well as other 
rare diseases [26]. However, researchers have switched to improved 
methods to overcome associated shortcomings such as poor ac-
curacy and specificity when distributions deviate from normal.

39.2.1.2. Classification and regression tree

It is a non- parametric machine- learning (ML) approach also used 
for detecting molecular biomarkers apart from its wide utility in 
interdisciplinary fields. This is a data- driven method that does not 
rely on any predefined decision boundary. The classification and re-
gression tree (CART) [27] is a decision tree and consists of 3 three 
main parts: root nodes, internal nodes, and leaf nodes. CART is a 
predictive model that follows a pattern similar to other decision 
trees in inferring in steps from observations about a sample repre-
sented by branches and obtaining the final output at the target value 
of the sample denoted by leaves. A CART composed of 5 five protein 
peaks had successfully differentiated ovarian cancer samples from 
control samples with high accuracy [28]. Decision tree algorithms 
have also appeared fruitful in detecting pancreatic cancer [29] from 
serum samples of patients. Nonetheless, the utility of CART extends 
to detecting cancer risks, and rectal tumour response to preoperative 
radiotherapy [30]. Despite its potential in detecting biomarkers, it 
suffers from model convergence problems for tasks involving a large 
number of nodes accounting for huge complexity of computation.

39.2.1.3. Voting panel approach

This is a straightforward method where it returns positive or nega-
tive results for normal and diseased samples, respectively. It returns 
a value based on the threshold for individual inputs. This is followed 
by logical AND, OR gates that operate on an individual molecule to 
obtain the final output. This finds application in detecting glioma 
samples, nasopharyngeal carcinoma [31], and differentiating ma-
lignant and benign pelvic mass [32]. It has also provided with bio-
markers for ovarian cancer [33] and other diseases, such as Crohn’s 
disease and ulcerative colitis [34]. Despite the simplicity of the ap-
proach, voting scheme lacks accuracy.

39.2.1.4. Artificial neural networks

Artificial neural networks (ANNs) [35] are algorithms that mimic 
the functioning of neurons in the human brain. It is a parameterized 
function mapping an n- dimensional input space RN  to an output in R. 
ANNs consist of 3 three layers— the input, hidden, and output layers. 
The hidden layers extract the most relevant information pertaining 
to the classification task. Neural network architectures are universal 
approximators mapping non- linear relationships between inputs 
and outputs. This is performed by training the ANN and modifying 
weights using a back- propagation algorithm, optimization of the loss 
function, and obtaining learned weights on which unseen samples 
with similar distributions are tested. Particularly, in the task of iden-
tifying molecular biomarkers and ranking the significance of mol-
ecules, ANNs are suited for robust predictions when trained on ample 
training samples. While determining the loss function and tuning the 
hyper- parameters may be a tedious task, the goodness of predictions 
trades off these limitations. In an experiment by Ball et al. [36], ANN 
with a back- propagation algorithm has successfully detected spec-
tral peaks with intensity values similar to that of tumour grade when 
trained on data derived from matrix- assisted laser desorption/ ion-
ization (MALDI) mass spectroscopy. The performance of ANNs to 
identify molecular biomarkers is superior over other methods and 
have been applied for the diagnosis and anticipating treatment out-
comes in prostate cancer patients and elsewhere [37,38].

39.2.1.5. Support vector machine

It is a classical supervised learning algorithm. The primary goal of 
a support vector machine (SVM) classifier is to separate an n- di-
mensional space by drawing decision boundaries. An SVM classi-
fier can be linear or non- linear. Quite obviously, interactions in the 
human body that cause cancer or other diseases are highly complex. 
In context, a non- linear SVM classifier can be used for such pur-
poses to decide the best decision boundary or the hyperplane. Data 
points that are closest to all the classes are called support vectors, 
and the distance between the hyperplane and support vectors is the 
margin. The objective of the SVM algorithm is to find a hyperplane 
that maximizes the margin and is known as the optimal hyperplane. 
This simple algorithm is limited by the ability to choose appropriate 
kernel functions for complex tasks. SVM has effectively provided 
with classification algorithms for cancer of the lungs, prostate, ovary, 
colorectum, kidney, liver, pancreas, bladder, and gastroesophagus 
[39]. They distinguish a set of genes from larger groups of genes that 
characterize the type of tumour. Researchers have also developed 
SVM with applications in the multi- category classification problems 
and diagnosis of multi- class cancer.
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Other molecular biomarker identification methods include gen-
etic algorithm [40], dimension reduction approach [41], risk strati-
fication [42], and heterogeneous expression profile analysis [43]. In 
the presence of high- throughput data, DNA micro- array data at the 
gene level has provided biomarkers for cancer of the brain, breast, 
pancreatic, bladder, and several other diseases including diabetes 
mellitus.

39.2.2. Network biomarkers: methods, 
applications, and limitations

These are modular biomarkers composed of various interacting 
molecules similar in character and functioning [15]. Measuring the 
change in a network of interconnected genes or molecules rather 
than changes in a single gene gives a better understanding of the 
mechanisms within cells, tissues, or other larger units of biological 
systems often responsible for ailments. Network biomarkers may be 
constructed directly or built from molecular biomarkers. Some of 
the most commonly used computational methods for identifying 
network biomarkers are as follows:

39.2.2.1. Active sub- network identifying method

It is a set of genes that foster a connected component in an existing 
protein– protein interaction (PPI) network. For a sub- network say 
N , let the activity score of a tumour sample be a vector S whose j th 
component is computed after normalization of expression values g ij 
and averaging over each gene in the sub- network, the corresponding 
class label be denoted by C, the discriminative score S N( ) that is the 
mutual information (MI) between ′S , a discretization of S and C is 
given by

 S N S C p x y
p x y

p x p yx S y C

( ) , ( , )
( , )

( ) ( )
,= =′

′
∑∑MI( ) log
  ,

where p x y( , ) is the joint probability density function of S ’ and C, 
p x( ) and p y( ) are the marginal pdfs of S ’ and C. Computing the MI 
scores, the heterogeneity in expressions, and both the differences in 
the mean and variance is thereby suitable for classification purposes 
in cancer patients. Set of genes that maximize S N( ) is regarded as 
optimal and works as a biomarker. This set of genes or sub- network 
is identified by performing a greedy search algorithm within the PPI 
network. While this is done, one needs to measure the reliability of 
the results by calculating the false- positive rates. The method has 
improved accuracy in classifying metastatic and non- metastatic tu-
mours associated with breast cancer [44]. This finds potential appli-
cation in identifying disease- related genes that are not differentially 
expressed in systems [45].

39.2.2.2. Disease- specific module identification

In this approach, taking into account gene expressions and infor-
mation from the PPI network, a network- based biomarker is built. 
After the initial steps of laying the gene expressions on their cor-
responding proteins, and choosing differentially expressed proteins 
(proteins with a significant difference in expression level in two or 
more different experimental scenarios) using statistical methods 
[46], highly connected proteins based on PPI information statistics 
are also put in the protein pool. Gathering PPI information and a 
protein pool, a PPI network is constructed. This is further modified 
by means of a regression model. For a protein i in the PPI network:

 γ α γi k

N

ik ik in n ni[ ] = ∑ [ ]+ [ ]=1  ,

where γ i n[ ] is the gene expression level, N i represents the number 
of interacting protein with the target protein i, αik  is the association 
ability between the target protein i and the k  th interacting protein, 
and i represents stochasticity or model uncertainty.

After the construction of the PPI network, the parameters of the 
model are estimated using maximum likelihood estimation separ-
ately for cancerous and non- cancerous data (αik C,  and αik N, ). Post 
this Akaike information criterion is used to quantify the significance 
of the association of proteins with either data. C and N  are the ma-
trices representing protein association with cancer and no cancer. 
The entries of the matrix correspond to the impact of i th and j th 
interacting proteins. Further, to measure the effect or correlation of 
protein with cancer, a carcinogenesis relevance value (CRV) is de-
fined such that

 CRVi
j

k

ijd=
=

∑
1

, 

where dij ij C ij N= −α α, , . CRV values with p ≤ 0 5.  are considered to 
be significant proteins associated with cancer. This network- based 
biomarker has aided in distinguishing 40 different proteins associ-
ated with lung cancer [46]. Similar graph- based methods incorp-
orating co- expression dynamics have been applied to different 
cancerous and non- cancerous data and appeared to better identify 
interrelations between interacting genes or proteins often revealing 
dysregulated pathways specific to a disease. Nonetheless, the method 
is computationally expensive requiring an exhaustive search process 
and may suffer from over- fitting in the regression model when only a 
small number of samples are available much lower than the number 
of parameters to be estimated.

39.2.2.3. Classification of differential interactions

In this method, available gene expressions from cancerous and 
non- cancerous tissues are divided into groups, and the correlation 
coefficient between interacting proteins within the PPI network is 
calculated. PPIs with correlation coefficients beyond a threshold 
value are considered. A new rewired PPI is then created, and normal 
and diseased samples are distinguished in phases. Genes or proteins 
that are common in each phase are considered diseased genes and 
form network- based biomarkers after testing their significance. This 
approach differs from other traditional methods on grounds that it 
investigates differential interactions between normal and diseased 
samples while the latter separate differential gene expressions. It is 
successful in finding dysfunctional modules in gastric cancer [7]  
and identifying nitro- proteins associated with pituitary adenoma 
apart from cell deaths and cancer. This claims its efficiency in right-
fully distinguishing normal and disease states and thus should be 
validated on other disease datasets for evaluating its generality [47].

39.2.2.4. Information flow approach

Here, dysregulated pathways are identified from the pathway 
interaction network comparing activity scores for each pathway. 
Dysregulated pathways are features that can discern between 
normal and disease states. Pathways are identified in steps and 
added to the previous pathway biomarker and continued till 
no more such pathways are found. This comprises the pathway 
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the local conditional probabilities Pi
N  and Pi

D are computed, and 
P P Pi i

N
i
D= ∪ . For sample corresponding to each condition, COD 

and test statistics θ
^
= −COD COD1 2  are calculated. Multiple simu-

lations are performed to test the significance of the differences ob-
served. The method detected genes with network topological changes 
in oestrogen- dependent T- 47D oestrogen receptor– positive breast 
cancer cell dataset [52] and human and mouse embryonic stem cell 
datasets [53]. Other methods of identifying network biomarkers in-
clude the incorporation of network information with sequence data. 
In particular, single nucleotide polymorphic data and the analysis of 
genome- wide association at SNP level captured aggregated effects 
of various processes and provided added information to the occur-
rence and progression of the disease [54].

39.3. Dynamic network biomarkers

As evident from the discussions in the previous sections on mo-
lecular biomarkers and network biomarkers, they only differen-
tiate between normal and disease states. However, to prevent or 
cure a terminal disease, like cancer, it requires an early diagnosis 
of the pre- disease state prior to the critical transition to a dis-
ease state. While identifying the pre- disease state is a challenging 
task, there occur minute changes in the interval of normal to pre- 
disease state progression. To develop early warnings of a critical 
transition to a disease state, researchers have developed a model- 
free approach, DNB [8] , that detects the pre- disease state with 
minimal but high- throughput data. As proved theoretically near 
a tipping point, there exist groups of genes or molecules that ex-
hibit characteristic features that can be used to characterize a DNB. 
Characteristic properties that are common to DNB irrespective of 
the concerned system and are necessary for identifying a DNB for 
a disease are as follows:

 1. Correlation between molecules comprising DNB increases 
sharply.

 2. Correlation between molecules comprising DNB and that of 
other non- DNB elements weaken.

 3. Standard deviation of molecules comprising DNB increases 
rapidly.

The composite index (CI) for calculating the signal for the DNB is 
given by,

 CI
PCC SD

PCC
=

×i i

o

 (39.1)

Here, PCCi denotes the average of Pearson correlation coefficient 
(PCC) in the molecules of the DNB, PCCo is the average of PCC of 
the molecules in DNB with other molecules, and SDi is the average 
standard deviation of molecules in the DNB. A peak in the CI value 
with a rising trend marks the onset of a disease tipping point. DNBs 
have provided early warnings indicating a pre- disease state in cancer 
of various organs and other complex diseases [19]. In an instance, 
DNB was identified for GSE21510 and TCGA colon and rectal can-
cers [55]. At each stage I IV− , the DNB scores were computed. At 
stage III, the DNB score showed a sharp rise assuming a peak value 
at stage IV . Stage III is therefore marked as the pre- disease state 
corresponding to the progression of colon and rectal cancers. They 

interaction network where nodes are pathways and edges are pre-
sent in between pathways if they share a common gene or they have 
genes that share connections on grounds of PPI. Identification of 5 
five dysregulation pathways in pancreatic cancer not only provides 
with a network- based biomarker but also identifies biological pro-
cesses that play a major role in the formation and maturation of 
tumour [48]. Other accomplishments of this method include the 
classification of states in lung, breast, prostate tumours, and con-
genial heart diseases [49,50].

39.2.2.5. Support vector machine

As mentioned in the previous section, SVM is an ML method 
that is used to separate data into classes grouping them based on 
common features. It employs a linear or non- linear kernel to per-
form the classification task based on the complexity of the task. 
In a similar approach to detecting molecular biomarkers, here it 
segregates groups of molecules or genes integrating information 
from interactions of the same. It incorporates various aspects, such 
as gene co- expression, regulatory networks, interrelations, and 
functional similarity in genes to provide improved performance in 
detecting disease and normal samples. SVM has provided convin-
cing results in identification of network biomarkers for cancer of 
various organs [51].

39.2.2.6. Differential dependency network

This method classifies states depending on topological changes in 
the network for different conditions. Consider a set of random vari-
ables X X X X Xn= { }1 2 3, , ,..., , a dependency network for X modelled 
by a set of local conditional probability distribution which follows

 P X Z P Xi i i i| | ,( ) = ( )−Χ  

where Χ− − += … …{ }i i i mX X X X X1 2 1 1, , , , ,  and Zi i⊆ −Χ .
This can be generalized for M genes in the network where the de-

pendencies of the i th gene on others are given by

 P P X Z P X Z P X Zi i i s i i s i i si
= { }( | ), ( | ), , ( | ), , ,1 2

  

Here Z Zi s i si, ,, ,
1
  are all in Χ−i , and si for i m∈1 2, , ,  denotes the 

conditional probability for random variable Xi. Further, the condi-
tional probabilities obtained can be inferred by performing linear 
regression where Zi  predicts Xi as

 X Zi
T

i i= +β  . 

The error i follows a normal distribution N i( , )0 2σ  and local con-
ditional probability P X Z N Zi i

T
i i( | ) ( , )= β σ2  for i m∈{ }1 2, ,..., . The 

parameters βi  may be estimated using LASSO estimator. To evaluate 
the goodness of prediction of Xi by Zi , one can calculate the coeffi-
cient of determination (COD) which takes the form

 COD
var var

var
=

{ } − −{ }
{ }

X X f Z

X

i i X Z i

i

i i| ( )
. 

Here, f  denotes the best function that reduces the residual vari-
ance. The differential dependency network (DDN) when applied to 
identify network topological changes for normal or disease states, 
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also identify genes that amplify and suppress tumour proliferation. 
Other instances where DNB has provided early warning signals are 
hepatocellular carcinoma [56], lung injury [57], breast cancer [58], 
type- 1 and type- 2 diabetes [20,59], etc. Though this traditional DNB 
detection method is applicable in cell- fate determination, cell differ-
entiation, and determining the pre- disease stage, it requires multiple 
samples at each time point often not available in clinical and prac-
tical instances. Given the limitations of the number of samples in the 
critical state, researchers have developed methods that can antici-
pate the pre- disease state even with a single sample. A single sample 
dynamic biomarker network (sDNB) is based on the information of 
differential association allowing predictions of the occurrence of the 
disease a priori.

39.3.1. Working of sDNB

Identifying pre- disease state using DNB from a single sample re-
quires the presence of a control sample, and the CI is computed using 
the same formula as that for traditional DNBs (see Equation (39.1)). 
In the process, the deviation of a gene expression in a single sample 
is calculated as the difference of gene expression of new sample (x) 
and the average expression of gene x in the reference sample (x̆), i.e.

 sED = −x x̆ . 

Further, PCCn x y,( ) and PCCn x y+ ( )1 , , the PCC between two genes 
of the reference sample of size n and that of the new sample, are cal-
culated, respectively. The single sample PCC of the two genes (new 
and reference) is given by

 sPCC PCC PCC= ( ) − ( )+n nx y x y1 , , . 

The significance of sPCC(x y, ) for two genes x and y can be evalu-
ated by observing the p- value for the z- score where

 z
n

n

=
× −( )

−( )
sPCC

PCC

1

1 2
. 

Further, the CI of sDNB can be computed by using

 CI
sPCC sED

sPCCs
in in

out

=
×

,
 

(39.2)

where sEDin is the single sample expression deviation, sPCCin de-
notes sPCC among inner genes of a module, and sEDin is the sPCC 
between inner and outer genes of a module. Further details of the 
working of sDNB are presented in [60]. This method not only an-
ticipates the pre- disease state in cancer metastasis but also aids 
in deciphering processes that govern the dynamics of the com-
plex disease at a single sample level. Other available single- sample 
DNB approaches employ the hidden Markov model [61] and the 
Kullback– Leiber divergence method [62] that manifest improved 
performance and are widely in practice. Moreover, sDNB built using 
local network entropy (LNE) has successfully classified biomarkers 
for the pre- disease state of 10 types of cancers [63], namely kidney 
renal clear cell carcinoma, lung squamous cell carcinoma, stomach 
adenocarcinoma, liver hepatocellular carcinoma, lung adenocar-
cinoma, oesophageal carcinoma, colon adenocarcinoma, rectum 
adenocarcinoma, thyroid carcinoma, and kidney renal papillary 

cell carcinoma available in The Cancer Genomic Atlas (TCGA) 
(cancer.gov https:// por tal.gdc.can cer.gov). Further, Liu et al. [63] 
made significant contributions in finding two variants of prognostic 
biomarkers, optimistic LNE and pessimistic LNE, that identify pre- 
disease states and enable a priori predictions.

39.3.2. Working of landscape- DNB

Landscape- DNB (L- DNB) [64] is a single sample DNB method used 
to detect the pre- disease state from a single sample. It differs from 
other sDNB approaches on grounds that it computes the local DNB 
score (I s) in the same manner using Equation (39.2) and then inte-
grates the local DNBs into a landscape. Similar to other sDNBs, here 
a reference of n samples is considered as a control. A single sample 
network is constructed and the local DNB score Is is calculated for 
the local module centred at a gene x. Further, the global DNB score 
Ig  is computed from the landscape of the sample by selecting genes 
with the highest scores as components of the DNB. DNB genes are 
characterized by the highest k- local DNB scores, and the global DNB 

score takes the form I
I x

kg
s

x

k
=

=∑ ( )
1

. The sample with the highest Ig  is 

considered to be at or approaching a disease tipping. The advantage 
of the L- DNB is that it allows for predicting the disease tipping or 
identifying the pre- disease state efficiently and is computationally 
less expensive as it avoids lengthy and complicated algorithms. The 
L- DNB method has been applied to three tumour disease data from 
TCGA, and it successfully identifies the pre- disease states using a 
single DNB for each patient. Its application also extends to the iden-
tification of symptoms associated with influenza prior to its actual 
occurrence. The precedence of DNB over other detection methods 
is apparently evident as it detects tipping points prior to the occur-
rence of disease while using minimal samples and in some instances 
by only utilizing an individual sample.

Overall, DNBs greatly advance the study of complex diseases and 
aid in the diagnosis of various fatal diseases that would have been 
otherwise impossible to prevent. Nonetheless, the battle against 
cancer is ceaseless as real data are limiting; on the other hand, cancer 
cells and tumours are continuously evolving and interacting stra-
tegically which are often overlooked. This is better done by inte-
grating cancer dynamics and evolutionary game theory and then 
predicting cell fate using the above methods for more accurate and 
precise drugs and therapeutic interventions.

39.4. Game theory and effective cancer  
therapies

Evolutionary game theory [65] explains reproductive selection and 
frequency- dependent growth in a population of evolving individuals. 
Games or strategic interactions between living organisms are observed 
in the smallest of cells to the largest of animals whenever an individual’s 
payoff or reward depends not only on his action but also on other indi-
viduals in the population. While such interactions are more apparent 
in financial markets, political science, psychology, etc., concepts from 
evolutionary games also provide a better understanding of inter-
actions within and across cancer cells [2]  such as stromal cells that have 
frequency- dependent fitness. Frequency- dependent fitness may be de-
fined as the selection where the fitness or growth of a phenotype also 
depends on that of other phenotypes present in the population. While 
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the simplest strategies in game theory are cooperation and defection, 
in the context of cancer cell metastasis it implies that by cooperating 
cells aids in the generation of diffusible factors that enhance prolifer-
ation (see Figure 39.2). Whether cells continue to cooperate with other 
cells or may change their strategy to defect has much to do with the 
development of more effective therapies [66]. Although the decision of 
cells to cooperate or defect depends on cost– benefit ratios, cooperation 
can lead to a stationary state with reduced fitness (as benefits are shared 
by all cells) depending upon various factors such as diffusion of the se-
creted molecule, concentration, etc. In an instance of pancreatic cancer, 
it is inferred from experiments that cooperation evolves over time at 
low- cost scenarios and may diminish beyond an upper threshold value. 
The experiment by [67] maintained a low cost– benefit ratio to enable 
cooperation to persist by titrating the extent of exogenous growth factor 
accessible to the cell. Another experiment by [68] exhibited mutualism 
between tumour sub- clones for the exchange of diffusible substances 
between cells. Thus, one can claim that pure defection and an interplay 
of cooperation and defection are stable strategies depending on the ini-
tial population densities.

These have implications for achieving effective and long- lasting 
therapies as a treatment to cancer experiences setbacks due to drug 
resistance and failure in responding to targeted drugs and chemo-
therapy. It has been observed that cancer cells are unstable in na-
ture and mutants that do not succumb to drug/ therapy emerge and 
evolve by natural selection and lead to patients not responding to 
treatments. Game theory could come to the rescue to design ther-
apies or drugs whose therapeutic effects remain unchanged over 
time with more efficacy and not give in to evolving mutants. Experts 
have tried formulating therapy by changing drug dosage to bring 
in competition among cells. Instead of targeting a specific cell or 
tumour, reducing the dosage would slow down the rate at which 
resistance is developed. This has achieved some success in cancer 
treatment as well as for other diseases [69,70]. Using multiple ther-
apies with collective impact on cancer cells that compete to survive 
toe- to- toe turns out to be harmful to each other leading to another 
form of adaptive therapy [71,72]. Thus, linking more real evidence to 
evolutionary game theory and finding evolutionary stable strategies 
will be a giant leap in achieving evolution- proof therapies.

39.5.  Conclusions

Altogether, we have discussed various methods for the detection of 
pre- disease, normal, and disease states in cancer of various organs. 
Traditional methods, such as molecular and network biomarkers, 

have been widely used in clinical practices owing to their straight-
forward application. However, guided by theory accompanied by 
observations, detecting the pre- disease state is crucial to prevent 
the occurrence of diseases as in many cases once the system res-
ides in the disease state the casualty is unavoidable. Although the 
disease state has not yet occurred, but at the limit of the normal 
(pre- disease) state, genes exhibit features that can be captured by 
the DNBs. The scores for the respective DNBs or components of 
the DNB constitute the best indicators of marking the onset of the 
disease. Needless to mention that DNBs requiring only 3 three pre- 
requisite conditions to be satisfied are superior to other traditional 
methods as they classify a pre- disease sample from the normal 
sample, have a data- driven approach, do not rely on a priori in-
formation, and consequently reduce bias. Methods for classifying 
pre- disease state from normal samples are only recently developed 
and require validation on a larger class of cancer and disease sam-
ples. While DNBs are robust and generalizable to a wide range of 
diseases and show high accuracy, there are still limitations. Lack of 
data availability for cancer of different organs has prevented inves-
tigating the applicability of DNB pertaining to a disease. Moreover, 
while DNB efficiently classifies pre- disease state for long sequences, 
in real scenarios often only single or smaller number of samples 
are available. Improving data sampling technique, data quality, 
and incorporating time information, developing more improved 
methods with reduced human interventions can help enhance the 
practicality of DNBs.

Alternative suitable candidate methods for improving predic-
tions of the pre- disease state are deep- learning tools that have 
shown success in anticipating critical transitions while discerning 
them from other continuous transitions [73]. Nonetheless, the ap-
plication of deep learning in forewarning sudden transitions is in 
its infancy and requires more in- depth investigations. Further, the 
extent of perturbation in the presence of which DNB identifica-
tion holds is usually small, and it requires the data not to be aperi-
odic. While such scenarios are omnipresent, the developments of 
DNBs for diseases with chaotic behaviour a priori or in course of 
disease progression are promising future directions towards diag-
nosing and curing cancer. The evolutionary nature of cancer cells 
[74] has been recognized for ages. As mutants become resistant to 
drugs, treatments fail to suppress tumour growth [6,75]. Yet, it is 
less explored in the context of developing effective treatments and 
target- specific drugs. Thus, integrating game theory and identi-
fying strategic interactions among cells, mutation rates, and cell 
size will add to the development of adaptive therapies against 
cancer.

Figure 39.2. A schematic representation of simplified tumour– cell interactions: increase in cooperation between tumour cells leading to drug 
resistance and hence tumour progression, resulting in malignancy.
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40

Chaos and complexity: Hallmarks of  
cancer progression
Abicumaran Uthamacumaran

40.1. Introduction: complexity 
science in precision oncology

In the era of Big Data, fast- paced advancements within data science, 
bioinformatics, and evidence- based medicine are evolving towards 
integrating the vast computational power of machine intelligence 
and physics- driven quantitative models in precision healthcare. At 
the heart of this culmination lies the complex systems paradigm, a 
transdisciplinary science and art devoted to the study of otherwise in-
computable problems, or intractable diseases like cancers, as complex 
adaptive systems. Cancers can be studied within the complexity frame-
work, via bridging computational medicine, mathematical oncology, 
and systems biology, to better identify targeted therapies, improve 
cancer screening (i.e. diagnostics and prognostics), accelerate patient- 
specific biomarkers discovery, and optimize clinical decision- making. 
Forecasting the complex dynamics of cancers fosters best practices 
within the art of healing, by allowing clinicians to better adapt drug 
delivery mechanisms or control therapeutic dosage, to prevent adap-
tive behaviours within tumour ecosystems, such as therapy resistance 
[1– 3]. Single- cell multi- omics are emerging as powerful tools at the 
frontier of precision and personalized cancer medicine [4] . Single- 
cell multi- omics through the lens of complexity science holds great 
promise in further advancing precision patient care by helping us 
identify causal patterns driving tumour behaviours. As such, health-
care practitioners and interdisciplinary scientists must be educated on 
the toolkits and concepts pertaining to complexity science.

With such pedagogical intentions, this chapter is devoted to a 
bridge between precision oncology and complex systems theory, in 
understanding cancers as ecosystems, or simply, complex systems 
[5,6]. To achieve this, the multiscale physics and machine- learning 
algorithms for characterizing the multilevel patterns of behaviours 
within single- cell cancer multi- omics will be investigated herein. 
This marriage will help elucidate the genetic and non- genetic in-
stabilities (e.g. epigenetic modifications) underlying collective 
behaviours such as phenotypic plasticity and its inter- related intra- 
tumoral heterogeneity, serving as fundamental barriers in treating 
cancers [7] . Machine- learning algorithms are state- of- the- art tools 

in systems oncology with counterfactual purposes. For instance, 
they can be employed for capturing drug response prediction and 
cancer classification using multi- omics data [8]. Further, they are 
being used for drug repurposing and discovering targeted therapies 
in precision oncology [9,10]. Systems oncology views cancer as a 
dynamic, multiscale process—a form of collective intelligence emer-
ging from complex biopsychosocial interactions. Let us begin by 
defining complexity science. In short, complex systems theory or com-
plexity theory is the transdisciplinary study of patterns (structures) 
and behaviours (processes) within complex systems. It is a recent 
paradigm in physics intersecting many branches of knowledge sys-
tems, including the sciences, and arts/ social humanities, such as the 
study of wholeness (i.e. process ontology), dynamical systems theory, 
statistical mechanics (information theory), cybernetics (the study 
of regulation, navigation, and feedback loops in control systems), 
and the computational sciences [11– 14]. Mathematicians and physi-
cists have been using these tools to study dynamical systems, such 
as weather patterns (fluid turbulence), the fractality of clouds, the 
flocking or swarming of ecological systems (i.e. many- body systems 
behaving as a coordinated whole), and chemical oscillations in mor-
phogenesis, to name a few. However, the study of cancers as complex 
adaptive systems remains a relatively new stream of thought. A com-
plex system is typically a many- body dynamical system, with many 
interconnected variables or parts exhibiting adaptive behaviours 
and phenomena across different scales [14]. Thus, a complex system 
is composed of many non- linearly interacting constituents or pro-
cesses that cannot be reduced from the whole [11]. Living systems, 
such as ecosystems, and the dynamics of single cells, proteins, and 
biomolecules, are such complex systems. The irreducibility of these 
dynamic interactions forms feedback loops across many scales, as 
a result of which the system exhibits adaptive or emergent behav-
iours. Emergence denotes the concept of ‘more is different’, a state of 
synergy or stigmergy, wherein the non- linear dynamics between the 
parts gives rise to new causal patterns and behaviours [15].

Most scientists equate emergence or irreducibility to com-
plexity, while others make it synonymous with non- linear dy-
namics. However, complexity entails the meta- study of all these 
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characteristics. The emergent properties allow the complex system 
to learn and adapt from and within its environmental context(s). In 
contrast, to the many- body physics view, even very simple physical 
and computational or mathematical systems (e.g. cellular automata 
or a difference equation) might give rise to unanticipated complex 
behaviours and patterns. The recursive iterations of the Mandelbrot 
set, a fractal structure, is a great example. Toolkits, such as chaos 
theory, criticality, fractal geometry, network theory, and statistical 
physics, can well quantify, describe, or predict these complex be-
haviours and patterns across a wide range of complex systems, and 
hence, the complex systems paradigm is an umbrella framework 
applicable across many realms of study. For instance, tools such as 
network science derived from the social humanities (e.g. social net-
works theory) or ecological sciences (i.e. ecosystems dynamics) can 
be universally applied across multiscale biological processes, from 
molecular networks to morphological relationships [14]. Moreover, 
within contemporary art practice, and the social humanities, com-
plexity science shares syntax with post-modernism, new materialism 
(post- humanism), Jung’s analytical psychology, Gestalt psychology, 
and process theory/ ontology, to name a few schools of thought.

In complexity theory, we are interested in quantitative approaches 
for causal discovery, to reveal the hidden patterns of organization 
or processes/ mechanisms under which a complex system operates, 
steers through its environment, and makes decisions. Network dy-
namics and attractor reconstruction are two core approaches to 
causality inference in cancer cell- fate dynamics. Key signatures of 
complex systems include wholeness, non- linear dynamics, non- 
Gaussian/ nonequilibrium statistics, long- term unpredictability 
(epistemological uncertainty), interconnectedness, multi- nested 
causal processes such as feedback loops (i.e. cybernetics), sudden 
abrupt changes in behaviour (i.e. criticality or phase transitions), 
spontaneous pattern formation, purposive or goal- oriented behav-
iours, evolvability (adaptation), self- organization (globally organ-
ized behaviours on a small timescale), collective intelligence (e.g. 
spatial navigation for resources or metastatic invasion in cancer), 
and emergence (collective behaviours) [11– 14]. Many of these com-
plexity features are signatures of chaotic dynamics, i.e. non- linear 
systems with sensitive dependence on initial conditions and fluctu-
ations/ perturbations. Chaotic systems are a subset of complex sys-
tems, generating counterfactual possibilities, wherein a small error 
on the initial parameters can grow extremely fast, making long- term 
predictions difficult. In systems biology, self- organization can also 
denote autopoiesis, the ability of living systems to self- replicate, 
self- regulate, and organize themselves [16]. Some cognitive neuro-
scientists would argue that complexity is defined by second-order 
cybernetics and self-meta/reorganization (i.e. the self- ability to re-
modify and adapt the organization process), as advocated by the 
theory of embodied cognition [17]. Similarly, cancers can be seen 
as a collective intelligence emerging from the coupling between the 
tumour and its environment. Most often, emergent behaviours and 
intricate complex patterns form simply by fluctuations and updates 
in local interactions. However, the interconnectedness of complex 
systems results in foundational problems, bridging quantum mech-
anics with complexity theory, such as the issue of non- locality vs. 
local information dynamics, and the observer effect (e.g. participa-
tory or passive role of an agent influencing the behaviours) [11,18].

In summary, the key defining feature of complex systems is that 
new properties will emerge at every scale of interactions. Perhaps the 

most evident hallmark of complexity in cancer dynamics is its pheno-
typic plasticity [19]. As argued herewith, phenotypic plasticity serves 
as an interface to study complex dynamics, such as chaos, fractals, 
and criticality within cancer systems, and will be a central theme 
of this chapter. For instance, high- grade gliomas (HGGs) such as 
glioblastomas, the deadliest of brain tumours, are hierarchically or-
ganized tumour ecosystems driven by glioma stem cells (GSCs) that 
retain partial differentiation potential. GSCs are a subpopulation of 
therapy- resistant tumour cells, integrating the complex microenvi-
ronmental cues spanning across the physiological spaces of the pa-
tient/ host system, including neurons, immune cells, stromal cells, 
microglia, astrocytes, oligodendrocytes, the blood– brain barrier, 
neuroendocrine secretory cells, and extra- cellular matrices. We 
refer to this niche of interactions as the tumour microenvironment 
(TME). The integration allows the emergence of adaptive behav-
iours, such as metastatic invasion and phenotypic plasticity dynamics 
(i.e. cell state transitions) [19]. For instance, the GSC– TME crosstalk 
allows cancer cells to aggressively proliferate, evolve, invade the cir-
culatory systems, and communicate with immune cells to hijack or 
suppress local tumour immunity [20,21]. These multiscale processes 
span across multidimensional physiological spaces, such as the 
brain– microbiome– immune axis and neuroendocrine axes, pro-
moting the inflammatory TME, tumour progression, and therapy 
efficiency (or resistance) [22– 24].

Therapy- induced stressors can also promote the TME to in-
duce adaptive traits like cancer plasticity [19]. Increasing evidence 
amounts to the critical role of neural– tumour interactions in 
driving gliomas. Epigenetic and transcriptomic signatures distin-
guishing high- neural glioblastomas (hypomethylated CpG sites and 
up- regulation of genes involved in synaptic integration) from low 
profiles [25] show a gradient of plasticity emerging from therapy- 
induced stressors. The high- neural glioblastoma show higher 
levels of stem- cell- like malignant cells (GSCs), which differentiate 
towards neural progenitor- like cells that can lineage bifurcate to-
wards oligodendrocyte- like and neural precursor- like cells, sug-
gesting that the neural– glioma synaptic connections drive glioma 
(cancer) plasticity dynamics [19,25,26]. The GSCs can also differen-
tiate towards glial progenitor- like cells, giving rise to astrocyte- like 
and mesenchymal- like glioma cells, via the reactivation of wound 
healing pathways, hijacked immune signalling, and the embryonic 
neurodevelopmental landscape [19]. However, the locality or non- 
locality of the TME’s governance of phenotypic plasticity is largely 
questioned. That is, whether the plasticity dynamics depends on the 
local context/ stem cell niches or is a non- local behaviour wherein 
the plasticity program is internally embedded within every hybrid 
or partially ‘differentiated’ tumour cell remains a debated problem 
in systems medicine. Tumour heterogeneity mapping via single- cell 
multi- omics sequencing is hinting towards the latter wherein the 
entire tumour system (population) is believed to exhibit a gradient 
of plasticity or stemness potential [4,19]. This spectrum of plastic, 
phenotypic states might also arise from cells “stuck” or trapped 
along their developmental trajectories away from terminal cell fates. 
The plasticity dynamics also depends on long- range cell– cell com-
munication systems such as exosome- mediated interactions from 
distant tissue microenvironments, promoting cancer migration and 
metastatic invasion [27,28].

While the origins and mechanisms of therapy- induced plasticity 
are still being unravelled, advanced computational and mathematical 
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methods provide critical insights into quantifying and modelling 
phenotypic transitions and cell- fate trajectories in cancer. Such 
methods suggest that chaos, turbulence, and complex dynamics may 
help elucidate the emergence of stem- like or plastic traits in cancers. 
Thus, to germinate complexity and chaos, as hallmarks of cancer 
aggressivity, the chapter is divided into four major sections. The first 
is devoted to some insights on state- of- the- art algorithms and com-
putational tools in overlaying multi- omics information to elucidate 
phenotypic plasticity, i.e. cell- fate transition dynamics. The second 
section focuses on network science, a powerful lens capable of iden-
tifying critical drivers (network links and nodes) regulating adaptive 
behaviours like phenotypic transitions. The last two sections ques-
tion the limitations of normative science. They are devoted to the 
physics of pattern formation, suggesting a more non- conventional, 
explorative research program of complexity and chaos in tumour 
self- organization, interweaving concepts, such as chaos, fractals, 
strange attractors (the hidden geometric patterns of chaos), chem-
ical turbulence, and active fluids. Albeit seeming unorthodox and 
counterfactual, the chaos theory syntax is universally inherent to the 
temporal patterns and behavioural sequences of complex natural 
systems, thereby, warranting its exploration in cancer dynamics.

40.2. Cancer dynamics: data science 
approaches in forecasting cell- fate trajectories

Our discussion in this section is centred on reconstructing behav-
ioural patterns, such as cell- fate transitions from gene expression 
dynamics (transcriptomics), and their epigenetic regulation/ con-
trol. However, they can be extended to proteogenomics, single- cell 
proteomics (e.g. mass spectrometry (MS)/ CyTOF) and metabol-
omics [29]. While epigenetic control mechanisms guide normal 
cell- fate decisions, dysregulation of these epigenetic processes is a 
hallmark of many cancers, including gliomas, where altered epi-
genetic landscapes shape tumour– microenvironment interactions, 
immune evasion, and phenotypic plasticity [30]. Epigenetic modi-
fications include histone modifications, DNA methylation, post- 
translational modifications, and 3D- chromatin reorganization. For 
instance, in pediatric HGGs, oncohistones, such as mutations of the 
histone 3 genes (H3C1 and H3F 3A), and of driver genes, such as 
isocitrate dehydrogenase 1/ 2 (IDH1/ 2), α- thalassemia/ mental re-
tardation, and X- linked (ATRX), steer epigenetic dysregulation, 
shaping TME interactions, and thereby, regulate disease or thera-
peutic progression and patient survival [30]. Furthermore, 
in paediatric HGGs and leukaemia, the oncohistone variant 
K27M amino acid substitution inhibits the polycomb repressive 
methyltransferase complex 2, resulting in decreased trimethylation 
of H3 proteins, and hence, alters gene expression patterns to confer 
cancer stem- cell- like malignant states [31].

The terms phenotypic switching, plasticity dynamics, and cell state 
transitions are synonymously used throughout to denote cell- fate 
dynamics during stalled differentiation, de- differentiation, and 
trans- differentiation to molecular/ environmental perturbations in 
cancer ecosystems (e.g. trajectories during metastatic invasion or 
decision- making of cancer stem cells/ malignant cells under thera-
peutic resistance). Cell- fate dynamics, or simply, cancer dynamics, 
are quantitatively studied via a diverse set of systems- theoretic 
(mathematical) tools and data- driven models. These multi- physics 

predictive models are generally found within two major classes, 
namely, discrete and continuous models, borrowed from dynam-
ical systems theory and statistical mechanics/ information theory. 
Discrete models involve approaches, such as difference equations 
or computational methods like cellular automata. In contrast, con-
tinuous models involve differential equations and are solved ana-
lytically or via numerical methods. Continuous models, as focused 
herein, are further subdivided into deterministic and stochastic 
models. One of our main arguments herewith is that the lack of 
deterministic models due to the normative preference/ dogma of 
stochastic approaches largely reduces the complexity of processes 
underlying cancer dynamics, such as the emergence of chaos and 
strange attractors, within the state- space reconstruction of the cel-
lular trajectories. This is explained in part by the challenge of dis-
tinguishing stochasticity from deterministic chaos. More recently, a 
third approach is emerging: artificial intelligence (AI)- driven mod-
elling. AI- driven models, although intersecting with the other two 
dynamical systems approaches, is an umbrella term transcending 
their limits, including computational techniques, such as algorithmic 
complexity approaches, model- driven statistical algorithms, deep- 
learning methods such as generative AI, multifeatured- selection- 
based pattern recognition, quantum machine intelligence, etc.

Although our discussions focuses on single- cell multi- 
omics, bulk- cell analysis reveals complementary insights that 
should be contrasted with the single- cell resolution behaviours. 
Computational pipelines, such as Noiseq or DESEQ2 [32], are 
available for bulk RNA- seq analysis, wherein multiple sample 
measurements can be integrated, but the diverse phenotypes will 
be averaged to a single point in the state space. The general ap-
proach is to first filter out lowly expressed genes and then iden-
tify differentially expressed genes/ markers (DEGs) beyond some 
cut- off threshold of log- fold change in expression (log2FC). The 
filtering step itself could be problematic as they may be bursting 
or express complex/ chaotic dynamics in time- series analysis. DEG 
analysis is performed such that their statistical significance is as-
sessed by the Wald test following correction using the Benjamini 
and Hochberg method or other statistical approaches [33]. 
Whether we include these corrections or not can drastically change 
the number of DEGs. Dimensionality reduction, such as principal 
component analysis (PCA), is also performed to restrict the DEGs/ 
markers within the top PCA components as most variable features 
across the tumour samples/ clusters. The Jaccard similarity index 
is often used to identify phenotypic cluster modules (i.e. hierarch-
ical clustering) via the similarly expressed genes. Lastly, signalling 
pathways and transcription modules pertinent to the DEGs are 
identified via databases, such as KEGG, GSEA, gprofiler, and other 
gene set enrichment analysis tools.

In contrast, single- cell analyses differ in the sense that we can 
map the heterogeneity in differential expression of biomarkers at 
a single- cell resolution, and hence, trace population dynamics via 
the respective markers (e.g. DEGs) in time- course progression. PCA 
could help visualize attractor manifolds in such high- dimensional 
complex systems. We can also perform non- linear dimensionality 
reduction techniques to visualize the DEG expression across dis-
tinct phenotypes and how they vary across communities of cell- 
fate clusters (subpopulations). Multiple single- cell platforms can 
be overlayed simultaneously to reconstruct the phase- space trajec-
tories of cancer dynamics more accurately. To illustrate, a study by   
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Granja et al. [34] co- analysed scRNA- seq, scATAC- seq (transposase- 
based chromatin accessibility profiling), and scCITE- seq (cellular 
indexing of transcriptomes and epitopes) to sequence the transcrip-
tome, epigenome, and surface protein markers, respectively, in com-
paring healthy and leukaemic blood cells. Using these approaches, 
they identified leukaemia- specific regulatory genes, such as RUNX1, 
driving blood differentiation dynamics.

Given the paramount importance of single- cell multi- omics 
in reconstructing cancer dynamics, algorithmic approaches cap-
turing the complex attractor dynamics underlying these cell- fate 
decisions are of utmost interest to precision medicine and systems 
biology. For instance, aggressive cancers such as paediatric HGGs 
are currently believed to be stuck in terminal differentiation (i.e. un-
stable attractors), unable to commit to a glial phenotype (stable at-
tractor), and they exhibit a spectrum of phenotypic variability (i.e. 
multistability) [35,36], ranging from mesenchymal- like states to 
neuro- glial phenotypes. These paediatric brain tumours also show 
a lower mutational burden than their adult counterparts, with epi-
genetic drivers shaping the tumour– immune landscapes [37,38]. 
Aberrant methylation profiles, at the level of chromatin, and repro-
grammed patterns of histone modifications, i.e. oncohistones, are 
signature hallmarks of many paediatric tumours [38]. However, 
even in adult cancers, such as glioblastoma, epigenetic markers are 
becoming increasingly apparent and being used to predict longer 
survival and therapy response [7] .

The increasing relevance of epigenetic drivers in cancer progres-
sion, therapy response, and plasticity dynamics, shifts our dogmatic 
focus from the genetic instabilities of the somatic mutation land-
scape (view of Darwinian selection) towards the integration of non- 
genetic instabilities in cell- fate behaviours, and their corresponding 
attractor dynamics [36]. Therefore, model- driven algorithms rooted 
in dynamical systems theory, a pillar of complexity theory, are ideal 
candidates to map complex cellular processes such as cell- fate de-
cisions emerging from complex disease– environment interactions. 
As such cell- fate dynamics and differentiation processes can be 
metaphorically captured as a Waddington landscape or energy land-
scape [39,40]. However, different formulations/ theories can replace 
the potential energy states with an information- theoretic, ‘entropic’ 
landscape, or an optimal transport theory- derived ‘optimization’ 
landscape to characterize the cell- fate trajectories (attractor re-
construction). The central differences across these three landscape 
reconstruction methods lie within whether we employ an energy 
function (e.g. Lyapunov energy) for energy minimization, an entropy 
function for global entropy maximization, or a cost function for cost 
minimization, in defining the attractor states, respectively. The latter 
approach can visualize the cell- fate dynamics as a complex problem- 
solving task, such as navigating a transcriptomic phase space or 
optimizing resource gradients within a game- theoretic, predator– 
prey- like model of adaptive dynamics. [Note: While Shannon en-
tropy is usually used to identify stochasticity or measure uncertainty, 
the Kolmogorov– Sinai entropy or metric entropy analogue can be 
used for quantifying complex attractor dynamics (chaos)].

Let us consider a few such Waddington landscape algorithms to 
gain some intuition into cell- fate trajectory (attractor) reconstruc-
tion. Waddington- OT is an attractor reconstruction algorithm 
inferring cellular dynamics via time- series mapping, using optimal 
transport theory [41]. Waddington- OT infers the temporal couplings 
of state transitions, from samples collected at various time points, 

using probabilistic distance metric methods [41]. The coupling re-
fers to the Wasserstein distance between two probability distribu-
tions characterizing cell states with similar transcriptomic profiles 
in gene expression state space, which minimizes the transportation 
cost (i.e. for the two distributions to merge into each other) [41,42]. 
The method allows the identification of transient dynamics in the 
over- expression of a set of transcription factors (TFs), as gene regu-
latory programs for the transition- state dynamics [41]. However, 
the downfall of this approach, alike most bioinformatic pipelines in 
single- cell analyses, is that the conventionally filtered lowly expressed 
genes can also exhibit complex dynamics, such as irregularity/ non- 
periodicity, bursting, or intermittency, i.e. signatures of chaotic/ 
complex dynamics. Furthermore, these algorithms a priori assume 
stochastic dynamics, such as Brownian motion, to characterize the 
cell- fate trajectories. Complex dynamics, such as critical dynamics 
(intermittency), collective cell migration (e.g. flocking or wave- like 
effects), and (chaotic) turbulence, may exist within tumour popu-
lations, which are ignored by these assumptions. Similarly, another 
optimal transport algorithm called Lineage- OT quantifies levels of 
entropy between the temporal couplings to infer a lineage tree con-
structed from a heuristic called neighbour joining to infer cell- fate 
trajectories [43]. The entropic optimal transport can be understood 
as the maximum- likelihood coupling between the cell population, 
the entropy parameter, and the assumed Brownian motion of cell- 
fate trajectories [43].

Multi- model approaches combining differential equations, net-
work science, and dynamical systems theory (Waddington- like 
landscape reconstruction) have been used to model phenotypic 
switching in cancer epithelial– mesenchymal transition (EMT) 
dynamics. For instance, Jolly et al. demonstrated that EMT plas-
ticity results in the emergence of a spectrum (heterogeneity) of 
cellular states, with distinct regulatory network modules char-
acterizing the phenotypic communities. Their analysis revealed 
that network topology can characterize the phenotypic landscape 
(distributions), and hence, these landscapes and their underlying 
network dynamics are powerful predictive tools in cancer cell- fate 
control [44]. Similarly, Pillai et al. [45] used landscape reconstruc-
tion models and in silico perturbation analysis to show plasticity- 
induced state transitions as an emergent property of cancer systems. 
They demonstrated that cusp- like catastrophic transitions or crit-
icality, in cancer cell- fate dynamics, can give rise to distinctive at-
tractor states (phenotypes). For example, Saez et al. [46] combined 
Bayesian inference and catastrophe theory to reconstruct cell- fate 
transitions from single- cell data onto a Waddington landscape. 
Bayesian inference is a commonly employed causality inference 
tool in statistical physics, wherein the integration of prior know-
ledge with multivariate or multimodal posterior distributions 
optimizes our decision- making [46,47]. For instance, Sanity, a 
Bayesian inference algorithm and BASiCS (Bayesian Analysis of 
Single- Cell Sequencing data) have been proposed as predictive 
machines to better optimize nearest- neighbours cell clustering 
into phenotypic subtypes in single- cell analysis, outperforming 
current normalization techniques [48,49].

Another multi- model attractor landscape reconstruction algo-
rithm is MuTrans [50]. MuTrans infers cell- state transition dynamics 
from single- cell gene expression using stochastic differential equa-
tions (SDE) and coarse- grained transition path theory. Downstream 
analysis can be used to identify gene targets underlying the transient 
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states. The method is consistent with the well- established Langevin 
equation and transition rate theory. The dynamics of cell fates can be 
described by the SDE:

 dX f X dt X dWt t t t= ( ) + ( )σ  

where Xt  denotes the cell’s gene expression count at a time t, f(x) is the 
non- linear gene regulations, σ x( ) is the noise strength (internal and 
environmental fluctuations), and Wt  is the Brownian motion noise 
[50]. Coarse- grained state- space dynamics can be deduced with 
time- series data. MuTrans takes as input the pre- processed single- 
cell gene expression matrix and learns the cellular random walk 
transition probability matrix using a Gaussian- like kernel because 
of which the cell dynamics fit to an over- damped Langevin equation. 
Coarse- graining methods identify optimized cell clusters, which are 
fit onto a dynamical manifold using a Gaussian mixture distribu-
tion model connecting the attractor basins to stable phenotypes, 
identified via steady- state distributions of the Fokker– Planck equa-
tion. Transition/ hybrid cell states are mapped along transition paths 
connecting the attractor basins. The general message established by 
these examples is that the choice of models, their hyperparameters 
tuning, and the mathematics/ physics underlying the algorithms (i.e. 
assumptions, constraints, model parameters, and conditions) can 
drastically alter or frame the interpretations of complex cellular dy-
namics. Thereby, to assess the robustness of identified attractors or 
biomarkers, we should overlay multiple algorithmic approaches and 
use multivariate statistical metrics, such as significance testing and 
cross- validation.

Meanwhile, AI applications are witnessing an expansion of quan-
titative applications in systems medicine. The discovery of targeted 
therapies via drug repurposing and the profiling of patient- derived li-
quid biopsies are some of its many promising applications in precision 
oncology [51– 53]. For instance, AI platforms, such as deep- learning 
network (DLN) algorithms like AlphaFold 2, have solved one of the 
most difficult problems in systems biology: the protein folding pre-
diction problem [54]. Given cancer biomarkers typically consist of 
malformed or misfolded (onco- mutant) proteins, or malfunctioning 
protein expression networks, AlphaFold- like algorithms can be used 
for AI- driven drug design and drug repurposing. Machine- learning 
algorithms can also be coupled with network science methods for 
anti- cancer drug discovery [55]. Similarly, these AI systems can 
be used to quantify complex cell- fate dynamics. For instance, the 
Hopfield network is a type of artificial neural network that intakes 
a gene expression matrix and performs an energy minimization of 
the Lyapunov function (of gene expression state space), recursively 
trying to find the local energy minima (i.e. cell state attractors) and 
infer a differentiation energy landscape by finding the minimal dis-
tance/ path connecting the local attractors [56]. The recursive search 
for solutions (the energy minima or attractor basins for cell states) 
can be found in many other AI systems like evolutionary algorithms, 
warranting further research in cancer dynamics modelling.

Generative adversarial networks (GANs) and autoencoders, a 
subset of DLNs, can learn complex data distributions allowing the 
interface between artistic creativity and science. Generative AI sys-
tems of pre- trained DLN models, such as OpenAI’s DALLE- 2 and 
Midjourney (art generation AI systems) (see Figure 40.1), and 
ChatGPT- 4, have revolutionized the fields of computer vision, art 
making, and natural language generation (NLP), allowing complex 

tasks such as code interpretation and data analysis with context rea-
soning. These systems are capable, to a decent degree, of interpreting 
complex datasets (with a certain window size) within patient- 
specific physiological contexts, allowing predictive health modelling 
in precision healthcare. Recently, such DLN tools have been used 
in reconstructing high- dimensional phenotypes using expression 
quantitative loci [57]. As mentioned, we typically assume a linear re-
lation between the observed gene expression variables and hence use 
dimensionality- reduced latent spaces like PCA to reduce the gene 
expression state space. However, given the multidimensional com-
plexity of tumour ecosystems, non- linear latent spaces can be better 
captured by generative AI systems, such as variational autoencoders, 
deep Boltzmann machines, or GANs, with imputation and gen-
erative techniques, to infer the plasticity/ lineage trajectories [58]. 
Stable diffusion is a popular generative AI technique used for text- 
to- image generation. Similar approaches with data diffusion have 
been used in leveraging scRNA- seq pattern spaces, into manifold 
reconstruction, such as within the MAGIC imputation algorithm 
[59]. Diffusion models combined with generative AI are now being 
used for time- series scRNA- seq manifold (attractor) reconstruction 
to predict cell differentiation trajectories [60]. More recently, scGPT, 
a generative pre- trained transformer like the working principles of 
ChatGPT, was shown within the developmental pipelines, as capable 
of decoding complex cell- fate dynamics and downstream analyses 
in single- cell data, including cell- type classification, multi- batch 
or multi- omics integration, gene network reconstruction, and mo-
lecular/ genetic perturbation predictions [61]. Hence, generative AI 
and deep- learning algorithms provide a powerful causal inference 
tool for reconstructing multidimensional attractors from single- cell 
gene expression spaces [62].

Figure 40.1. Chaos and turbulence as hallmarks of cancer 
progression. Cancer dynamics as imagined by the Midjourney 
algorithm, a text- to- image generative AI system, using the following 
keywords: cancer dynamics, turbulence, and chaos.
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Lastly, although in its infancy, we are currently witnessing the 
second revolution of quantum mechanics, with the rise of quantum 
information sciences, and quantum machine intelligence, which 
holds great promises for studying cancer nanosystems [63– 65]. 
Quantum machine learning may help significantly increase the pre-
dictive power of AI by increasing the vastness and complexity of the 
search space of solutions in systems oncology problems [66]. For in-
stance, Kao et al. [67] demonstrated a hybrid quantum GAN system 
capable of innovating drug design. Genome (and multi- omics) 
analysis and molecular diagnostics using quantum computing are 
expected to vastly accelerate personalized cancer care [64,68]. The 
future also holds great promise for quantum AI applications in 
forecasting cancer dynamics and attractor reconstruction. Still, we 
must keep in mind the fundamental limitations posed by mathem-
atical theorems underlying the computability of algorithms. These in-
clude Godel’s incompleteness theorem (i.e. there are mathematical 
truths built on unprovable or irreducible axioms, and thus, the set 
of these truths is much larger than those provable by algorithms), 
as well as the inter- related Turing’s proof and Church’s theorem on 
the Entscheidungsproblem (Hilbert’s decision problem), such as the 
Halting problem. This is to say that there are mathematical equa-
tions or problems that are unprovable or (currently) without so-
lutions (e.g. the P vs. NP problem), highlighting intractability or 
lack of computability, as fundamental properties of complex com-
putational systems. For instance, finding the network modules or 
shortest paths connecting the central nodes of a complex network, 
such as a transcriptional cancer network, is an NP- hard problem 
[69]. As discussed, cancer data science uses dimensionality re-
duction and searching/ optimization heuristics to overcome these 
incomputability challenges. Whether the parallel worlds accessed 
by quantum computing can help resolve or update these theorems 
in computational complexity is largely debated. The perspective 
undertaken herein is that quantum computing’s accessibility of the 
vast Hilbert space will be advantageous to clinical cancer, espe-
cially in predictive and preventive care, such as in subtyping cancer 
phenotypes, forecasting longitudinal patterns of behaviours, and 
simulating or identifying personalized therapies [68].

40.3. Network medicine: mapping 
interactions within the cancer multiome

The pioneering research of Phil Gold in clinical immuno- oncology 
paved systems oncology, bridging the gap between cancer physi-
ology, biomarker discovery, and precision medicine [70]. Systems 
oncology advocates the view of tumour ecosystems, as being co-
ordinated by multiscale complex networks [22,71– 73]. Network sci-
ence, or network medicine, is a branch of complexity theory using 
graph- theoretic methods to quantify and study the interconnected-
ness of such complex networks. Network medicine is being used to 
identify therapeutic targets and central drivers of phenotypic tran-
sitions [74,75]. Further, network medicine and AI can be combined 
to repurpose or reposition drugs in personalized medicine [76] and 
innovate therapeutic discovery, such as by identifying candidate im-
munotherapies using protein– protein interaction (PPI) regulatory 
networks [77]. Therefore, complex networks are both a hallmark 
property and a mathematical tool to study, quantify, and predict the 
behavioural patterns of cancer dynamics [74].

In graph theory and network science, the topology (i.e. connect-
ivity pattern or spatial organization) of the network controls the dy-
namics and thereby evolves towards attractors within the network 
state- space dynamics [74,78]. With single- cell analyses, we see that 
the collective cell dynamics (of populations) can form a global at-
tractor in the multi- omics state space, while the individual cell states 
(phenotypes) can also form local attractors, i.e. the local vs. non- 
locality (global) debate [40]. Network theory is a robust tool to in-
vestigate how local dynamics interconnect with global behaviours. 
There are unique spatial features and temporal characteristics spe-
cific to complex biological networks. Biological networks, such as 
PPI networks, gene regulatory networks (GRN), and metabolic net-
works, often show fractal structures, i.e. a scale- free topology [79,80]. 
A scale- free topology means that the probability P(k) of the degree 
distribution, or some other network property, forms a power- law be-
haviour such that an arbitrary element of the network is connected 
to exactly k other elements and has the form P(k) =  Ck−γ, where γ 
is usually called the scale- free exponent. The fractal scaling implies 
that biological networks in healthy contexts, and healthy physio-
logical computations, exhibit self- similarity across scales and op-
erate based on criticality (or critical dynamics) [79,80]. For instance, 
the critical brain hypothesis suggests that the healthy brain’s neural 
computations are poised at a critical system [81].

 Criticality is an essential property of complex systems, a state of 
slippage or juxtaposition of being poised in between ‘order/ regu-
larity and chaos’, which optimizes between robustness and adapt-
ability [14]. Perturbations of the internal or external environment 
can cause the complex system to adapt (change dynamics), resulting 
in critical transitions above certain tipping points (thresholds). Thus, 
criticality allows the complex network to generate new structures 
when encountering dynamics or fluctuations above these thresh-
olds, while maintaining the previous structures, below the threshold 
[82]. In statistical physics, the order can be seen as low entropy (low 
uncertainty or information content) resulting in stability and pre-
dictable dynamics, whereas chaos denotes a high- entropy system, 
with constant change and information flow, high adaptability, and 
long- term unpredictability. Critical systems are described by power- 
law distributions, or scaling behaviours, such as those seen in fractals 
and complex biological networks. As discussed in the next section, 
fractals are the geometry of chaos [13]. Hence, critical networks allow 
biosystems to optimize cellular decisions (computations), but under 
certain perturbations they can transition to chaotic dynamics. In 
proposition, this transition to chaos may be a hallmark of cancer 
dynamics. A good intuition of critical dynamics is obtained by the 
self- organized criticality (SOC) in Bak’s sandpile model, a para-
digm model for natural complex systems, exhibiting power- law 
behaviours and self- similarity or fractality in the avalanche sizes 
of sandpiles, simulated by cellular automatons [83]. However, SOC 
is only one of many mechanisms, perhaps the simplest one, for the 
cybernetics of self- organization and critical dynamics. Critical dy-
namics are also referred to as intermittency, in complex systems such 
as turbulence or chaotic systems. Thus, non- Gaussian dynamics and 
intermittency are hallmarks of complex network dynamics.

Another property of complex biological networks is multi- 
nestedness or recursivity [74], a topological feature associated with 
the fractality of cancer networks, and their non- linear feedback 
loops with the environment. In network science, we refer to this 
embodiment or embeddedness as modularity [74]. The information 
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flow from local contexts to non- local (global) behaviours results 
in the compartmentalization of networks into modules or clusters 
with distinct functional properties (e.g. clusters of phenotypes in 
cancer systems). This modularity suggests we may need multimodal 
treatments targeting the distinct modules (clusters) to devise ef-
fective therapeutic strategies against complex systems like cancers. 
In cancer network science, we use Louvain community detection 
and similar modularity optimization algorithms to identify such 
network modules [74]. Modularity is often a property of critical dy-
namics, allowing the robustness of individual clusters (modules or 
phenotypic communities), and the adaptability or evolvability from 
one to another (e.g. state transitions).

Now, let us explore various approaches to infer cancer network 
dynamics, the simplest of which are Boolean networks. In Boolean 
networks, also known as NK models, the existence of a phase tran-
sition or critical transition is governed by the value of the scale- free 
exponent of the network [78]. These Boolean network models show 
that many biological networks (systems) exist at the edge of chaos, as 
coined by Kauffman [78], allowing the systems to coexist between ro-
bustness and flexibility, i.e. allowing the switching between multiple 
phenotypes (network states) [82]. For example, Chu et al. [84] used 
a stochastic Boolean network model to infer attractor states, wherein 
tumorigenesis can be hypothesized as a critical transition between 
proliferative and apoptotic attractors on the state space of the mo-
lecular networks. Boolean models show that skewed topologies of 
networks, as denoted by higher correlations in gene expression or 
PPIs, may correspond to fractal (strange) attractors. In principle, a 
higher entropy and higher mutual information can be used to iden-
tify these fractal attractors in such networks [78]. However, within 
highly complex systems from multiscale experimental data, better- 
optimized information- theoretics or multivariate statistical tools are 
needed, as discussed below. Network science metrics, such as modu-
larity optimization (community detection algorithms), shortest path 
algorithms between the nodes of the network and network centrality 
measures, can be used to identify key driver genes/ markers within 
complex networks [55]. Further, some scholars suggest that non- 
linear network dynamics may help the epigenetic (in)stability and 
controllability in adaptive cancer dynamics [85].

At the experimental frontier, many network inference tools exist 
for reconstructing cancer networks from multi- omics data. For in-
stance, we can trace the TFs (activators and repressors) that control 
phenotypic plasticity and heterogeneity, thereby identifying the net-
work clusters (modules) that allow the reprogramming of cell states 
[86]. To illustrate, DriverNet, is an R- software that reconstructs 
genomic– transcriptomic cancer networks, by mapping driver mu-
tations onto the mRNA expression networks from cancer patients’ 
data [69]. It builds an influence graph to reconstruct the effects of a 
mutation in a gene on the change of expression of another gene using 
(1) a binary matrix for the mutation data (0 for the absence and 1 
for the presence of a mutation) inferred from PPI (PPIs) or copy 
numbers, and possibly, epigenomic data; and (2) the other gene ma-
trix being the real- valued gene expression or transcriptomic matrix 
(RNA- seq expression values), i.e. a bipartite graph. The minimum 
set cover problem created by this complex network is NP- hard (i.e. 
recall the computability limits of algorithms). Thus, a heuristic like 
the greedy approximation algorithm is used to solve this optimiza-
tion problem, and statistical significance tests of the driver genes are 
assessed using network randomization [69]. While the statistical 

tools (e.g. correlation metrics or probability distributions for genes) 
and clustering approaches may vary, the general network inference 
approach outlined herein remains the baseline algorithm for most 
cancer networks inference tools from real- patient (experimental) 
multi- omics cancer data. That is, there will always be the use of some 
heuristics to solve otherwise intractable (NP- hard) optimization 
problems in complex networks.

Many other network science approaches have been used to 
identify regulatory gene expression modules of cancer networks. 
Some examples include gene co- expression analysis networks in 
predicting clusters of breast cancer subtypes with poorer survival 
(prognostic) outcomes [87]. Another example is the transcriptional 
regulatory networks of tumour- infiltrating tumour- associated 
macrophages (TAMs) driving malignancy in glioblastoma. Sa et al. 
[88] identified that TME- dependent loss of NF1 and PI3K/ mTOR 
signalling in glioblastoma cells was critical for driving TAMs to-
wards the mesenchymal phenotypes. For instance, a network in-
ference method called InPheRNo can identify the transcriptional 
networks controlling phenotypes, and distinguish healthy and dis-
ease states, based on a probabilistic graphical model that predicts 
the synergistic effects of multiple TFs in cancer networks [89]. 
Similarly, OncoPPI is a network inference method for identifying 
dysregulated PPI network targets or hubs (interactomes) serving as 
candidate biomarkers for effective anti- cancer therapeutics [90]. PPI 
network- based precision therapies and drug discovery platforms are 
emerging via identifying hijacked or reprogrammed (dysregulated) 
network interactions from MS- based patient proteomics data [91]. 
The recent advances in single- cell methods such as CyTOF can fur-
ther help elucidate the complex physiological networks, such as the 
immune– inflammasome networks, from whole- blood analyses and 
liquid biopsies of cancer patients [92].

An example of a multilevel network dynamics inference model is 
the SCENIC+  algorithm. SCENIC+  can infer gene regulatory net-
works from the enriched regulons identified from the single- cell 
gene expression matrix, as well as genomic patterns, such as the 
enhancer regulatory networks (i.e. chromatin accessibility) by inte-
grating scATAC- seq and correlating them with the molecular pheno-
types, and their differentiation dynamics [93,94]. In cancer systems, 
this combined multi- omics analysis may be useful for identifying 
gene expression programs underlying cell state transitions during 
de- differentiation or trans- differentiation (i.e. plasticity dynamics), 
with simultaneous detection of regions with chromatin activity [94]. 
At the core of SCENIC+  is a package called CisTopic, a probabil-
istic framework used to simultaneously discover co- accessible en-
hancers and stable cell states from sparse single- cell epigenomics 
data. The regulatory networks can be visualized using the iRegulon 
package and Scope visualization tools employing the SCENIC soft-
ware. However, it remains a challenge how to exploit single- cell 
epigenomic data, such as Hi- C sequencing (to infer 3D- chromatin 
remodelling) for resolving spatiotemporal enhancer activity and 
GRN dynamics, both experimentally and computationally. RNA- 
labelling methods, CITE- seq, and RNA- velocity algorithms can also 
be coupled with SCENIC+  to capture time- resolved differentiation 
dynamics from cancer systems [95– 97]. Such vector analysis of the 
multi- omics state space allows attractor reconstruction and its un-
derlying network inference in pan- cancer analyses [97].

Lastly, our recent results have shown network science- driven 
cancer biomarker discovery. Using network science measures, we 
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identified gene candidates regulating cell- fate transitions in glio-
blastoma and GSCs using single- cell transcriptomics [98]. The roles 
of the transition genes we identified are being verified as central 
regulators of phenotypic dynamics. For instance, Robertson et al. 
[99] recently demonstrated that elevated levels of FOXG1, one of the 
network markers we identified, drive the exit of GSCs from quies-
cence to promote tumour growth. Another study revealed that the 
transcription factor YY1, another network marker we identified, 
promotes hepatocellular carcinoma migration and invasion, via 
forming local hubs of phase- separated liquid condensates at super- 
enhancers [100]. Furthermore, our identified network markers play 
central roles in the epigenetic regulation of glioblastoma, such as in-
volvement in histone demethylase complexes, suggesting an under-
lying epigenetic/ histone code [98].

40.4. Complex dynamics: chaos, 
fractals, and strange attractors

We have now arrived at a critical point, a gap between current prac-
tices in cancer data science and mathematical oncology. The experi-
mental data in cancer single- cell multi- omics shows complex spatial 
patterns and emergent behaviours such as plasticity. However, the 
syntax within complexity, namely, chaos, fractals, self- organization, 
and non- linear dynamics, the toolkit for complex attractor re-
construction, remains vastly unexplored in experimental cancer 
dynamics. As such, we provide the theoretical frameworks and con-
cepts for chaos, fractals, and complexity, along with mathematical 
(theoretical) models supporting the emergence of chaos in cancer 
dynamics such that they can be extended to experimental systems 
oncology.

Chaos arises from non- linear interactions between components 
(like genes, proteins, cells, physiological systems, and environment) 
in complex systems (like cancer). Insights from mathematical on-
cology indicate that the phase transition from criticality (in healthy 
systems) to chaos may be a hallmark of cancer dynamics. Prigogine 
describes this complex instability as a causal pattern. Unlike dis-
order or randomness (uncertainty), as measured by entropy, chaos is 
a type of unstable order, with complex temporal sequences of motion 
or patterns of behaviour [12]. These unstable orders take geometric/ 
topological forms known as attractors. Attractors are mathematical 
patterns, i.e. the implicate order(s), characterizing the evolution/ be-
haviour of the complex system in phase space (state space). It is a 
state, or set of states, towards which a complex system tends to evolve 
or unfold [11,13]. While networks represent connectivity patterns—
structure-function relationships defined by interactions within the 
complex system—the temporal trajectories that shape the system’s 
adaptive behaviors are governed by attractors within the network’s 
state space. As the critical parameter changes, forks or bifurcations 
emerge in possible system states, cascades of which are a hallmark 
of chaotic transitions. Each bifurcation expands possible behaviours 
into new complexity. Tracking shifts through bifurcations elucidates 
how complex dynamics emerge from simpler origins via feedback 
systems. In higher dimensions, Hopf and other bifurcations bring 
about several types of attractors, including limit cycles, tori, and 
strange attractors [13].

There are diverse types of transitions/ bifurcation routes to chaos, 
including the Ruelle– Takens route (i.e. the emergence of a strange 

attractor), the Li– Yorke route (period 3 means chaos), period- 
doubling bifurcations, the intermittency seen in turbulent fluid dy-
namics, and the Smale horseshoe map, to name a few. Mathematical 
oncology reveals that our discussions on cancer dynamics in multi-
dimensional state spaces are most fruitful with the Ruelle– Takens 
route. In the 1970s, Ruelle proposed the concept of strange attractors 
to describe the behaviour of chaotic systems such as turbulence, 
while scientists like Lorenz discovered these fractal structures in 
weather forecasting patterns [13,101]. Strange attractors exhibit sen-
sitivity to initial conditions— minor changes (fluctuations) or per-
turbations within the initial conditions can lead to widely divergent 
outcomes/ trajectories over time (i.e. errors can exponentially grow 
over time, making long- term forecasting unpredictable) [13,102]. 
Paradoxically, while the trajectory of the chaotic system is unpre-
dictable over time, its global dynamics or evolution is bound to pre-
dictable states, i.e. the fractal attractors, within phase space [13,103]. 
The chaotic dynamics can be visualized by the stretching and folding 
of phase space into pastries or taffies, the cross- section of which re-
sembles a Cantor’s set (a fractal) [13,104] (see Figure 40.2).

Quantitative studies in mathematical oncology have repeatedly 
shown the importance of strange attractors in cancer dynamics pre-
diction, such as within chaotic models of cancer growth dynamics 
and tumour progression. These models indicate strange attractors 
may be a biomarker, i.e. a pathological hallmark, of cancer states, in 
time- series or longitudinal cancer datasets. This may help explain 
clinically relevant barriers to treatment efficiency, such as cancer 
heterogeneity, metastatic emergence, and therapy resistance. This 
also means two genetically identical tumours may progress very dif-
ferently over time. Mathematical models suggest strange attractors 
are signatures of cancer progression, and prognostic indicators of 
tumour recurrence, long- term tumour relapse, aggressivity, and 

 Figure 40.2. Strange attractor. An artwork of a strange attractor 
made by generative AI (Midjourney) in the style of Hilma af Klint. The 
stretching– folding dynamics of the chaotic attractor is well visualized by 
the AI system.
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therapy evasion [102,105– 107]. Therefore, let us briefly gain some 
insights into strange attractors in the context of some mathematical/ 
computational models of cancer dynamics that can be overlaid on 
experimental cancer data.

The most common continuum approach for growth models is 
reaction– diffusion systems characterized by partial differential equa-
tions describing the pattern formation system of interest, such as 
the extra- cellular matrix remodelling in cancer dynamics [105,106]. 
For instance, Itik and Banks [102] used reaction– diffusion equations 
to compute the (positive) Lyapunov exponents and fractal dimen-
sions of the tumour growth models. They explicitly demonstrated 
a Lorenz- like chaotic attractor in their 3D tumour– host– immune 
model, with stretching and folding trajectories. Ruelle [101] men-
tions Smale’s work on proving the existence of strange attractors 
via horseshoe- type mappings. Similarly, Itik and Banks [102] use 
Shilnikov’s theorem, which builds on Smale’s horseshoe idea, to 
demonstrate chaos. Further, Khajanchi et al. [107] used time- delay 
differential equations to study chaotic dynamics in a similar simpli-
fied model of tumour ecology. Time lags are the standard approach 
for embedding algorithms and attractor reconstruction. More re-
cently, Debbouche et al. [108] studied chaotic behaviours in math-
ematical cancer models of cancer– immune– host cell dynamics. 
They used bifurcation diagrams, Lyapunov exponents, and phase 
plots to confirm chaotic dynamics. Further, the fractional- order 
differential equations used by Debbouche et al. [108] are capable of 
merging fuzzy logic systems with chaotic dynamics, allowing fuzzy 
AI systems as a candidate machine- learning model for cancer eco-
system dynamics modelling.

Most of these models were reduced to Poincare’s famous three- 
body problem from which chaos theory took birth [109]. That is, they 
involve interactions between the tumour cells, host/ healthy tissue 
cells, and immune system cells. The vast complexity of their pheno-
types has been limited to a homogeneous three- body system, and 
yet even such simple models exhibit chaotic dynamics. More com-
plex cancer models suggest we need a multidimensional attractor 
state space in four dimensions or more, requiring hyperchaos and 
multifractal attractors (i.e. strange attractors with a fractal dimen-
sion > 3) to define cancer behavioural dynamics [110]. For instance, 
Ivankevic et al. [105] proposed a 4D spatiotemporal model coupling 
reaction– diffusion equations to non- linear interactions between tu-
mour cells, matrix metalloproteinases, matrix- degradative enzymes, 
and oxygen.

Various other interdisciplinary approaches are using complex sys-
tems tools available in the study of tumour behaviours as chaotic 
attractor dynamics. For example, a chaotic model of tumour growth 
and decay [111] was demonstrated using control theory principles. 
Izquierdo- Kulich et al. [112] used the entropy production rate of tu-
mours to show the fractal growth dynamics of avascular tumours. 
Ecological– evolutionary models of cancer treatment regimens and 
tumour responses have also emerged within game theory approaches 
to devise adaptive treatment strategies [113]. Game- theoretic ap-
proaches with predator– prey- like dynamics of the tumour eco-
system is an alternative to reaction– diffusion- based patterning/ 
population dynamics. The fractal dimension measure has also been 
used to spatially profile the contours and surface complexity of tu-
mour structures. For instance, fractal dimension analysis of lung 
cancers and CT scan analyses of tumours suggest fractals as signa-
tures of tumour patterning [5,114,115]. The fractal dimension has 

also been proposed as a prognostic indicator for assessing the ir-
regularities or complexity of tumour- associated chromatin struc-
tures [116].

In principle, the above- discussed chaos detection methods, from 
the mathematical models such as fractal dimension analysis, bi-
furcation analysis, and time- delay embedding algorithms such as 
Takens’s theorem or recurrence quantification analysis, can be used 
for attractor reconstruction. However, their applications may be 
limited for complex data spaces such as those of single- cell multi- 
omics largely due to its size and multi-dimensionality. As such, AI 
provides a robust tool for chaos detection and strange attractor re-
construction. One such AI algorithm is reservoir computing (RC). 
RC is a predictive machine, generated from several prior recurrent 
neural network (RNN) models, such as the echo- state networks and 
liquid- state machines, allowing model- free prediction of non- linear 
dynamics. RC has been used for complex attractor reconstruction 
within multidimensional spatiotemporally chaotic systems [117– 
119]. RC provides an efficient approach for dimensionality expan-
sion and attractor reconstruction from sequential gene expression 
data [120]. To demonstrate, Sayari et al. [121] used an echo- state 
network, a type of RNN at the basis of RC, with mathematical cancer 
models of host– immune– tumour cell dynamics. They performed a 
time- series machine- learning analysis and predicted the parameters 
at which complex oscillatory dynamics emerge in the phase space 
of these cancer systems. A more recent approach denotes liquid 
neural networks, a class of continuous- time neural networks, and 
an adaptive AI that learns beyond the training phase— may be most 
apt for modelling complex decision- making problems, involving 
continuous differential equations, such as those relevant to cell- fate 
transition dynamics, and reaction– diffusion- based pattern forma-
tion systems [122]. Time-series predictions can also be extended to 
AI architectures such as transformers and graph neural networks. 
Therefore, future research in systems oncology should exploit these 
mathematical models of chaos and AI systems to infer strange at-
tractor dynamics from experimental cancer datasets.

40.5. Chemical turbulence: soft matter physics, 
fluid dynamics, and chaotic oscillations

As discussed, by the works of Ruelle [101] and Lorenz [123], in 
many ways, cancer dynamics prediction is analogous to weather 
forecasting. Like the discussed cancer models, weather patterns and 
their underlying fluid turbulence exhibit intermittency and fractal 
patterns across many scales of interactions. Turbulence, a complex 
system with infinite complexity, is a novelty generator, creating coun-
terfactual flow patterns in its temporal progression. Yet, the infinite 
complexity is paradoxically bound to the (multi)fractal patterns and 
strange attractors [101,124]. The intersection of strange attractor 
dynamics and tumour pattern formation (morphogenesis) suggests 
that chemical turbulence may be a hallmark of cancer dynamics, ex-
plaining its heterogeneity, aggressivity, and tumour progression/ in-
vasion. Turbulence may occur in various forms of chemical systems, 
from protein- mediated heterogeneous pattern formation systems 
to the collective cellular migration patterns seen in metastatic inva-
sion. Turing, the father of modern computing, first devised a sim-
plistic mathematical model of morphogenesis (1952) [125]. Turing 
patterns are spatial patterns that emerge spontaneously from the 
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interaction of diffusing chemical morphogens through a reaction– 
diffusion system. They represent a paradigm for how complex order 
and patterns can arise in biology through self- organization and have 
been hypothesized to underlie tissue differentiation and develop-
mental processes. Reaction– diffusion systems may shed light on the 
mechanisms of cancer initiation and progression, such as tumour 
heterogeneity of phenotypes, hypoxia, and angiogenesis. While 
these systems can describe ‘solid tumours’, when considering more 
fluid- like cancer models, i.e. liquid malignancies, such as leukaemia 
and lymphoma, hydrodynamic models or clonal evolution models 
may be needed [126,127]. Regardless of the spectrum of fluidity, all 
tumours fall within the study of biological soft matter systems and 
warrant fluid dynamics description [128]. This fluid, adaptive nature 
may also underlie cancer’s process of evolvability, i.e., capacity for 
novelty generation—framing cancer intelligence as a form of bio-
logical creativity.

In extension to reaction– diffusion systems, works by Frey and 
Halatek [129] have demonstrated both via theoretical simulations 
and experimental in vitro reconstitution of the bacterial Min pro-
tein systems so that intracellular protein flows can create chaotic 
attractors. The self- organized protein patterns of the oscillation in 
between the membrane- bound conformation (on lipid bilayers) 
and the free cytosolic protein conformation, for even simple iso-
lated chemical systems like the Min proteins, were shown to exhibit 
chaotic oscillations [128,130]. The wave- like turbulence can move 
with or against the flow direction, depending on the protein con-
centration ratios [130]. Hence, imagine the complexity emerging 
from the orchestra and non- linear cascades of thousands of pro-
tein interactions, in a disease context, like cancer dynamics (Frey 
and Brauns, 2022). The mammalian equivalent of the Min system, 
the Par protein system, plays a key role in cancer decision- making 
processes, such as cell polarity in morphogenesis, cell division, and 
3D- chromatin organization/ modelling during cell replication [131] 
or invasion. As such, these multiscale models of chaotic dynamics 
warrant extension towards cancer protein- mediated patterning sys-
tems, such as the Par system [129].

Chaotic oscillations in many- body fluid systems are referred to as 
‘chemical turbulence’, as was first discussed by Rössler and Kuramoto 
in their study of reaction– diffusion patterning systems. Kuramoto 
and Rössler argue that chaotic dynamics like strange attractors 
could arise spontaneously in chemical systems far from equilibrium, 
analogous to hydrodynamic turbulence of fluids [132– 134]. Similar 
theories were proposed by Prigogine for the emergence of self- 
organized patterns in chemical kinetic reactions in nonequilibrium 
systems [12]. The above- discussed mathematical cancer growth 
models exhibited strange attractors emerging from non- linear inter-
actions between various cell populations and protein molecules like 
matrix remodelling enzymes [105,110]. This spontaneous pattern 
formation in population dynamics can also be referred to as chem-
ical turbulence. Intermittency is a common property of such turbu-
lent systems giving rise to these fractal attractor structures. Rössler 
is also credited for deriving the simplest of strange attractors known 
to mathematics, the Rössler attractor [132,133].

Chemical turbulence can occur at the scale of intracellular protein 
dynamics. In principle, any oscillating chemical reaction can give rise 
to spatiotemporal patterns of chaos in a complex environment, such 
as the TME. For instance, enzymatic reaction– diffusion models have 
exhibited hyperchaotic dynamics, referred to as chemical turbulence 

[135]. Chaotic and turbulent states were shown to emerge from 
the interaction of a Hopf and Turing instability within activator– 
inhibitor models characterizing these enzymatic processes [135]. 
Heltberg and Jensen studied simple mathematical models of cellular 
protein reaction networks and demonstrated they could exhibit cha-
otic oscillations. They demonstrated how chaotic oscillations can 
emerge in metabolic processes, such as glycolytic oscillations, and 
within the transcription factor NF- κB, to affect downstream pro-
tein production, modulate gene expression, and up- regulate certain 
families of low- affinity gene networks [136,137]. Hence, they pro-
posed that chaotic oscillations of protein networks create a hetero-
geneous population of cell states, as seen in cancer ecosystems. More 
recently, they demonstrated that chaotic oscillations may occur at 
the level of transcriptional protein systems that have shown liquid 
droplet formations (i.e. liquid– liquid phase transitions), such as in 
the cancer p53 DNA- repair system’s oscillatory dynamics [138]. The 
liquid– liquid phase separations have significant roles in cancer pro-
cesses ranging from chromatin remodelling to pattern formation/ 
morphogenesis. The intrinsically disordered proteins, at the basis of 
these emergent behaviours, are defined as edge of chaos (critical) sys-
tems [128].

Turbulence dynamics as described by Kolmogorov’s fluid turbu-
lence theory have also been applied to protein folding dynamics, 
like that of the SH3 domain found in focal adhesion complexes 
regulating cancer metastasis and ECM remodelling. The simula-
tions of the protein folding resembled turbulent fluid flows, with 
cascading vortex structures and fractal eddies containing strange 
attractors [139,140]. Hence, perhaps the protein folding of mutant 
oncoproteins exhibits a variation of such turbulence dynamics, sug-
gesting that this avenue of research in combination with AI systems 
like AlphaFold 2 is a prospective direction for proteomics in disease 
contexts and cancer interactomes [54].

Mesoscale turbulence can also occur in tumour patterning via an 
emerging system in (condensed) soft matter physics known as ac-
tive fluids. Active fluids, or active matter systems, are complex sys-
tems wherein energy- driven, self- propelled particles, or particles, 
such as cytoskeletal suspensions of microtubules equipped with 
energy- driven motors like ATP, or ecological dynamics such as the 
flocking of birds, swarming of bacteria, and crowding of insects, ex-
hibit fluid turbulence- like behaviours [141,142]. Active turbulence 
requires continuum- level descriptions by hydrodynamic equations, 
such as variants of the Navier– Stokes equations. Similarly, cancer 
cells may also be exhibiting swarming or flocking- like collective cell 
behaviours during migration, invasion, and pattern formation, and 
in theory, within their nanoscale dynamics such as extra- cellular 
vesicle- mediated communications. Extra- cellular vesicles are nan-
oscopic systems released by cancer cells to hijack host cells outside 
of the local tumour context, reprogramming them towards tumori-
genic or tumour- supporting cells (e.g. support tumour- immune eva-
sion) and as pre- metastatic niches [27,143]. Modelling the complex 
hydrodynamics of these nanosystems may be critical for quantitative 
precision medicine and personalized healthcare, namely in liquid 
biopsies screening, and targeted anti- metastatic drug development. 
It is proposed herein that we can better tailor precision therapies 
such as engineer nanomedicine (e.g. nanovesicle or nanoparticle 
drug delivery, oncolytic viral therapy, and other immunotherapies) 
via studying the collective behaviours of such nanosystems as com-
plex fluid dynamics [144].
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The counter- intuitive idea in this field of research is that ac-
tive matter systems, such as cytoskeletal protein fluids or cellular 
flocking, exhibit turbulence at low Reynolds numbers [145– 147]. 
To illustrate a cancer- pertinent example, Tan et al. [148] showed 
that defect- mediated turbulence underlies complex wave propa-
gation patterns of Rho- GTP signalling proteins on starfish egg cell 
membranes. These Rho- GTP protein networks play central roles 
in cancer cell motility, migration, and invasion [149]. Active tur-
bulence models may help us understand collective migrations and 
metastatic invasion in cancer progression [150]. For instance, a 
study by Lin et al. [151] demonstrated that the energy spectra of 
a 2D monolayer cell migration model exhibited a power- decaying 
law at large wavenumbers, characteristic of turbulent/ complex dy-
namics. In collective cell migration, the mechanical waves of the col-
lective cell movements may also give rise to a phenomenon known 
as viscoelastic turbulence, experimentally observed in low Reynolds 
numbers [152]. Thus, cell flocking, or active turbulence, as seen in 
developmental epithelial systems with correlation lengths spanning 
several to dozens of cells [153], can help understand collective cell 
dynamics in cancer systems [150].

Another system of key interest in cancer dynamics exhibiting 
chemical turbulence is microtubules, involved in cancer processes, 
such as proliferation, scaffolding for intracellular macromolecular 
transport, and cytoskeletal/ morphology rearrangements in cancer 
plasticity dynamics [154,155]. Microtubules have been shown to ex-
hibit collective emergent behaviours, such as active matter turbulence, 
and may have an underlying strange attractor structure. Microtubule 
dynamics/ remodelling is also the basis of chromatin segregation or 
aneuploidy in (cancer) cell division [155]. As such, it is proposed 
herein that investigating attractor reconstruction in cytoskeletal 
dynamics may be insightful to controlling cell- fate decisions, such 
as plasticity/ state transitions, and understanding cancer dynamics 
through the lens of chaos and complexity.

It must also be emphasized that as we go down to the nanoscale 
and below, the regimes and laws of physics change, i.e. the quantum 
domain of biophysics dominates. There are many nanoscale mo-
lecular systems, such as the microtubule dynamics, and energy trans-
port machineries of cells, which overlap within the emerging field of 
quantum biology, which proposes that the macroscopic quantum ef-
fects/ behaviours of biomolecules may have functional roles in living 
systems. Some examples include quantum tunnelling in DNA as a 
basis for some tautomeric mutations, enzymatic activities, and ex-
tended quantum coherence in protein condensates, i.e. collective 
electronic excitations such as dipole– dipole interactions in protein 
molecules, such as microtubules [156– 158]. If further empirically 
validated, these quantum processes at the level of DNA mutations and 
microtubule dynamics may be relevant to carcinogenesis and cancer 
cell division and progression [157,159,160]. These quantum biology 
processes operate as another layer of complexity, for the future of 
systems oncology. Quantum nanophotonic/ optics, single- molecule 
quantum biosensors, and tools, such as optical multidimensional 
spectroscopy, may help probe these complex nanoscale quantum sys-
tems and ultrafast processes in cancer systems.

Lastly, there may be bioelectric analogues to explain pattern for-
mation dynamics, describing cancer cell- fate decision- making as 
a goal- directed computational system driven by bioelectric fields 
[161]. As discussed, neural– glial interactions and a hijacked or re-
programmed neurodevelopmental (embryonic) landscape promote 

phenotypic plasticity in HGGs [19]. The neural interactions under-
lying plasticity suggest that perhaps there may be an underlying 
bioelectric code, i.e. bioelectric signalling as a driver of the mor-
phogenetic patterns coordinating cancer development. In support 
of this counterfactual idea, Levin et al. propose that voltage mem-
brane potentials and bioelectric fields generated by the energy me-
tabolome provide a basis for the collective intelligence of cancer 
cells, instructing patterning cues that guide cell behaviours, such 
as spatial navigation and large- scale anatomy during development 
[160,162]. Disruption of these endogenous bioelectric signals can 
induce changes in the collective intelligence of cancer cells leading to 
aggressive, and metastatic, cancerous phenotypes [161].

40.6.  Conclusions

In summary, this chapter discusses a culmination of techniques, 
quantitative approaches, and causality inference tools to investi-
gate complex dynamics, such as chemical turbulence, and strange 
attractors, as biomarkers of cancer progression. Strange attractors 
have been repeatedly confirmed in cancer growth and progression 
models in mathematical oncology, wherein the number of cellular 
components or number of population subtypes used in the model is 
an indicator of the dimensionality of the chaotic attractor. Chaotic 
dynamics may confer adaptability and aggressiveness to cancer cells, 
highlighting the utility of complex systems methods for their mod-
elling, prediction, and control of cancer dynamics. As evidenced by 
the discussed mathematical models, it is proposed herein that TME 
dynamics and therapy- induced stressors can increase tumour plasti-
city, an adaptive (emergent) behaviour, towards complex chaotic at-
tractors, as hallmarks of cancer progression. Strange attractors may 
be signatures of therapy evasion, tumour relapse, and recurrence 
[19,98,107]. Overall, our discussions highlight how mathematical 
modelling and analysis of non- linear tumour– immune dynamics 
can reveal complex behaviours like chaos that may impact cancer 
progression and clinical outcomes.

Complex and chaotic chemical oscillations, such as the oscillations 
of protein networks or gene products, can create chaotic dynamics. 
Experimental approaches such as cytoplasmic live- cell biopsies for 
temporal profiling of single- cell dynamics or cell- labelled reporter 
systems, such as RNA- labelling (gene expression dynamics), CITE- 
seq, and fluorescent reporter protein imaging, can be used to capture 
time- series dynamics followed by chaos detection tools. Traditional 
methods like time- delay embedding, Lyapunov exponents, and 
fractal analysis can help identify strange attractors in cancer dy-
namics. However, these approaches have dimensionality limits 
within large datasets posing an attractor reconstruction problem in 
cancer data science. Hence, combining multiscale physics models 
with computational algorithms, including machine- learning algo-
rithms, such as RC networks, liquid neural networks, and generative 
AI, can reconstruct high- dimensional attractors and predict cha-
otic dynamics from the multidimensional pattern spaces of cancer 
multi- omics. In prospect, the hierarchical 3D organization of chro-
matin, as mapped by Hi- C sequencing, is critical for cancer develop-
ment and differentiation [96]. However, we lack a full understanding 
of the dynamic interplay between 3D- chromatin remodelling in nu-
clear space and the gene expression patterns that drive cancer pro-
gression. Thus, complex systems research should shed light on this 
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realm of complexity [96]. Further, photonic quantum technologies, 
and quantum information sciences, such as quantum machine intel-
ligence, hold great promise in the study of cancer dynamics.

On a final note, top- down causation (e.g. social risk factors, cul-
tural contexts, psychosocial profiles, etc.) warrant equal importance 
in the time- series/ longitudinal multi- omics sequencing analysis, as 
bottom- up approaches (genes, proteins, molecules, cells, etc.), to 
fully integrate cancer dynamics in patient- centred medicine. The 
top- down factors may be critical especially to grasp the epigenetic 
control of cancer dynamics and pave trauma- informed precision 
care [163,164]. For instance, environmental stressors, such as those 
mediated by a lack of support from family and social/ community 
structures, developmental histories, and personalized cultural con-
texts, can largely affect therapeutic progression, and hence, cancer 
dynamics. The role of these psychosocial determinants in cancer de-
velopment is emerging in the field of psychosocial epigenetics as well 
[163,164]. While therapy- induced stressors are known to induce 
cancer phenotypic plasticity, research into such psychosocial trauma 
and stress- induced cancer plasticity remains at its infancy and can 
largely affect personalized medicine. It remains a fundamental chal-
lenge how to integrate these psychosocial– cultural axes of health dy-
namics into biopsy- derived cellular systems and their data science. 
The awareness and thought of such complexity are planted herein. To 
conclude, the complex systems toolkit and longitudinal (time- series) 
cancer data need to address how the outlined intersectionality frame-
work of these psychosocial determinants affects gene expression dy-
namics or multi- omics profiles, in cancer patients, as the future of 
human- centred systems medicine. As such, systems oncology and 
computational medicine should serve as a calling for human- centred 
best practices in science and medicine, fostering love for humanity, 
and compassionate care within the art of healing humans, the ‘pa-
tients’ devoid of the patient label and stigma [165].
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Cancer formation as creation and 
penetration of unknown life spaces
Andrzej Kasperski and Henry H. Heng

41.1.  Introduction

More than eight million people die from cancer each year, which 
means that more than 20 thousand people die from cancer every day. 
It also means that over 400 people will die of cancer while reading 
this chapter (i.e. for about 30 min). The high rate of cancer mortality 
forcefully questions the current gene- mutation- theory- based cancer 
concepts and strategies to fight cancer. In recent years, various - omic 
approaches, especially the cancer genome sequence project, have il-
lustrated that chromosome instability (CIN), rather than a few dom-
inant gene mutations, functions as a common driver of cancer [1,2]. 
Equally important, cancer evolution can be described by the two- 
phased evolution (punctuated macroevolution followed by stepwise 
gradual microevolution) with genome and gene- based mechanisms, 
respectively. Furthermore, the ultimate significance of the CIN is ex-
plained using karyotype coding, as the system coding organizes the 
gene interaction, which provides the cellular structural basis of gen-
omic networks, a core concept of applying systems biology to cancer 
research [3] . With the new knowledge in hand, the time is ripe to in-
tegrate the concept of cancer attractor with two- phased cancer evo-
lution and the information management between gene and genome, 
individual cell to population, and normal tissue to cancerous tissue. 
Establishing a universal model of cancer transformation and devel-
opment may provide an answer to which direction our efforts should 
go in finding a way to reduce the impact of cancer on human health.

41.2. Review of cancer attractor ideas

In 1858, Rudolf Virchow formulated the idea that cancer cells are 
the organism’s own cells [4] . Since then, many hypotheses have 
been proposed explaining the origin of cancer cells and how such 
heterogeneous morphology, increased proliferation, metastatic cap-
acity, and invasive behaviour develop [5,6]. For example, before gene 
mutation- centric cancer research becomes dominant, investigators 
studied cancer through the lens of pathology and developmental 
biology [7– 9]. Since the 1970s, the promises from cancer genes have 
transformed cancer research into hunting key oncogene and tumour 

suppressor genes. With the increased number of cancer genes being 
identified far more than predicted, however, the systems biology ap-
proaches gained attention, as the gene interaction network is more 
important than individual genes. Equally important, the cancer 
genome can be considered a complex network of mutually regu-
lating genes [10]. This network can become unstable, among others, 
due to genome instability (GIN) (including chromosomal instability 
(CIN)) [1,11]. The proposed by Stuart Kauffman cancer attractor 
idea shows that this unstable network has the potential to create hun-
dreds of stable equilibrium states called attractors [12– 14]. These 
stable states depend on the gene expression profiles associated with 
each cell type [13,15,16]. As a result, a variety of stable, discreetly 
distinct cell phenotypes can be created [16,17]. The idea of cancer 
attractors has been finding experimental support through genomic 
technologies [12,16]. This cancer attractor model is influenced by the 
developmental landscape model as well as Neo– Darwinian stepwise 
evolutionary concept where the accumulation of microevolution 
over time leads to macroevolution [18]. However, since cancer is not 
just an issue of cell status reflected, by genes and/ or epigenetic land-
scapes, but also the new system emergence reflected by new genome 
formation via genome reorganization [3], the gene and genome dif-
ference and their corresponding evolutionary pattern should be inte-
grated into the cancer attractor model. The multiple- level landscape 
model of cancer, therefore, was suggested to separate ‘local micro-
evolutionary potential’ (adaptative potential provided primarily by 
gene- level or non- genetic changes) and ‘global macroevolutionary 
potential’ [6,19]. Interestingly, the gene– genome relationship has 
been integrated into the cancer attractor model [20]. Unfortunately, 
most attractor models have continuously ignored the important dis-
tinction between genes and genomes, micro and macroevolution, 
and developmental landscape and the macroevolutionary landscape.

41.3. The new attractor model 
of cancer formation

Despite that cancer has been extensively linked to a large number 
of molecular mechanisms, cancer fundamentally represents a 
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macroevolutionary process where new systems emerge from hosts’ 
tissue by breaking various constraints [3,6,21]. This relationship be-
tween cancer evolutionary dynamics and vast individual molecular 
mechanisms has been referred to as the evolutionary mechanism 
of cancer. It is proposed that many molecular triggering factors 
can contribute to cancer via GIN- mediated evolution, but the clin-
ical predictability is low if only based on individual mechanisms 
when there are so many triggers during cancer evolution [22]. For 
example, in the light of the unified cell bioenergetics, the cause of 
cancer transformation can also be linked to overenergization of or-
ganism normal cells [23– 26]. Cancer transformation, a two- phased 
evolutionary event, causes switch of cell fate of overenergized 
normal cell to cancerous/ atavistic cell fate and initiates, among 
others, the cloning process as an associated phenomenon that oc-
curs after transformation [23,27,28]. After cancer transformation, 
additional microevolution can be involved. The microevolution is 
related to development of clone phenotypes. Microevolution also 
contains gene mutations as a factor that can influence the devel-
opment of the phenotype. Microevolution is obligatory and oc-
curs through, among others, changes of cell fates of cancerous cells. 
Macroevolution may occur or not (i.e. it is not obligatory) during 
cancer development depending on if further phase transition is 
needed and is related to changes of genome. Macroevolution oc-
curs through genome destabilizations, followed by genome chaos, 
genome rearrangements, and obtaining genome stability in new 
genome attractors [27,28]. That means that macroevolution can 
be considered as a process of changing genome attractors [27,28]. 
During the process of changing genome attractors, the whole 
genome undergoes reorganization and remodelling [27,28]. In the 
light of this concept, macroevolution is based on the whole genome 
changes. In accordance with information presented in [6,21], cancer 
macroevolution is based on the change of whole genome informa-
tion package rather than on specific genes. After attaining genome 
attractor cells undergo microevolution, i.e. when cells are trapped in 
the genome attractor, changes of cell- fate attractors occur resulting 
in changes of phenotypes of cancer clones [27,28]. Changes of cell 
fates can occur as a result of destabilizations of current cell fates. 
Destabilizations of cell fates can occur as a result of cell bioenergetic 
problems. These destabilizations can be additionally stimulated by 
mutations. In the light of this concept, two types of attractors can be 
distinguished during cancer development that are important to this 
process, i.e. cancer genome attractors and cancer cell- fate attractors 
[27,28]. No matter which types of attractors form which kinds of 
genomic and non- genomic landscapes, the common consequence 
is the new information- mediated cellular changes that create and 
penetrate unknown life spaces (for normal cells), albeit involving 
different organizational scales [21,38]. Interestingly, this conclusion 
also applies to the organismal evolution beyond cancer [29].

According to the recently proposed idea, cancer formation can 
be considered as a phenomenon that is associated with the develop-
ment of clouds of cancerous cell fates [27]. Cancerous cell fates are 
characterized by cancerous/ atavistic phenotypes. Cancerous clouds 
of cell fates are ‘generated’ from genome attractors, which means that 
cancer macroevolution gives the possibility of generation of new and 
new cancerous clouds [27,28]. Cancerous phenotypes of cells that 
belong to different cancerous clouds differ significantly from each 
other because they are generated from different genome attractors 
(this is a consequence and a hallmark of cancer macroevolution). 

Cancerous phenotypes of cells in cancerous cloud are similar be-
cause all cell fates are generated from one genome attractor (this is a 
consequence and a hallmark of cancer microevolution).

Even though the above genome attractor model was illustrated 
through the analysis of unified cell bioenergetics and cell fate [27], it 
can be applied to explain the common relationship between different 
triggering factors of cancer, the two- phased cancer evolution, and the 
cancer- related genome/ gene attractors. As illustrated in Figure 41.1, 
the upper portion (yellow colour) belongs to macroevolution to gen-
erate different genome attractors while the lower portion belongs 
to microevolution to generate different statuses of cell populations. 
Both the horizontal and vertical information passages can be found 
in macroevolutionary and microevolutionary phases, representing 
different meanings of generating, preserving, modifying, and using 
the system or parts information [3,18], which is essential for the suc-
cess of cancer evolution by searching for and even creating the new 
life space. It is important to separate genome attractors (involving 
reconstruction of the boundary of a given genetic network) from 
traditional attractors (involving network rewiring without altering 
the genome system). The latter category includes an array of gen-
omic and non- genomic cellular mechanisms that regulate cellular 
states, such as epigenetic function, usage of intrinsically disordered 
proteins (IDPs) [30], and developmental process [3,6,21].

41.4. The multiple levels of biological 
systems and their corresponding 
information management

One of the key rationales for promoting the genome attractor model 
is to popularize the concept of distinguishing multiple levels of gen-
omic systems with the evolutionary and informational context. 
Recent studies suggest that separating gene- coded and genome- 
coded information is of ultimate importance. Furthermore, under-
standing information management is crucial for proposing a cancer 
genome attractor model [3,18].

41.4.1. Activation/ deactivation 
of functionalities and karyotype coding

Chromosomes contain sets of functions that are coded by genes. 
Requested functionalities can be activated by activation of a set of 
needed functions. For example, activation of the Crabtree effect 
needs activation of set of genes expression, i.e. activation of set of 
functions to realize needed functionality (in this case to realize the 
Crabtree effect functionality). In the light of this concept, func-
tionality is something more than a function of coding proteins. 
Appropriate and stable functionality can be established by chro-
matin remodelling. Post- translational modifications of chromatin 
(acetylation, methylation, and phosphorylation of the histones and 
DNA methylation) play a major role in the activation or repression 
of gene transcription [31]. Some of these chromatin modifications 
are involved in the maintenance of gene expression stable patterns 
(usually referred to as epigenetic regulation) [31]. Chromatin re-
modelling causes activation (and then gradual stimulation of ex-
pressions of genes) and gradual inhibition of expressions of other 
genes (including deactivation). So, chromatin remodelling acts on 
sets of genes, causing remodelling of expressions of groups of genes 
in order to obtain appropriate and stable functionalities.
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Traditionally, systems biologists have focused on genes and the 
epigenetic aspect of chromatin remodelling, as the genome- level al-
terations have been long ignored in the gene- centric era. The two- 
phased cancer evolutionary model has highlighted the importance 
of the karyotype that organizes the genetic networks, including the 
epigenetic landscape. This organizational function defines system 
inheritance via a new genomic coding mechanism called karyotype 
coding [32]. According to karyotype coding, genes are organized 
along chromosomes with a fixed physical order, which preserves spe-
cies genome information and provides a platform for other genetic 
and non- genetic information to develop and accumulate [6,21,32]. 
Because cancer evolution involves both macroevolution and micro-
evolution, the multiple levels of genomic and non- genomic changes 
are often involved, including karyotype alterations, gene mutations, 
and epigenetic variations. Thus, the cell- fate changes are multi- 
scales and multi- faced, not just the same genome with altered epi-
genetic landscapes. This is in accordance with Theodor Boveri, who 
has stated that cancer is due to a certain permanent change in the 
chromosome complex [33]. Indeed, the two- phased model of cancer 
evolution has nicely reconciled the contribution from gene muta-
tions, epigenetic changes, and karyotype reorganization.

41.4.2. Role of polyploidy during  
cancer development

In recent years, chaotic genomes including various subtypes, such 
as chromothripsis and giant polyploidy giant cancer cells (PGCCs), 

have become a hot topic [1,8,34– 36]. Traditionally, researchers have 
focused on specific structural or numerical aberrations without the 
information context and evolutionary process. For example, the sig-
nificance of chromosomal translocation is on the interrupted genes, 
and as it is presented in [37], polyploidization increases the prob-
ability of survival of cancer cells. But a polyploid cell is not clonal, and 
this proposed advantage cannot last. Yes, depolyploidization allows 
the Hayflick’s limit to be restored, and hence the activation of the cell 
cycle and mitotic cell cycle [37]. After depolyploidization, cancer 
cells again become clonal. As a result of this mechanism (i.e. circular 
polyploidization and depolyploidization), cancer cells are more re-
sistant to changes in environmental conditions (that occur as a result 
of, for example, chemotherapy) maintaining cloning potential. All 
these changes can be explained by the cycles of two- phased cancer 
evolution, where all these changes are phenotypes of a newly emer-
gent genome system. No matter what type of genome chaos (massive 
translocations, or circular polyploidization and depolyploidization), 
the ultimate importance is to reorganize the old genomes to form 
new genomes, followed by the microevolution to grow the cellular 
populations. This is the process of creating, preserving, and ampli-
fying new system information [3,6,21].

41.4.3. Unify multiple levels of variations via 
the information management

Even though the relationship between different genomic and non- 
genomic variations is highly dynamic, it can be understood by the 

Figure 41.1. Cancer formation as creation and simultaneous penetration of different atavistic stages (including unknown stages/ space) of evolution 
by cancer clones. CIN causes genome chaos and formation of unstable genomes. Auto- transformation to genome attractor can cause aneuploidy, 
rearrangements, and other ordered genome changes, the aim of which is to achieve new genome. Auto- transformation to genome attractor occurs 
as a result of genome destabilization and causes stabilization of unstable genome in a new genome attractor. Auto- transformation to cell- fate 
attractor occurs after cell- fate destabilization and causes stabilization of cell fate in a new cell- fate attractor [27,28].
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mechanism of information management during different phases 
of evolution [3,32]. In particular, separating genome alteration- 
mediated system information and gene alteration- mediated parts 
information can promote the effort to unify multiple levels of vari-
ations and their corresponding attractors using a multiple- level 
landscape model [38].

41.5. Implications of the new 
attractor model

Establishing a genome- based cancer attractor model is important. 
To date, most attractor models have failed to include karyotype 
dynamics that define the physical basis of genomic networks. The 
genomic topology is an essential component of the genomic infor-
mation, and the topological relationship among genes and regu-
lating elements is needed to explain the attractor model. With the 
new frameworks, many observations can be reconciled. The follow-
ings are some case studies.

41.5.1. Overenergized mitochondria as a main 
driver of cancer evolution

Cancer transformation, which mainly results from macroevolu-
tionary genome restructuring but can also occur without mutations 
under specific conditions, leads to the activation of the Warburg effect 
(aerobic glycolysis) as part of the transformation process. By stimu-
lation of aerobic glycolysis, cells can try to prevent their mitochon-
dria against overenergization and against too high level of reactive 
oxygen species (ROS) [23,28]. But obtaining energy from aerobic 
glycolysis is much less efficient way as compared to oxidative phos-
phorylation (OXPHOS). Cells compensate for this drop in efficiency 
by processing more glucose. Even in the presence of oxygen, rapidly 
proliferating tumour cells have typically a glycolysis rates of up to 
200 times higher compared to cells of normal tissue of origin [39,40]. 
The increase in glucose uptake is a major feature distinguishing 
cancer cells from normal cells [41]. Possible explanations for the in-
crease in the rate of glycolysis of cancer cells is the overexpression of 
glucose transporters and all enzymes of the glycolytic pathway as a 
result of oncogene activation [42]. Accordingly, high levels of glu-
cose uptake in cancer cells are associated with increased expression 
of glucose transporter proteins (GLUT1, GLUT3, and/ or GLUT12) 
[42]. In addition, many cancers overexpress and/ or overactivate the 
major enzymes that control the glycolytic pathway (i.e. hexokinase, 
phospho- fructokinase, and pyruvate kinase) [42,43].

A large amount of obtained energy in the glycolysis– fermentation 
pathway (aerobic fermentation) prevents the discharge of mitochon-
dria from high- energy molecules, thus causing cancer mitochondria 
to remain overenergized [23]. In this way, the cancer cells get a lot of 
the energy they need and their mitochondria remain overenergized, 
but at the same time prevented against too high overenergization 
that can lead to apoptosis (because of too high level of ROS). 
Overenergized mitochondria are the main driver of macroevolution 
leading to permanent changes of genome attractors. Overenergized 
mitochondria are also driver of cancer microevolution, stimulating 
cancer phenotype evolution by stimulating permanent changes of 
cell fates. It should be noted that there is a great deal of evidence 
that challenges the paradigm of pure ‘glycolytic’ cancer cells [43,44]. 
Some glioma, hepatoma, and breast cancer cell lines have been 

shown to possess functional mitochondria, obtaining ATP primarily 
from OXPHOS [44]. The phenomenon of obtaining ATP mainly 
from OXPHOS additionally stimulates macroevolution leading to 
more intensive ROS generation and, as a result, permanent losses 
of genome stability followed by changes of genome attractors. 
More intensive ROS generation also stimulates microevolution (by 
increasing the probability of random DNA mutations), resulting in 
stimulation of cancer phenotype evolution by changing cell fates. 
Here, it should be noted that cancer phenotype evolution allows 
the cancer clones to increase phenotypic diversity and also allows 
clones to flexibly adapt to changing environment. Cancer phenotype 
evolution can be stimulated by random DNA mutations by elevated 
ROS, but this evolution can also be a response to the cell bioener-
getic problems and can occur without mutations [27,45]. It should 
be pointed out that despite all these complicated descriptions, this 
chain of events belongs to the microevolutionary phase followed by 
macroevolution. There are many different microevolutionary stories 
reported in the literature, for this reason, it is challenging to cure 
cancer just based on individual case studies [18,46].

41.5.2. Cancerous tissue

Solid tumours are not only clones of cancer cells but also abnormal 
organs composed of many types of cells and the extracellular matrix 
[47]. Some aspects of cancer development resemble those seen in 
organ development, while others are more like tissue remodelling 
[47]. Cancer cells and stromal components are organized into tis-
sues, which in turn are organized into cancerous organs that interact 
with the entire organism [47].

As it was presented in [27], cancer transformation can occur as a 
result of huge bioenergetic disturbances in multicellular- level func-
tionalities which lead to a loss of control over atavistic/ unicellular 
functionalities. Maintaining the ability to create tissue indicates that 
(although disturbed multicellular layer functionalities do not fully 
control atavistic functionalities after cancer transformation) part of 
multicellular- level functionalities responsible for creation of multi-
cellular organism remains active. Activity of atavistic functionalities 
and disturbed activity of multicellular- level functionalities cause 
that development of cancer shows two faces, i.e. development of 
cancer occurs as a development of population of individual cells 
(due to activity of atavistic/ unicellular functionalities) along with 
maintaining the ability to create cancerous tissue (due to activity, al-
beit disturbed, of multicellular- level functionalities). In accordance 
with, e.g. [48– 50], the genes of unicellular origin are overexpressed 
in cancerous tissues, while the genes appearing in the multicellular 
evolutionary stages are down- regulated in cancerous tissues, which 
can support considerations presented in this section. It is interesting 
to note that cancerous tissue consists of genetically heterogeneous 
cells that may be very different, because of cancer macroevolution, 
from each other. This is in contrast to organism normal tissue that is 
genetically homogeneous. Additionally, microevolution causes that 
clones that form cancerous tissue are phenotypically diverse, even if 
generated from the same genome attractor.

Cancerous tissue undergoes constant changes related to macro-
evolution and microevolution. Macroevolution and microevolu-
tion cause asynchronous point changes of cancerous tissue through 
genome rearrangements and changes of cell fates of the tissue clones. 
Microevolution causes asynchronous point adaptation of cancerous 
tissue to environment. Point changes and adaptation mean that 
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macroevolution and microevolution are related to individual clones 
that form cancerous tissue. Asynchronous means that macroevolu-
tion and microevolution of individual clones (i.e. macroevolution 
and microevolution in different points of cancerous tissue) occur 
at different times (i.e. asynchronously). Cancer clones constantly 
adapt to the environment through microevolution, and through 
macroevolution, altered clones can penetrate genome space in dis-
tant places. In addition, created new clones can be attached to the 
existing cancerous tissue. In the light of this concept, cancer can be 
considered as a tissue- based disease. It should be noted that macro-
evolution is optional, i.e. it may occur or not (there are known can-
cers that can develop without genome rearrangements (i.e. without 
changes of genome attractors)). Cancer microevolution always oc-
curs (regardless of cancer type) because cancer cells always have 
potential to change their cell fates to adapt to environment. Cancer 
phenotype evolution by changes of cell fates can occur with muta-
tions as an associated phenomenon or without mutations (there are 
known cancers that can develop without mutations).

41.5.2.1. Cancer as a tissue- based disease

As discussed in the previous section, cancer can be considered as 
tissue- based disease. The tissue organization field theory (TOFT) 
also posits that cancer is a tissue- based disease and that proliferation 
is the default state of all cells [51]. In accordance with TOFT, cancer 
is a disease of tissue organization akin to development gone awry 
[52]. TOFT states that cancer is a disease that occurs at the level of 
biological organization of tissues, resulting from disruption of the 
morphogenetic field that organizes histogenesis and organogenesis 
from fertilization to senescence [53].

Some important issues need to be addressed here, however. 
Clearly, cancer is not just a proliferation problem of the same system 
but new systems. Any tissue- based theory should explain somatic 
evolution as well. Interestingly, the genome attractor model that is 
based on two- phased cancer evolution can also be applied to the 
tissue level. For example, giant cancer cells with chaotic genomes 
can rapidly produce a large number of cancer cells, the basis of can-
cerous tissue. Importantly, those newly emergent cells often display 
altered karyotype coding, suggesting that they represent new sys-
tems rather than modified old systems [54]. Dr Jinsong Liu’s group 
has directly illustrated the rapid cancerous tissue formation via 
PGCCs (personal communications).

41.5.2.2. Cancer metastasis as a tissue- related phenomenon

Metastasis is a term related to the development of secondary tumours 
in a part of the body that is far from the original primary cancer [55]. 
Being responsible for about 90% of cancer deaths, cancer metastasis 
is the leading cause of cancer morbidity and mortality [56]. During 
cancer metastasis process, metastatic cells go through four essential, 
metastatic steps, i.e. detachment, migration, invasion, and adhesion 
[56]. The detachment of cancer cell from the primary tumour is a ne-
cessary first condition and an initial early stage of metastasis [57,58]. 
The detachment of a cancer cell has to be followed by tissue invasion, 
entry into the bloodstream, colonization of a distant site, and pro-
liferation [57]. The probability of metastasis occurring is very small, 
i.e. only one in the many millions of cells that have gone through all 
of this can turn out to regenerate a cancer in a distant site [57].

In the light of the presented model, macroevolution involves 
genome rearrangements (including changes of karyotypes). It is 

also likely that without macroevolution, most cells will not survive 
during those four stages. These genome rearrangements can cause 
deactivation (or lost) of functionalities of multicellular level. This 
indicates that, during cancer development related to macroevolu-
tion, the ability to create tissue is decreasing and simultaneously a 
loss of control over atavistic/ unicellular functionalities is increasing. 
Moreover, deactivating functionalities of multicellular level causes 
an increase in the probability of cancerous cells detaching from 
existing cancerous tissue. This also indicates that macroevolution 
stimulates an increase in aggressiveness of cancer simultaneously 
leading to an increased likelihood of metastasis.

Again, metastasis is achieved by another cycle of two- phased evo-
lution where CIN is the common driver [21,38,59,60], which can be 
explained by the new genome attractor model.

41.5.3. Cancer development is not the only 
reversion to pure atavistic stages

During the development of cancer, a return to an atavistic life can be 
observed based on certain features [61]. Due to the atavistic theory 
of oncogenesis, the biogenetic law is currently gaining particular im-
portance [61– 64,50]. In accordance with the Serial Atavism Model, 
multi- stage cancer progression reverses the multi- stage evolutionary 
chronology [61]. In the light of this concept, during cancer develop-
ment, several deep evolutionary transitions can occur towards more 
and more primitive prokaryotes [61]. This point of view is correct, 
as long as the cancer cells do not change their genome attractors. 
During development of some cancers that is characterized by 
changes of genome attractors, the original organic code is also grad-
ually changed (i.e. new information is created and old information is 
modified). These significant changes in the organic code, which are 
associated with changes of genome attractors, cause cancer clones to 
simultaneously penetrate series of unknown, atavistic branches that 
may substantially deviate from original established during evolution 
pathways. In the light of this concept, cancer development is not the 
only reversion to pure atavistic stages. This is especially related to 
aggressive cancers, which are characterized by higher level of GIN 
and resulted in frequent changes of genome attractors.

Cancer cells have been proved to have a higher entropy gener-
ation than healthy cells, where entropy is expected surprise or un-
certainty [65– 67]. The rate of entropy generation shows the intensity 
of proliferation, invasion, and robustness in cancer cells. For these 
reasons, modelling of dynamic entropy can be an effective combined 
tool in cancer research [66]. Penetration of a series of unknown, at-
avistic branches that may deviate substantially from original evo-
lutionary pathways lead to a huge increase of surprise (i.e. increase 
of entropy). Simultaneous penetration of these unknown area add-
itionally multiply this surprise. This penetration of unknown atav-
istic life spaces is associated with a gradual significant loss (mainly 
because of macroevolution) of original, stored in genome informa-
tion that defines the life of healthy cells, and consequently with a 
gradual build- up of strange, very difficult to understand and pre-
dict behaviours resulting in an enormous increase of surprise and 
leading to a huge increase of entropy (Figure 41.1). In the light of the 
presented considerations, cancerous tissue consists of different sets 
(due to macroevolution) of clones. The clones from these sets simul-
taneously penetrate different branches of atavistic life spaces (Figure 

41.1). Moreover, microevolution causes that clones from different 
sets adapt to changes in the environment, establishing different 
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phenotypes by changing cell fates. In this way, cancerous tissues 
undergo flexible adaptation to the environment separately, simul-
taneously, and independently in each part of the cancerous tissue.

41.5.4. Fighting against cancer: concentration 
on causes not effects

In the article [27], it was proposed that cancer transformation, i.e. 
a change in normal cell fate to cancerous/ atavistic cell fate, occurs 
as a result of loss of control over functionalities of the unicellular 
layer, resulting in a loss of control over atavistic functionalities. The 
Warburg effect, i.e. an increase in aerobic glycolysis, occurs as a re-
sult of cancer transformation. Reducing the intensity of aerobic gly-
colysis is one of the ways to fight cancer, but this approach is fighting 
the effects not the cause of cancer.

Surgery is often considered as an effective method of fighting 
cancer, because by surgically removing the cancer cells from the or-
ganism, it is possible to get rid of the problem. Other methods of 
fighting cancer should be effective as long as they focus on the causes 
not effects of cancer transformation and development. In the light 
of the idea presented in [27], the causes of cancer are disturbances 
and/ or destruction of multicellular- level functionalities. Cancer 
cells contact with normal cells, which causes the occurrence of inter-
action between them (i.e. between cancer cells and normal cells), but 
probably only the establishment of contact with normal cells of eggs 
or embryos can cause restoration and activation of multicellular- 
level functionalities that can lead cancer cells to revert to normal 
cells. The success of such reversion, however, is often constrained by 
the karyotype- code- defined genome attractor [3,21,32].

41.6. Conclusions and future directions

The war on cancer is far from over, but every day is very important 
during this war. This chapter aims to unify some diverse phenomena 
that occur during cancer transformation and development. Striving 
to this evolutionary unification can lead to better approaches of 
understanding and fighting cancer.

 (a) The concept of the attractor is an important one in systems 
biology. Currently, most cancer attractor models confuse the 
developmental landscape and evolutionary landscape, espe-
cially the macroevolutionary model is incorrectly assumed as a 
stepwise microevolutionary model plus time [29,68]. The novel 
aspect of the genome attractor model is separating macroevo-
lution from microevolution, which effectively integrates the at-
tractor concept with the evolutionary context.

 (b) The concept of karyotype coding provides the genomic topo-
logical properties for understanding how gene regulatory net-
work works. The traditional systems biology lacks the correct 
understanding of the relationship between genes/ epigenetics 
and genomes, and ignores that cancer cells display different 
karyotypes compared with normal cells. All functional activ-
ities of genes and epigenetics are within the genome attractor’s 
internal boundaries, and the genome attractor provides the 
most important system constraints. Macroevolution can create 
specific genome attractors, while microevolution can change 
the cellular states within the genome attractors and increase the 
cellular population.

 (c) The genome attractor model can be used to explain the dynamic 
relationship between highly diverse molecular mechanisms of 
cancer and the two- phased cancer evolutionary model. Even 
though only selective issues are briefly discussed in this chapter 
(the overenergized mitochondria, atavistic phenotype, giant 
polyploidy cancer cells, cancer as a tissue- based disease, and 
metastasis), a similar discussion can be expanded into many 
different molecular understandings of cancer [2] . For example, 
macroevolution causes the cancer clones change genome at-
tractors. Microevolution causes adaptive growth of cancers 
cells that are trapped in the genome attractors. As a result of 
microevolution, cancer clones change cell- fate attractors, flex-
ibly adapting to the environment. During microevolution ac-
cumulation of mutations, affecting changes of cell fates can also 
occur and thus potentially leading to macroevolution.

 (d) Even though multiple runs of two- phased cancer evolution can 
explain the vast majority of cancer cases (e.g. for those undiffer-
entiated tumours, karyotype change is the common feature and 
CIN is the common driver), there might be some exceptions. 
Some differentiated tumours (arrested at earlier developmental 
stages) can be genomically stable, which can be no mutations, 
or with simple mutations, or MSI, or simple translocations.

 (e) Further research needs to consider the information manage-
ment in the attractor models. Macroevolution generates genome 
attractor that creates system information, while microevolution 
influences epigenetic regulation and population growth via in-
formation modification and usage. In a sense, new information 
package creation and preservation as well as usage represent 
the fundamental driver of cancer evolution. Interestingly, while 
increased entropy may indicate increased opportunities for 
cancer cells to searching/ creating the new life space, too much 
entropy may also be associated with a reduced capability for in-
formation preservation, leading to the self- elimination of newly 
formed cells. Clearly, a certain degree of genome stability is also 
important for maintain genome attractors [70].

 (f) Both the genome attractor model and the two- phased cancer 
evolutionary framework can have clinical implications. As the 
harsh treatment can lead to genome chaos that alters the genome 
attractor via genome reorganization, an alternative strategy is to 
build the constraints of attractors at a higher system level while 
slowing down the population growth, to reduce the treatment- 
induced rapid cancer macroevolution. It is thus necessary to 
identify and monitor the two- phased cancer evolution, and not 
to push new runs of macroevolution, which is highly unpre-
dictable but moderately controls the cancer growth during the 
microevolutionary phase [3,6,21,36,69,70,71].

REFERENCES

 1. Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah 
BY, et al. Chromosomal instability (CIN): what it is and why 
it is crucial to cancer evolution. Cancer Metastasis Rev. 2013 
Dec;32(3– 4):325– 40. doi: 10.1007/ s10555- 013- 9427- 7

 2. Ye CJ, Sharpe Z, Heng HH. Origins and consequences of 
chromosomal instability: from cellular adaptation to genome 
chaos- mediated system survival. Genes (Basel). 2020 Sep 
30;11(10):1162. doi: 10.3390/ genes11101162

   

 

 

   

 

 

 

 

 

 

 

 

    

   

  

 

http://dx.doi.org/10.1007/s10555-013-9427-7
http://dx.doi.org/10.3390/genes11101162


CHAPTER 41 Cancer formation as creation and penetration of unknown life spaces 437

 3. Heng J, Heng HH. Genome chaos: creating new genomic 
information essential for cancer macroevolution. Semin Cancer 
Biol. 2022 Jun;81:160– 75. doi: 10.1016/ j.semcancer.2020.11.003

 4. Virchow R. Die cellularpathologie in ihrer begründung auf 
physiologische und pathologische gewebelehre. Zwanzig 
vorlesungen gehalten während der monate februar, märz und 
aprilim Pathologischen institute zu Berlin. Berlin, A. Hirschwald, 
1858. Pdf. https:// www.loc.gov/ item/ 06041 231/ 

 5. Hanselmann RG, Welter C. Origin of cancer: an information, 
energy, and matter disease. Front Cell Dev Biol. 2016;4:121. 
doi: 10.3389/ fcell.2016.00121

 6. Heng HH. Debating cancer: the paradox in cancer research. 
Singapore: World Scientific Publish Co.; 2015.

 7. Markert CL. Neoplasia: a disease of cell differentiation. Cancer 
Res. 1968;28(9):1908– 14.

 8. Liu J. The dualistic origin of human tumors. Semin Cancer Biol. 
2018 Dec;53:1– 16. doi: 10.1016/ j.semcancer.2018.07.004

 9. Zhu S, Wang J, Zellmer L, Xu N, Liu M, Hu Y, et al. Mutation or 
not, what directly establishes a neoplastic state, namely cellular 
immortality and autonomy, still remains unknown and should be 
prioritized in our research. J Cancer. 2022 Jul 4;13(9):2810– 43. 
doi: 10.7150/ jca.72628

 10. Greaves M, Maley C. Clonal evolution in cancer. Nature. 
2012;481:306– 13. doi: doi.org/ 10.1038/ nature10762

 11. Stevens JB, Liu G, Abdallah BY, Horne SD, Ye KJ, Bremer SW, 
et al. Unstable genomes elevate transcriptome dynamics. Int J 
Cancer. 2014 May 1;134(9):2074– 87. doi: 10.1002/ ijc.28531

 12. Kauffman S. Differentiation of malignant to benign cells. J Theor 
Biol. 1971; 31(3):429– 51. doi: 10.1016/ 0022- 5193(71)90020- 8

 13. Kauffman S. Homeostasis and differentiation in random genetic 
control networks. Nature. 1969 Oct 11;224(5215):177– 8. 
doi: 10.1038/ 224177a0

 14. Kauffman SA. Metabolic stability and epigenesis in randomly 
constructed genetic nets. J Theor Biol. 1969 Mar;22(3):437– 67. 
doi: 10.1016/ 0022- 5193(69)90015- 0

 15. Kauffman SA. The origins of order. New York: Oxford University 
Press; 1993.

 16. Huang S, Ernberg I, Kauffman S. Cancer attractors: a 
systems view of tumors from a gene network dynamics and 
developmental perspective. Semin Cell Dev Biol. 2009 
Sep;20(7):869– 76. doi: 10.1016/ j.semcdb.2009.07.003

 17. Huang S, Kauffman SA. Complex gene regulatory networks— 
from structure to biological observables: cell fate determination. 
In: Meyers R, editor, Computational complexity. New York, 
NY: Springer; 2012. doi: 10.1007/ 978- 1- 4614- 1800- 9_ 35

 18. Heng J, Heng HH. Two- phased evolution: genome chaos- 
mediated information creation and maintenance. Prog 
Biophys Mol Biol. 2021 Oct;165:29– 42. doi: 10.1016/ 
j.pbiomolbio.2021.04.003

 19. Heng HH, Stevens JB, Bremer SW, Liu G, Abdallah BY, Ye CJ. 
Evolutionary mechanisms and diversity in cancer. Adv Cancer 
Res. 2011;112:217– 53. doi: 10.1016/ B978- 0- 12- 387688- 1.00008- 9

 20. Huang S. Genetic and non- genetic instability in tumor 
progression: link between the fitness landscape and the epigenetic 
landscape of cancer cells. Cancer Metastasis Rev. 2013 Dec;32(3– 
4):423– 48. doi: 10.1007/ s10555- 013- 9435- 7

 21. Heng HH. Genome chaos: rethinking genetics, evolution, and 
molecular medicine. San Diego, CA, USA: Academic Press; 2019.

 22. Ye CJ, Stevens JB, Liu G, Bremer SW, Jaiswal AS, Ye KJ, 
et al. Genome based cell population heterogeneity promotes 
tumorigenicity: the evolutionary mechanism of cancer. J Cell 
Physiol. 2009 May;219(2):288– 300. doi: 10.1002/ jcp.21663

 23. Kasperski A, Kasperska R. Bioenergetics of life, disease and death 
phenomena. Theory Biosci. 2018;137(2):155– 68. doi: 10.1007/ 
s12064- 018- 0266- 5

 24. Kasperski A. Modelling of cells bioenergetics. Acta Biotheor. 
2008 Sep;56(3):233– 47. doi: 10.1007/ s10441- 008- 9050- 0

 25. Kasperski A, Kasperska R. Selected disease fundamentals based 
on the unified cell bioenergetics. J Invest Biochem. 2013;2(2):93– 
100. doi: 10.5455/ jib.20130227041230

 26. Kasperski, A. Genome attractors as places of evolution and oases 
of life. Processes. 2021;9(9):1646. doi: 10.3390/ pr9091646

 27. Kasperski A. Life entrapped in a network of atavistic 
attractors: how to find a rescue. Int J Mol Sci. 2022;23(7):4017. 
doi: doi.org/ 10.3390/ ijms23074017

 28. Kasperski A, Kasperska R. Study on attractors during 
organism evolution. Sci Rep. 2021;11:9637. doi: 10.1038/ 
s41598- 021- 89001- 0

 29. Crkvenjakov R, Heng HH. Further illusions: on key evolutionary 
mechanisms that could never fit with Modern Synthesis. Prog 
Biophys Mol Biol. 2022 Mar– May;169– 170:3– 11. doi: 10.1016/ 
j.pbiomolbio.2021.10.002

 30. Kulkarni P, Shiraishi T, Kulkarni RV. Cancer: tilting at 
windmills? Mol Cancer. 2013 Sep 24;12(1):108. doi: 10.1186/ 
1476- 4598- 12- 10

 31. van der Knaap JA, Verrijzer CP. Undercover: gene control 
by metabolites and metabolic enzymes. Genes Dev. 
2016;30(21):2345– 69. doi: 10.1101/ gad.289140.116

 32. Heng J, Heng HH. Karyotype coding: the creation and 
maintenance of system information for complexity and 
biodiversity. Biosystems. 2021;208:104476. doi: 10.1016/ 
j.biosystems.2021.104476

 33. Boveri T. The origin of malignant tumors. Baltimore, 
MD: Williams & Wilkins; 1929. p. 62– 3.

 34. Liu J. Giant cells: linking McClintock’s heredity to early 
embryogenesis and tumor origin throughout millennia of 
evolution on Earth. Semin Cancer Biol. 2022 Jun; 81:176– 92. 
doi: 10.1016/ j.semcancer.2021.06.007

 35. Liu G, Stevens JB, Horne SD, Abdallah BY, Ye KJ, Bremer SW, 
et al. Genome chaos: survival strategy during crisis. Cell Cycle. 
2014;13(4):528– 37. doi: 10.4161/ cc.27378

 36. Ye JC, Horne S, Zhang JZ, Jackson L, Heng HH. Therapy 
induced genome chaos: a novel mechanism of rapid cancer 
drug resistance. Front Cell Dev Biol. 2021 Jun 10; 9:676344. 
doi: 10.3389/ fcell.2021.676344

 37. Vainshelbaum NM, Salmina K, Gerashchenko BI, Lazovska 
M, Zayakin P, Cragg MS, et al. Role of the circadian clock 
‘death- loop’ in the DNA damage response underpinning cancer 
treatment resistance. Cells. 2022. 11(5):880. doi: 10.3390/ 
cells11050880

 38. Heng HH. Chapter 5, The genomic landscape of cancers. 
In: Ujvari B, Roche B, Thomas F, editors. Ecology and evolution 
of cancer. London: Elsevier, Academic Press; 2017. p. 69– 86.

 39. Warburg O. On the origin of cancer cells. Science. 
1956;123(3191):309– 14. doi: 10.1126/ science.123.3191.309

 40. Pecqueur C, Oliver L, Oizel K, Lalier L, Vallette FM. Targeting 
metabolism to induce cell death in cancer cells and cancer stem 
cells. Int J Cell Biol. 2013;2013:805975. doi: 10.1155/ 2013/ 805975

 41. Phan LM, Yeung SC, Lee MH. Cancer metabolic 
reprogramming: importance, main features, and potentials 
for precise targeted anti- cancer therapies. Cancer Biol Med. 
2014;11(1):1– 19. doi: 10.7497/ j.issn.2095- 3941.2014.01.001

 42. de Souza AC, Justo GZ, de Araújo DR, Cavagis AD. Defining 
the molecular basis of tumor metabolism: a continuing 

  

  

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

http://dx.doi.org/10.1016/j.semcancer.2020.11.003
https://www.loc.gov/item/06041231/
http://dx.doi.org/10.3389/fcell.2016.00121
http://dx.doi.org/10.1016/j.semcancer.2018.07.004
http://dx.doi.org/10.7150/jca.72628
http://doi.org/10.1038/nature10762
http://dx.doi.org/10.1002/ijc.28531
http://dx.doi.org/10.1038/224177a0
http://dx.doi.org/10.1016/j.semcdb.2009.07.003
http://dx.doi.org/10.1007/978-1-4614-1800-9_35
http://dx.doi.org/10.1016/j.pbiomolbio.2021.04.003
http://dx.doi.org/10.1016/j.pbiomolbio.2021.04.003
http://dx.doi.org/10.1016/B978-0-12-387688-1.00008-9
http://dx.doi.org/10.1007/s10555-013-9435-7
http://dx.doi.org/10.1002/jcp.21663
http://dx.doi.org/10.1007/s12064-018-0266-5
http://dx.doi.org/10.1007/s12064-018-0266-5
http://dx.doi.org/10.1007/s10441-008-9050-0
http://dx.doi.org/10.5455/jib.20130227041230
http://dx.doi.org/10.3390/pr9091646
http://doi.org/10.3390/ijms23074017
http://dx.doi.org/10.1038/s41598-021-89001-0
http://dx.doi.org/10.1038/s41598-021-89001-0
http://dx.doi.org/10.1016/j.pbiomolbio.2021.10.002
http://dx.doi.org/10.1016/j.pbiomolbio.2021.10.002
http://dx.doi.org/10.1186/1476-4598-12-10
http://dx.doi.org/10.1186/1476-4598-12-10
http://dx.doi.org/10.1101/gad.289140.116
http://dx.doi.org/10.1016/j.biosystems.2021.104476
http://dx.doi.org/10.1016/j.biosystems.2021.104476
http://dx.doi.org/10.1016/j.semcancer.2021.06.007
http://dx.doi.org/10.4161/cc.27378
http://dx.doi.org/10.3389/fcell.2021.676344
http://dx.doi.org/10.3390/cells11050880
http://dx.doi.org/10.3390/cells11050880
http://dx.doi.org/10.1126/science.123.3191.309
http://dx.doi.org/10.1155/2013/805975
http://dx.doi.org/10.7497/j.issn.2095-3941.2014.01.001
http://dx.doi.org/10.1016/0022-5193(69)90015-0
http://dx.doi.org/10.1016/0022-5193(71)90020-8


Cancer Systems Biology438

challenge since Warburg’s discovery. Cell Physiol Biochem. 
2011;28(5):771– 92. doi: 10.1159/ 000335792

 43. Moreno- Sánchez R, Rodríguez- Enríquez S, Marín- Hernández 
A, Saavedra E. Energy metabolism in tumor cells. FEBS J. 2007 
Mar;274(6):1393– 418. doi: 10.1111/ j.1742- 4658.2007.05686.x

 44. Diaz- Ruiz R, Rigoulet M, Devin A. The Warburg and Crabtree 
effects: On the origin of cancer cell energy metabolism and 
of yeast glucose repression. Biochim Biophys Acta. 2011 
Jun;1807(6):568– 76. doi: 10.1016/ j.bbabio.2010.08.010

 45. Zimatore G, Tsuchiya M, Hashimoto M, Kasperski A, Giuliani A. 
Self- organization of whole- gene expression through coordinated 
chromatin structural transition. Biophys Rev. 2021;2:031303. 
doi: 10.1063/ 5.0058511

 46. Ye CJ, Sharpe Z, Alemara S, Mackenzie S, Liu G, Abdallah B, et al. 
Micronuclei and genome chaos: changing the system inheritance. 
Genes (Basel). 2019 May 13;10(5):366. doi: 10.3390/ genes10050366

 47. Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex 
tissues that interface with the entire organism. Dev Cell. 
2010;18(6):884– 901. doi: 10.1016/ j.devcel.2010.05.012

 48. Trigos AS, Pearson RB, Papenfuss AT, Goode DL. Altered 
interactions between unicellular and multicellular genes drive 
hallmarks of transformation in a diverse range of solid tumors. 
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6406– 11. 
doi: 10.1073/ pnas.1617743114

 49. Bussey KJ, Cisneros LH, Lineweaver CH, Davies PCW. Ancestral 
gene regulatory networks drive cancer. Proc Natl Acad Sci U S A. 
2017 Jun 13;114(24):6160– 62. doi: 10.1073/ pnas.1706990114

 50. Vinogradov AE, Anatskaya OV. Cellular biogenetic law and its 
distortion by protein interactions: a possible unified framework 
for cancer biology and regenerative medicine. Int J Mol Sci. 
2022;23(19):11486. https:// doi.org/ 10.3390/ ijms23 1911 486

 51. Soto AM, Sonnenschein C. The tissue organization field theory 
of cancer: a testable replacement for the somatic mutation theory. 
Bioessays. 2011;33(5):332– 40. doi: 10.1002/ bies.201100025

 52. Soto AM, Sonnenschein C. The cancer puzzle: welcome 
to organicism. Prog Biophys Mol Biol. 2021;165:114– 9. 
doi: 10.1016/ j.pbiomolbio.2021.07.001

 53. Bizzarri M, Cucina A. SMT and TOFT: why and how they 
are opposite and incompatible paradigms. Acta Biotheor. 
2016;(64):221– 39. doi:10.1007/ s10441- 016- 9281- 4

 54. Heng HH, Regan SM, Liu G, Ye CJ. Why it is crucial to analyze 
non clonal chromosome aberrations or NCCAs? Mol Cytogenet. 
2016 Feb 13;9:15. doi: 10.1186/ s13039- 016- 0223- 2

 55. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular 
principles of metastasis: a hallmark of cancer revisited. Sig Transduct 
Target Ther. 2020;5:28. doi: doi.org/ 10.1038/ s41392- 020- 0134- x

 56. Guan X. Cancer metastases: challenges and opportunities. Acta 
Pharm Sin B. 2015 Sep;5(5):402– 18. doi: 10.1016/ j.apsb.2015.07.005

 57. Beans C. Targeting metastasis to halt cancer’s spread. Proc Natl Acad 
Sci U S A. 2018;115(50): 12539– 43. doi: 10.1073/ pnas.1818892115

 58. Weiss L, Ward PM. Cell detachment and metastasis. Cancer 
Metastasis Rev. 1983;2(2):111– 27. doi: 10.1007/ BF00048965. 
PMID: 6352010

 59. Gao C, Su Y, Koeman J, Haak E, Dykema K, Essenberg 
C, et al. Chromosome instability drives phenotypic 
switching to metastasis. Proc Natl Acad Sci U S A. 2016 Dec 
20;113(51):14793– 8. doi: 10.1073/ pnas.1618215113

 60. Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly 
P, et al. Chromosomal instability drives metastasis through a 
cytosolic DNA response. Nature. 2018 Jan 25;553(7689):467– 72. 
doi: 10.1038/ nature25432

 61. Lineweaver CH, Bussey KJ, Blackburn AC, Davies PCW. Cancer 
progression as a sequence of atavistic reversions. Bioessays. 
2021;43(7):e2000305. doi: 10.1002/ bies.202000305

 62. Davies PC, Lineweaver CH. Cancer tumors as Metazoa 
1.0: tapping genes of ancient ancestors. Phys Biol. 2011 
Feb;8(1):015001. doi: 10.1088/ 1478- 3975/ 8/ 1/ 015001

 63. Vincent M. Cancer: a de- repression of a default survival 
program common to all cells?: a life- history perspective on the 
nature of cancer. Bioessays. 2012 Jan;34(1):72– 82. doi: 10.1002/ 
bies.201100049

 64. Bussey KJ, Davies PCW. Reverting to single- cell biology: the 
predictions of the atavism theory of cancer. Prog Biophys Mol 
Biol. 2021 Oct;165:49– 55. doi: 10.1016/ j.pbiomolbio.2021.08.002

 65. Ciompi L, Tschacher W. Affect- logic, embodiment, synergetics, 
and the free energy principle: new approaches to the 
understanding and treatment of schizophrenia. Entropy (Basel). 
2021 Dec 1;23(12):1619. doi: 10.3390/ e23121619

 66. Movahed TM, Bidgoly HJ, Manesh MHK, Mirzaei HR. 
Predicting cancer cells progression via entropy generation based 
on AR and ARMA models. Int Commun Heat Mass Transf. 
2021;127:105565. doi: 10.1016/ j.icheatmasstransfer.2021.105565

 67. Pitt MA. Increased temperature and entropy production 
in cancer: the role of anti- inflammatory drugs. 
Inflammopharmacology. 2015 Feb;23(1):17– 20. doi: 10.1007/ 
s10787- 014- 0224- x

 68. Heng HH. The genome- centric concept: resynthesis of 
evolutionary theory. Bioessays. 2009 May;31(5):512– 25. 
doi: 10.1002/ bies.200800182

 69. Somarelli JA, DeGregori J, Gerlinger M, Heng HH, Marusyk 
A, Welch DR, et al. Questions to guide cancer evolution as 
a framework for furthering progress in cancer research and 
sustainable patient outcomes. Med Oncol. 2022;39(9):137. 
doi: 10.1007/ s12032- 022- 01721- z

 70. Heng HH. Genome chaos: rethinking genetics, evolution, and 
molecular medicine. 2nd ed. Cambridge, MA: Academic Press, 
Elsevier; 2025 (in press).

 71. Kasperski A, Heng HH. The spiral model of evolution: stable life 
forms of organisms and unstable life forms of cancers. Int J Mol 
Sci. 2024;25(17):9163. doi: 10.3390/ ijms25179163

  

  

  

  

  

  

  

  

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

http://dx.doi.org/10.1159/000335792
http://dx.doi.org/10.1111/j.1742-4658.2007.05686.x
http://dx.doi.org/10.1016/j.bbabio.2010.08.010
http://dx.doi.org/10.1063/5.0058511
http://dx.doi.org/10.3390/genes10050366
http://dx.doi.org/10.1016/j.devcel.2010.05.012
http://dx.doi.org/10.1073/pnas.1617743114
http://dx.doi.org/10.1073/pnas.1706990114
https://doi.org/10.3390/ijms231911486
http://dx.doi.org/10.1002/bies.201100025
http://dx.doi.org/10.1016/j.pbiomolbio.2021.07.001
http://dx.doi.org/10.1007/s10441-016-9281-4
http://dx.doi.org/10.1186/s13039-016-0223-2
http://doi.org/10.1038/s41392-020-0134-x
http://dx.doi.org/10.1016/j.apsb.2015.07.005
http://dx.doi.org/10.1073/pnas.1818892115
http://dx.doi.org/10.1007/BF00048965
http://dx.doi.org/10.1073/pnas.1618215113
http://dx.doi.org/10.1038/nature25432
http://dx.doi.org/10.1002/bies.202000305
http://dx.doi.org/10.1088/1478-3975/8/1/015001
http://dx.doi.org/10.1002/bies.201100049
http://dx.doi.org/10.1002/bies.201100049
http://dx.doi.org/10.1016/j.pbiomolbio.2021.08.002
http://dx.doi.org/10.3390/e23121619
http://dx.doi.org/10.1016/j.icheatmasstransfer.2021.105565
http://dx.doi.org/10.1007/s10787-014-0224-x
http://dx.doi.org/10.1007/s10787-014-0224-x
http://dx.doi.org/10.1002/bies.200800182
http://dx.doi.org/10.1007/s12032-022-01721-z
http://dx.doi.org/10.3390/ijms25179163


Index

For the benefit of digital users, indexed terms that span two pages (e.g., 52– 53) may, on occasion, appear on only one of those pages. 
 

ABMs (agent- based models) 305, 307
abnormal cell decision- making 78
Accelerated Nanopatterned 

Stromal Invasion Assay 
(ANSIA) 274– 75

acquired therapy resistance 373– 77
approaching challenges 

of persistence and 
resistance 373– 74

future directions 376– 77
how tumours escape initially 

effective targeted therapies 373
implications of multifactorial 

resistance 376
multifactorial causation 374– 75
reasons for failure 374
roots of single- cause 

assumption 375– 76
acute myeloid leukaemia (AML) see 

AML (acute myeloid 
leukaemia)

adaptive fitness landscapes 
beyond genetic fitness 

landscapes 368
cancer evolution 363– 66

clonal selection and cancer 
landscapes 364– 65

collateral sensitivity 366
driver mutations in cancer 

landscape 363– 64
evolution of cancer cells 363
experimental and engineered 

landscapes 365– 66
steering evolution 366

decoding cancer evolution 
through 359– 68

vastness of evolutionary space, 
mapping 360

defining 359– 60
dose- dependent fitness 

landscapes 366– 67
epistasis in genome 361– 62
evolution on landscapes, 

modelling 362
evolution with epistasis 359– 62
future directions 366– 68
genetic, RNA and protein 

landscapes 361
landscapes and machine 

learning 367– 68
modelling 361– 63

epistasis in genome 361– 62
evolution with epistasis 362
evolvability and epistasis 362– 63

landscapes, modelling 
evolution on 362

theory of landscapes 361
representations of 359, 360f
seascapes as dose– response 

curves 367f, 367
theory of landscapes 361
see also evolutionary theory; 

landscape models
adaptive therapy 391– 93, 392f

adaptive cellular therapy and 
checkpoint blockade 337– 38

adenosine triphosphates (ATP) 9
adjacent possible of quasi- potential 

landscape 15
cancer cells occupying ‘unused’ 

attractor states in 11– 12
concept 4
creation of 4
unused attractors, entering in 

chronic non- genetic 
perturbations 13

permanent rewiring of GRN by 
genetic mutation 13– 14

unused attractors entering 
in 11f, 13– 14

see also quasi- potential 
landscape of GRN

AdPROM see affinity- directed 
protein missile (AdPROM)

aerobic glycolysis 326
see also Warburg effect

affinity- directed protein missile 
(AdPROM) 167– 68

AFM (atomic force microscopy) 255
agent- based models see ABMs 

(agent- based models)
AI (artificial intelligence) 145– 46

addressing of information 
overload 221

application in cancer 
genomics 235– 40

applications in literature search and 
data extraction 217– 27

clinical decision- making 227
clinical literature search and 

synthesis 223– 26
data extraction from clinical trial 

databases and EHRs 226– 27
takeways 227

application to overcome 
overload 217– 29

applying in the diagnosis and workup 
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diagnosis 190
pathology 191– 92
prognostication 187– 90
radiomics 190– 91

applying to overcome clinical 
information overload 217– 29
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clinical setting 228f, 228– 29

data extraction from clinical trial 
databases and EHRs 226– 27

enablers and barriers to application 
of AI- driven systems in 
healthcare 227– 29
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workforce 227– 28

generative 145– 46, 222
model- agnostic explainable 

AI 187– 95
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see also clinical information 

overload
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(AJCC) staging system 188
AML (acute myeloid leukaemia) 342
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aneuploid cells 286– 89
ANNs see artificial neural 

networks (ANNs)
antifragile therapy 393– 94

first- order effects 394
second- order effects 394

APIs see Application Programming 
Interfaces (APIs)

ARIADNE (algorithmic strategy) 29
artificial intelligence see AI (artificial 

intelligence)
artificial neural networks 

(ANNs) 147
autoencoders and variational 

autoencoders 147
critical transitions in cancer 

progression 405
small cell lung cancer 309

asymmetric cell division 
(ACD) 34– 35

atavistic viewpoint on cancer 22– 23
pure atavistic stages, reversion 

to 435– 36
stages 432, 433f

atomic force microscopy (AFM) 255
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triphosphates (ATP)
attractors, dynamical systems 

attractor states 7f, 9– 10
cell phenotype conversions as 

transitions between 12
cell types as 10– 11
stable 10
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in adjacent possible 11– 12
bifurcations 10, 12
cell phenotype conversions as 

transitions between states 12
critical transitions, bifurcations 

appearing as 12
destabilization underlying 

switching 12– 13
implications of new attractor 

model 434– 36
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reversion to pure atavistic 
stages 435– 36

cancerous tissue 434– 35
fighting against cancer 436
overenergized mitochondria 

as a main driver of cancer 
evolution 434

mechanism for physiological 
attractor transitions 12

new attractor model of cancer 
formation 431– 32
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separatrix curve 10
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structural stability 10
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possible’ 11– 12

cell phenotype conversions as 
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destabilization underlying 
switching 12– 13
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possible 11f, 13– 14

tumorigenesis (tumour 
progression) 11– 12

see also cell state dynamics; 
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theory; quasi- potential 
landscape of GRN

autoencoders and variational 
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backward stochastic differential 

equations (BSDEs) see 
BSDEs (backward stochastic 
differential equations)

B- ALL (B- cell acute lymphoblastic 
leukaemia) 68, 69

BASiCS (Bayesian Analysis of 
Single-  Cell Sequencing 
data) 416

Bayesian learning 74– 75, 75f
B- CLL (chronic lymphocytic 

leukaemia) 248
bifurcations 92, 115, 420
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big data research 200– 1

biomedical big data 200, 203
data analysis (informatics pipeline 
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dataset identification (informatics 

pipeline 1) 200
data wrangling (informatics 

pipeline II) 200– 1
biomedical informatics 199
Boolean network models 30, 419
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BSDEs (backward stochastic 

differential equations) 309
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fibroblasts) 82, 245– 
46, 267– 68
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epithelial defence against 285– 89
fundamental inevitability of 13– 14
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hallmarks of 3, 4
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somatic evolution theory 3, 14
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as a tissue- based disease 435
see also cancer cell plasticity; 

cancer cells; cancer evolution; 
cancer formation as creation/ 
penetration of unknown 
life spaces; cancer invasion; 
cancer progression; cancer 
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cancer- age incidence models 338– 39
cancer- associated fibroblast (CAF) 

functions see CAFs (cancer- 
associated fibroblasts)
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and drug resistance 67– 69
and immune escape after CAR- T 

therapy 68– 69

modelling tumour evolution 
with 67– 68
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drug- tolerant and persister 106– 7
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mechanisms of invasion see cancer 

invasion
need to establish a quantitative and 

direct connection between 
state and fate 133, 134f
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in adjacent possible 11– 12

phenotypic plasticity- driven 
non- genetic heterogeneity 
in 82, 83f

stem cells see cancer stem 
cells (CSCs)
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collateral sensitivity 366
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experimental and engineered 

landscapes 365– 66
future directions 366– 68
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future directions 436
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review of cancer attractor 
ideas 431
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management 433– 34

Cancer Genome Atlas (TCGA) 178, 
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cancer invasion 
cell- matrix interactions 249– 51
computational modelling 248– 51
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invadopedia growth, dynamics and 

function 248– 49
mechanisms of 246– 47
nuclear mechanics 251
role of MMPs in 247– 48
tumour cells 267– 68, 268f

cancerous tissue 434– 35
cancer as a tissue- based 

disease 435
metastasis as a tissue- related 

phenomenon 435
cancer progression 

critical transitions, 
identifying 403– 9

as explainable shift in systems 
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hallmarks see hallmarks of cancer 
progression

non- genetic phenotype 
dynamics 4– 5

phenotypic heterogeneity 
and cell- state transitions 
during 91– 98

schematic representation of disease 
states 403, 404f

selection versus induction of a new 
cell phenotype 4, 5f

treatment- induced 4– 6
see also cancer; cancer invasion; 
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treatment- induced

cancer research 
biomedical big data 200, 203
biomedical informatics 199
and the cloud 201– 2
CRDC as cloud- based research 
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drug resistance 105
and informatics 201
multimodal data for 181– 82
multi- omic technologies and 

advanced computational 
tools 112
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One Health perspective 55
somatic mutation theory 93
thermodynamic point of view 78

Cancer Research Data Commons 
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‘Cloud Resources’ 203
cancer stem cells (CSCs) 19, 27– 29, 

251, 325
artificial intelligence 353
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data science approaches in 

forecasting cell- fate 
trajectories 415

glioma 22
multimodal causation of 

resistance 374– 75
phenotypic switching 33
as super- competitors 284– 85
thermodynamic point of view 73
tumour heterogeneity and 
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state 96
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CAR T- cell therapy see chimeric 
antigen receptor (CAR) T- cell 
therapy
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tumorigenesis 283f, 283– 89
cancer cells as 

super- competitors 284– 85
cancer therapeutics, cell 
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epithelial defence against 
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microenvironment 287
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analysis 60– 61
methodology 59– 64

multiscale modelling of 
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regeneration 61– 64

stochasticity analysis, 
applications to cancer and 
EMT network 64– 67
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a quantitative and direction 
connection between state and 
fate 133, 134f

stemness 67
transition path quantification 61

cell- matrix interactions 249– 51
cell metabolism, deregulation 

of 77– 78
CellProfiler Analyst 42
CellRank 118
cell- state dynamics 3– 15, 92– 93

biological and clinical 
implications 14

and cancer progression 
challenging of paradigms 4– 6
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dynamical systems theory see 

dynamical systems theory
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potential landscape 13– 14
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multi- stability 10
non- genetic phenotype 
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perturbation and stochasticity 

shifting gene activation 
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GRN see quasi- potential 
landscape of GRN
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treatment- induced cancer 
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Nietzsche effect on cancer 

treatment 5– 6
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see also GRN (gene regulatory 

network); quasi- potential 
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lineage tracing and clonal 
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trajectories in genetic 
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cancer stem cells 27– 29
cell- fate decisions in cancer cell 

plasticity see cancer cell 
plasticity

collective cell migration and 
tumour plasticity 29– 30

dimensions of 27– 30
as emerging target against 

dynamic complexity in 
cancer 81– 85

non- genetic 8
phenotypes 4– 5
phenotypic plasticity- driven 

non- genetic heterogeneity in 
cancer cells 82, 83f

in physiological processes and 
injuries 27

schematic diagram in tumour 
microenvironment 85, 86f

Cellular Potts Modelling (CPM) 249
cellular reprogramming 21– 22
CHAPOL 133– 35
CHARMM36m 156– 57
chemotherapy 5f, 78, 82

adaptive therapy 391
in breast cancer 34– 35
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and cellular plasticity 27, 28
combined agents 299– 300, 326
compared with targeted 

therapies 313
conventional 313
drug resistance mechanisms 105
DTPs tolerating 97
exposure 97
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trials 239– 40
improvements in treatment 85
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driver genes 316
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approaches 135– 36
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application of 313
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paradigm 313
in mice 392– 93
ML- based prediction 

models 328– 29
multi- agent 328
non- small- cell lung cancer tumour 
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and p53 cancer vaccine 396
PARP inhibitors 396
polyploidy, role during cancer 

development 433
pre- CART 

conditioning 297f, 297– 98
pulsed treatment 313– 14
regrowth tumours 97, 123
resistance against 82– 83, 313, 325, 

380, 409
SCLC clinical states 303
in silico and ex vivo models, 

integrating 326, 327

standard treatment 
option 313, 347

treatment selection 192
triple- negative breast 

cancer 325– 26
Children’s Oncology Group (COG) 

Phase 2 trial 54
chimeric antigen receptor (CAR) T- 

cell therapy 295– 301
advancing of personalized anti- 

cancer immunotherapy 296
B- cell acute lymphatic 

leukaemia 298
cytokine release syndrome 

(CRS) 299, 337
cytokines, inflammatory 299
descriptive modelling of CAR 

T- cell population kinetics in 
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immune escape following 68– 69
as an inflammatory process 299
lymphodepletion prior to 299– 300
modelling feedback from 

tumour and predator- prey 
dynamics 300

pharmacokinetic and 
pharmacodynamic 
modelling of adoptive T- cell 
therapies 297
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T cells and CART cells 295, 

296f, 296
toxicity 299
use of mathematical modelling 

of cancer and immune 
system 295– 97

chreods 13
smooth descent along GRN 13

chronic lymphocytic leukaemia see 
B- CLL (chronic lymphocytic 
leukaemia)

CIN (chromosome instability) 431
circulating tumour cells (CTCs) 29– 

30, 33, 246– 47, 303, 396
extravasation of 269
small cell lung cancer 303, 304– 5
and tumour cell invasion 268– 69

circulating tumour DNA 
(ctDNA) 319, 340, 391

clinical information overload 221– 23
artificial intelligence 

addressing of information 
overload 221

applications in literature search 
and data extraction 217– 27

application to overcome 
overload 217– 29

examples of electronic 
bibliographic databases, 
literature search platforms 
and medical knowledge 
resources 217, 219t

examples of pretrained language 
models and generative AI 
tools 222, 223t

generative AI 222
information retrieval, QA and 

generative AI in medical 
domain 221– 23

large language models 222
medical datasets for QA 

systems 222, 222t

medical QA systems 222
needs and challenges 217– 21

AI to address information 
overload 221

in clinical practice 217– 18
takeways 221

PubMed publications in 
high- impact oncology 
journals 217, 218f

question answering and 
generative AI in medical 
domain 221– 23

takeways 221
see also AI (artificial intelligence)

clonal dynamics 93
cloud- based data 180, 180t

combining cloud- based 
data and analysis 
environments 182– 83

multi- omic analysis, retroposon 
activity 182– 83

pancancer analysis of gene 
fusions 183

cloud computing 201– 2
cloud costs 202
CLSM (confocal laser scanning 

microscopy) 327– 28
CNNs (convolutional neural 

networks) 148
CNVs see copy number 

variants (CNVs)
colorectal cancer (CRC) 269
common workflow language see 

CWL (common workflow 
language)

complex systems 413
computational modelling, cancer 

invasion 248– 51
confocal laser scanning 

microscopy see CLSM 
(confocal laser scanning 
microscopy)

conformational noise 35– 36
continuous and pulsed anti- cancer 

therapies 313– 20
earlier work on spontaneous 

resistance evolution 317
effect of phenotypic 

switching 318– 19
effect of treatment- induced 

resistance 317– 18
mathematical models, key 

ingredients see mathematical 
modelling of cancer/ 
immune system

review of previous work 317– 19
convolutional neural networks see 

CNNs (convolutional neural 
networks)

copy number variants 
(CNVs) 235, 237

CRC (colorectal cancer) 269
CRDC see Cancer Research Data 

Commons (CRDC)
CRISPR– Cas9 approach 28– 29, 133– 

35, 275f, 363
lineage tracing 117

critical transitions 
bifurcations appearing as 12
conventional biomarkers 404– 7

active sub- network identifying 
method 406

artificial neural networks 405
classification of differential 

interactions 406
differential dependency 

network 407
disease- specific module 

identification 406
information flow 

approach 406– 7
molecular biomarkers 404– 6
multivariate analysis 405
network biomarkers 406
support vector machine 405– 

6, 407
voting panel approach 405

dynamic network 
biomarkers 407– 8

working of landscape- DNB 408
working of sDNB 408

game theory and effective cancer 
therapies 408– 9

identifying during cancer 
progression 403– 9, 418

Crooks’ theorem 76
CRS (cytokine release 

syndrome) 299, 337
CSCs see cancer stem cells (CSCs)
CTCs see circulating tumour 

cells (CTCs)
CWL (common workflow 

language) 181
cytokines 299

see also CRS (cytokine release 
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data analysis 177– 83

analytical reproducibility 180– 
81, 181f

cloud- based data 180, 180t
combining cloud- based 

data and analysis 
environments 182– 83

Consortia- initiated data 178– 80
data harmonization and sharing 183
diverse data sources to support 

biomedical discovery 177– 
80, 178t

investigator- initiated studies 178
kinetic relationships, encoding 

using MD data 149– 50
multimodal data for cancer 

research 181– 82
platforms accelerating effective 

analysis 180– 81
cloud- based data 180, 180t
data security 180
interoperability and APIs 180

Real World Data 177– 78
see also big data research

Data Coordinating Centers 
(DCCs) 179f, 179– 80

DDD see dynamic distribution 
decomposition (DDD)

DEEPEST (Data- Enriched Efficient 
PrEcise STatistical) fusion 
detection 183

deep learning (DL) 
autoencoders and variational 

autoencoders 147
classical approaches for improving 

MD- based conformational 
sampling 146– 47
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encoder– decoder DL 
architecture 150

encoding kinetic relationships 
using MD data 137, 149f

encoding of machine- learnable 
features from 3D molecular 
coordinates 148, 149f

enhanced conformational 
sampling using 150– 51

evaluating 151
generative adversarial 

network 148
in molecular dynamics 148– 51
and protein dynamics 145– 51
scaling up to larger systems 150
transformers 148

dendritic cells (DCs) 336– 37
differential equations see BSDEs 

(backward stochastic 
differential equations); 
ODEs (ordinary differential 
equations); PDEs (partial 
differential equations)

differential gene expression analysis/ 
pathway analysis 211

DNA 6
amplification of locus 376
barcoding systems 136
cell- free samples 235
cell- intrinsic changes 373– 74
circulating tumour DNA 319, 

340, 391
damaged 23, 53, 54– 55, 97, 

247, 349
discovery of structure 360
DNA- binding domains 6, 10, 183
error- prone replication 97
exogenous 92
fluctuation test 97
genomic elements 182– 83
methylation 21, 22, 36, 62, 63, 78, 

235, 238– 39, 415
data 238– 39
interrogation 

technologies 238– 39
profiles 191, 238– 39

micro- array data 406
mitochondrial 135, 137
mutations 423, 434
pseudorandom 133– 35
quantum tunnelling 423
repair mechanisms 36, 53, 97, 

363, 422
response pathways 396
sequencing 6, 62, 235, 361, 363

sequence motifs 6
sequencing- based  

tags 133– 35
strand breaks 396
and synthetic lineage 

tracers 133– 35
DNBs (dynamic network 

biomarkers) 403– 4, 407– 8
working of landscape- DNB 408
working of sDNB 408

dose- dependent fitness 
landscapes 366– 67

double- bind therapy 396
DOX (delivery and accumulation of 

anticancer drugs) 354

dRMSD (distance root- mean- square 
deviation) 158

DRUGNEM algorithm 111– 12
drug resistance 

advances in single- cell 
technologies 107

and cancer cell plasticity 67– 69
clustering single- cell data for 

identifying therapy- resistant 
cell populations and 
states 108

computational methods to study/ 
overcome drug resistance at 
single- cell level 108– 12

decoding at a personalized 
level 112

decoding at a single- cell 
level 105– 12

systems biology approaches and 
data integration for 112
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predictive modelling 110

drug- tolerant and persister cancer 
cells 106– 7

and game theory 380– 82
genetic 105– 6, 106f
and group behaviour 379– 86
group behaviour via non- genetic 

mechanisms facilitating 
therapy resistance 383

high- throughput single- cell 
technologies 107– 8
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machine learning approaches 
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drug combinations 111– 12

mechanisms identified 105– 7
network- structure learning and 

trajectory analysis of therapy- 
resistant states 108– 10

non- genetic 106– 7
synergy between genetic and non- 

genetic mechanisms 107
DTEPs (drug- tolerant expanded 

persisters) 36
DTPs (drug- tolerant 

persisters) 36, 96– 97
and chemotherapy 97
group behaviour via non- genetic 

mechanisms facilitating 
therapy resistance 383

recapitulating evolutionary 
conserved embryonic survival 
strategy of diapause 97

DTW (dynamics time  
warping) 127

dynamical systems theory 
elementary concepts 8– 10
first principles 4, 14, 15
premis that intrinsic cell state 

dynamics is governed by 
GRN 6– 8

premis that perturbation and 
stochasticity shift gene 
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and cell states 8

steady states and attractors 9– 10
see also attractors, dynamical 

systems; cell state dynamics
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(DDD) 45

dynamic network biomarkers see 
DNBs (dynamic network 
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cancer cells to 255– 61
cancer heterogeneity and 

response to 260– 61
reverse plasticity in cellular 

response 260f, 260– 61
systems biology 

perspective 259– 60
cellular response to model 

substrates of controlled 
stiffness 259
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to 3D substrates 258– 59

comparison of tissue stiffness in 
cancer 255, 256t

EDAC (epithelial defence against 
cancer) 285– 89

aneuploid cells extended 
out to prevent cancer 
initiation 286– 89

initial studies demonstrating 
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tissues 286

mechanisms behind 286
EGFR tyrosine kinase inhibitors 82, 

284, 396
EHR (electronic health record) 193
ELI (Evolved Levels of 

Invasibility) 274
ELT see energy landscape 

theory (ELT)
ELVIM (energy landscape visualization 

method) 158– 59, 159f
EMT (epithelial- to- mesenchymal 

transition) 29
cellular plasticity 81
cellular reprogramming 22
collective cell migration and 

tumour plasticity 29– 30
drug resistance 107
dynamics of morphological state 

transition 43– 44
exploration of cancer state 

transition with - omic 
methods 124

future directions 45
hierarchy structure and 

plasticity of cancer cell 
populations 123

identifying the morphological 
states 42– 43

imaging morphological 
dynamics 40– 41

landscape and transition path of 
EMT network 64– 65, 65f, 
128f, 128– 29

metastasis 29
landscape analysis of EMT- 

metastasis- metabolism 
network 65– 67

landscape and transition 
path of EMT- metastasis 
network 65, 66f

morphological state transition 
during 39– 45

predictive strategies for cancer 
aggressiveness 29

quantitative investigation of 
morphological state transition 
during 40f, 40

small cell lung cancer 305
studying cancer cell- state 

transition with live- cell 
imaging 126

transcription factors 29
EncoderMap 158
energy landscape analysis 155– 60

computational approaches 156– 57
energy landscape visualization 

method 159f
intrinsically disordered 

proteins 156– 57
PAGE4 energy 

landscape 35, 159– 60
and protein folding 155– 56
reaction coordinates 

and dimensionality 
reduction 157– 58

multidimensional 
scaling 157– 58

non- linear dimensionality 
reduction 158

principal component 
analysis 42, 157, 415

thermodynamic hypothesis 155
energy landscape theory (ELT) 155
enhanced permeability and 

retention see EPR 
(enhanced permeability and 
retention) effect

epigenetic landscape 
(Waddington) 8, 34, 415

cell state dynamics 9, 10– 11, 91
cell types 10– 11
clonal selection and cancer 

landscapes 364
commonly used metaphor in 

developmental biology 33, 43
evolution of 69– 70
reconfiguration 19
schematic illustration 34f
and unknown life spaces, creation/ 

penetration of 431, 433
epigenetic programming and genome 

instability 78
epigenetic remodelling 36
epistasis 

evolution with 359– 62
and evolvability 359
in genome 361– 62

epithelial defence against cancer see 
EDAC (epithelial defence 
against cancer)

epithelial- to- mesenchymal transition 
(EMT) see EMT (epithelial- 
to- mesenchymal transition)

EPR (enhanced permeability and 
retention) effect 349

evolutionary theory 
accounting for cellular and 

microenvironmental 
heterogeneity 389– 90

accounting for inter- patient 
complexity 390

adaptive fitness landscapes 359– 68
antifragile therapy 393– 94

deep learning (DL) (cont.)
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cancer evolution see cancer 
evolution

epistasis, evolution with 362
mathematics of treatment 

scheduling in 
oncology 389, 390f

modelling evolution on 
landscapes 362

tumours as a complex, dynamic 
evolutionary process 390– 
91, 391f

vastness of evolutionary space, 
mapping 360

see also landscape models
evolutionary therapy 

double- bind therapy 396
fundamentals of 391– 94

adaptive therapy 391– 93, 392f
antifragile therapy 393– 94
for cure 394– 96

multi- strike therapy 394– 96, 395f
second- order effects in 394

‘Evolutionary Tumour Board 396
EVONANO modelling 

platform 353, 354f
EVTs (extra villous trophoblasts) 274
extra- cellular matrix (ECM) see 

ECM (extra- cellular matrix)
 
FAIR (Findable, Accessible, 

Interoperable, and 
Reusable) 178

Feynman– Kac simulation 309
fibroblasts, stromal 

contribution to cancer metastasis 
from evolutionary 
perspective 273– 79

most abundant cells in stroma 273
see also CAFs (cancer- associated 

fibroblasts); stromal 
invasibility; stromal response

FMDs (fast mimicking diets) 287– 89
free energy landscapes/  surfaces 

(FESs) 150
frozen sectioning 327
 
GA4GH (Global Alliance for 

Genomics and Health) 180
Game of Life model 305
game theory 

background 380
and drug resistance 380– 82

GANs (generative adversarial 
networks) 417

GDC (Genomic Data 
Commons) 182

GEMLI (gene expression memory-  
based lineage inference) 137

Gene Ontology analysis 119
generative adversarial network 

(GAN) 148
gene regulatory network see GRN 

(gene regulatory network)
Gene Set Enrichment Analysis 119
genetic mutations 3

catalyzing, not causing, 
development of cancer 4, 14

permanent rewiring of GRN 
by 7f, 13– 14

requiring non- mutagenic tumour 
promotor agents to produce 
tumours 14

transient and permanent changes 
of landscape topography 10

genetic space trajectories, cell- state 
transitions 92– 93

Genomic Data Commons (GDC) see 
GDC (Genomic Data 
Commons)

genomics, cancer 
application in clinical 

oncology 238– 40
cancer diagnosis and tissue of 

origin 238– 39
cancer prognosis 239
genomics- guided clinical 

trials 239– 40
treatment response 239

application of AI in 235– 40
clinical trials, 

genomics- guided 239– 40
copy number variants 235, 237
epistasis in genome 361– 62
genomic data types 235
single- cell RNA- seq 

(scRNA- seq) 237
SNVs and short INDELs 236– 38
spatial transcriptomics 237– 38
whole genome sequencing 235

Genotype Tissue Expression 
database 278

GESTALT barcode 133– 35
GIN (genome instability) 431
Gleason score, in prostate 

cancer 187– 88
glioblastoma, epigenetic regulation 

of 419– 20
gradient boosting machine learning 

approach (XGBoost) 111– 12
graph- based clustering 42
GRN (gene regulatory network) 7– 

8, 9, 15
action against regulatory 

constraints imposed by 8– 9
and cellular interaction 

analysis 211– 12
chreods, smooth descent along 13
extrinsic regulation 8
genomic mutations acting on 13
interactions folding up 2D 

plane into a topographical 
landscape 9

intrinsic cell state dynamics 
governed by 6– 8

localized changes in wiring 
diagram 10

many attractors in landscape of 
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